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Quantifying superspreading 
for COVID‑19 using Poisson 
mixture distributions
Cécile Kremer1,7*, Andrea Torneri2,7, Sien Boesmans3, Hanne Meuwissen3, 
Selina Verdonschot3, Koen Vanden Driessche4,5, Christian L. Althaus6, Christel Faes1 & 
Niel Hens1,2

The number of secondary cases, i.e. the number of new infections generated by an infectious 
individual, is an important parameter for the control of infectious diseases. When individual variation 
in disease transmission is present, like for COVID‑19, the distribution of the number of secondary cases 
is skewed and often modeled using a negative binomial distribution. However, this may not always 
be the best distribution to describe the underlying transmission process. We propose the use of three 
other offspring distributions to quantify heterogeneity in transmission, and we assess the possible 
bias in estimates of the mean and variance of this distribution when the data generating distribution 
is different from the one used for inference. We also analyze COVID‑19 data from Hong Kong, India, 
and Rwanda, and quantify the proportion of cases responsible for 80% of transmission, p

80%
 , while 

acknowledging the variation arising from the assumed offspring distribution. In a simulation study, we 
find that variance estimates may be biased when there is a substantial amount of heterogeneity, and 
that selection of the most accurate distribution from a set of distributions is important. In addition we 
find that the number of secondary cases for two of the three COVID‑19 datasets is better described by 
a Poisson‑lognormal distribution.

For any communicable disease, the basic reproduction number, R0 , denotes the average number of secondary 
cases a single infected individual generates in a completely susceptible  population1,2. The basic reproduction 
number is considered to be of constant value among population members or specific population groups. However, 
for person-to-person transmitted infections, a complex combination of host, pathogen, and environmental factors 
defines the transmission potential of an infected individual, i.e. the number of other individuals a case infects 
during their infectious  period3,4. It has been shown that, for a given R0 , both the probability that an epidemic will 
occur and the subsequent course of the epidemic are affected by individual variation in  transmission3. Variation 
in disease transmission may lead to the existence of ‘superspreaders’ who infect substantially more individuals 
than others. When superspreading plays an important role during the epidemic, a relatively small proportion 
of infected cases will be responsible for most of the transmission, while many cases do not transmit the disease 
at all. Furthermore, when variation in disease transmission is present, large outbreaks can occur even if R0 is 
less than one. To account for this heterogeneity, the individual number of secondary cases can be described by a 
random variable, whereas R0 represents the expected value for an entire susceptible population.

The transmission potential of infected individuals can be seen as a combination of their biological infec-
tiousness (i.e. viral shedding) and their contact  behavior5. It is reasonable to assume that individuals with a 
higher viral shedding will be more likely to transmit the infection given a  contact6. In addition, for a fixed level 
of viral shedding, infectious individuals with a higher contact rate will be more likely to generate secondary 
cases. Regarding SARS-CoV-2, significant individual variation in viral shedding has been  reported7 and it has 
been argued that small aerosols exhaled during normal speech may serve as an important transmission  route8. 
Vuorinen et al.7 investigated the possibility of SARS-CoV-2 transmission by inhalation of virus-containing 
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aerosols, by examining a high-risk scenario where an infected individual coughs within a public indoor space. 
They found that there was an elevated risk of infection in case of lengthy exposure in a confined space with at 
least one infected individual. These results are in line with those from another study which has indicated that the 
virus may remain infectious as an aerosol for at least three  hours9. Of course, not only individual characteristics 
such as viral shedding but also environmental characteristics such as insufficient ventilation contribute to the 
possibility of a superspreading event (SSE)10.

Lloyd-Smith et al.3 addressed heterogeneity in transmission by using the concept of an individual reproduc-
tion number as a random variable that represents the expected number of secondary cases caused by a particular 
infected individual. In that framework, SSEs are important realizations from the right-hand tail of the distribu-
tion of the individual reproduction number. Most studies investigating the amount of heterogeneity in disease 
transmission have assumed a Poisson process with rate given by the individual reproduction numbers, assumed to 
follow a Gamma distribution, resulting in a negative binomial offspring  distribution3,11. In this way, heterogene-
ity has often been quantified using the k parameter, with k the negative binomial dispersion parameter. This has 
allowed comparison between studies, where lower values of k indicate increased heterogeneity in transmission, 
and thus possibly a larger amount of superspreading.

Based on this framework, a substantial amount of individual variation in the transmission of SARS-CoV-2 
has been described, though large differences were found between different studies. Bi et al.12 used a negative 
binomial distribution to describe superspreading in the COVID-19 outbreak in Shenzhen, China, and found 
that about 9% of all cases were responsible for 80% of transmission. Riou and  Althaus13 estimated the negative 
binomial dispersion parameter k to have a median of 0.54 (90% HDI 0.014–6.95), with simulations suggesting 
that very low values of overdispersion ( < 0.1 ) are less likely. Adam et al.14 estimated the overall mean number of 
secondary cases to be 0.58 (95%CI 0.45–0.72) with a dispersion parameter k of 0.43 (95%CI 0.29–0.67) in Hong 
Kong, indicating that 19% of cases were responsible for 80% of all local transmission. Similarly, Endo et al.15 have 
used a branching process model where the number of secondary cases was assumed to follow a negative binomial 
distribution. Assuming R0 to be 2.5, they estimated the dispersion parameter k to have a median of 0.1 (95% CrI 
0.05–0.2), resulting in 80% of secondary cases being caused by about 10% of infectious cases and implying that 
large transmission events should be prevented in order to contain epidemic spread. Laxminarayan et al.16 esti-
mated the negative binomial dispersion parameter k to be 0.51 (95%CI: 0.49-0.52) using a large contact tracing 
dataset from two Indian states. Based on detailed contact tracing data from Hunan, China, Sun et al.17 found that 
15% of cases were responsible for 80% of transmission, and a negative binomial dispersion parameter k of 0.3. 
Lau et al.18 found that superspreading was widespread across space and time, with an increasing presence towards 
later stages of the investigated outbreaks, highlighting the importance of maintaining social distance measures. 
They also found that about 2% of the most infectious cases were directly responsible for 20% of all infections.

It is well-recognized in statistical literature that the distribution underlying a data generating mechanism 
imposes a certain mean-to-variance relationship, which in practice may be severely  violated19. Despite this, the 
use of other distributions in infectious disease modeling that may just as well account for variation in disease 
transmission has been rather limited. Some studies suggest that SSEs follow a power-law distribution with fat 
tails, such as the generalized Pareto  distribution20. Brooks-Pollock et al.21 have used a negative binomial as well 
as a Poisson-lognormal distribution to model the distribution of cluster sizes for tuberculosis in the United 
Kingdom (UK) and the Netherlands. In this study, the Poisson-lognormal distribution provided a better fit to 
the UK data, indicating the importance of comparing different assumptions about the underlying distribution 
when variation in disease transmission is present.

To our knowledge, there are no studies that have explicitly investigated the possible bias in using the negative 
binomial distribution as an approximation to the underlying transmission process. We argue that it is important 
to compare different distributional assumptions since different distributions could portray different tail behav-
iour, and hence capture SSEs differently. In this work we explore the use of other Poisson mixture distributions 
for inference of the offspring mean and the amount of heterogeneity in disease transmission. We focus on the 
three-parameter generalized Gamma distribution for the individual reproduction number, because of its flex-
ibility and the fact that it has as special cases the Gamma, Weibull, and lognormal  distribution22. First, we carry 
out a simulation study to investigate the potential bias in the estimation of the offspring mean and its variance 
when the distribution that is fit to the data does not correspond to the actual data generating distribution. Next, 
we use the proposed distributions to (re-)analyze several COVID-19 datasets from Rwanda, India, and Hong 
Kong, and investigate the impact of the considered offspring distribution on the estimation of the proportion 
of cases that is responsible for 80% of transmission, p80% . These countries were chosen because contact tracing 
data were available to construct empirical offspring distributions.

Results
Simulation study. We consider the Poisson-generalized Gamma (POGG) and three submodels for the off-
spring distributions: negative binomial (NB), Poisson-lognormal (POLN), and Poisson-Weibull (POWB). See 
Methods for a description of these Poisson mixture distributions and how the simulation study was performed. 
In general we find that when overdispersion increases, estimates tend to become more biased when the consid-
ered offspring distribution does not correspond to the data generating distribution (Suppl. Tables S2 & S3). This 
is especially the case when considering estimates of the standard deviation. As overdispersion increases, the 
true distribution is more often considered as the best fit based on AIC. In particular, when the data generating 
mechanism deviates from the NB model, assuming the NB model will often lead to an underestimation of the 
standard deviation. Where results are missing, no estimates could be obtained.
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Expected versus realized proportions of transmission. Based on the estimated mean and variance of the consid-
ered offspring distribution, we can obtain estimates for the proportion of cases responsible for a certain amount 
of transmission. There are two different approaches for obtaining these proportions (see Methods), where one 
is based on the distribution of the individual reproduction  number3, and the other is based on the complete 
offspring  distribution15. Here we show how the different offspring distributions can affect these proportions. 
Figure 1a shows the expected proportion of transmission due to the 20% most infectious cases for the varying 
levels of heterogeneity used in the simulation study, for the different offspring distributions. For all distributions, 
this proportion increases with an increasing amount of heterogeneity (i.e. higher σ , which for the negative bino-
mial results in lower k). Thus, less heterogeneity leads to a smaller proportion of transmission being attributed 
to the 20% most infectious cases. In case of high overdispersion, there is a substantial difference in the expected 
proportions between the distributions. Since for the Poisson-generalized Gamma distribution it is not possible 
to specify the parameters from a given mean and variance, we only estimated these proportions at the speci-
fied settings used in the simulation study, hence these are represented as dots instead of lines. Figure 1b shows 
the expected proportion of transmission due to a given proportion of infectious cases for the different levels of 
overdispersion. It can again be seen that the difference between these estimates across the different distributions 

Figure 1.  The top panel shows the expected proportion of all transmission that is (a) due to the 20% most 
infectious cases for different levels of overdispersion and different distributions, with the offspring mean R 
fixed at 0.8; and (b) due to a given proportion of infectious cases, where cases are ranked by their transmission 
potential, for σ = 1 (dotted), σ = 1.5 (dashed), σ = 3 (full), and the different distributions, with R fixed at 0.8. 
The lower panel shows the realized proportion of all transmission that is (c) due to the 20% most infectious 
cases, shaded vertical bars show the range surrounding the proportions at σ ∈ {1, 1.5, 3} (see Supplementary 
Methods); and (d) due to a given proportion of infectious cases.
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increases when overdispersion increases (i.e. higher σ ) and likewise there is a substantial difference in terms 
of the expected proportions of transmission. When taking into account the additional variation coming from 
the Poisson process, the same increase in the proportion of transmission due to the 20% most infectious cases 
is seen, again with substantial differences between the distributions when overdispersion increases (Fig. 1c,d). 
These results also hold when R > 1 (Suppl. Fig. S2). The vertical bars in Fig. 1c represent the uncertainty in the 
proportion of transmission due to the discrete nature of the offspring distribution and should be interpreted as 
the range of transmission that will be due to the 20% most infectious cases. When taking into account this range 
surrounding these point estimates, a substantial difference is seen between the Poisson-lognormal and the other 
distributions for higher levels of overdispersion.

Application to COVID‑19 data. Table 1 shows estimates of the offspring mean R and standard deviation σ 
obtained by fitting the different offspring distributions to each COVID-19 dataset. In terms of AIC and the cor-
responding Akaike weights, the data from Hong Kong and India are best described by a Poisson-lognormal dis-
tribution. Supplementary Figs. S4, S6, and S8 show the fit of the different distributions to the observed offspring 
distribution. It can be seen that for the data from Hong Kong and India the negative binomial, Poisson-Weibull, 
and Poisson-generalized Gamma distributions do not adequately capture the proportion of cases that generate 
only one secondary case, while this is captured well by the Poisson-lognormal distribution. For the data from 
Rwanda this is less evident. Goodness-of-fit plots are shown in Suppl. Figs. S5, S7, and S9. For each of the three 
datasets (Table 2), p80% is estimated to be substantially higher for the Poisson-lognormal than for the other dis-
tributions when based on the distribution of the individual reproduction number (equation (1), see Methods), 
and slightly higher when taking into account additional random variation from the Poisson process (equation 
(2), see Methods). Figure 2a,c,e show the expected proportions of transmission due to a certain proportion of 

Table 1.  Estimates of the offspring mean R and its standard deviation ( σ ), in addition to the coefficient of 
variation (CV), using the different mixture distributions, and their AIC value and corresponding Akaike 
weights ( wi ), for three COVID-19 datasets.

Dataset Distribution R (95%CI) σ (95%CI) CV (95%CI) AIC wi

Hong  Kong14

NB 0.583 (0.448–0.718) 1.175 (0.944–1.490) 2.016 (1.816–2.395) 593.925 0.078

POLN 0.587 (0.456–0.779) 1.413 (0.969–2.442) 2.409 (1.869–3.426) 590.009 0.551

POWB 0.580 (0.445–0.745) 1.218 (0.970–1.734) 2.101 (1.841–2.560) 591.747 0.231

POGG 0.580 (0.3789–0.724) 1.258 (0.923–1.550) 2.171 (2.059–2.466) 592.738 0.141

India16

NB 0.484 (0.480–0.494) 0.973 (0.962–0.985) 2.009 (1.994–2.024) 163974.5 0.000

POLN 0.484 (0.477–0.491) 1.077 (1.055–1.101) 2.226 (2.195–2.258) 162980.6 0.000

POWB 0.483 (0.476–0.489) 0.997 (0.984–1.011) 2.067 (2.049–2.084) 163530.8 1.000

POGG 0.484 (0.477–0.490) 1.012 (1.000–1.024) 2.094 (2.086–2.102) 163286.5 0.000

Rwanda

NB 0.259 (0.216–0.302) 0.623 (0.547–0.731) 2.406 (2.223–2.743) 1015.261 0.157

POLN 0.260 (0.219–0.311) 0.657 (0.560–0.820) 2.528 (2.267–2.892) 1013.073 0.468

POWB 0.259 (0.217–0.311) 0.631 (0.557–0.783) 2.436 (2.225–2.750) 1014.350 0.247

POGG 0.259 (0.216–0.301) 0.634 (0.561–0.706) 2.451 (2.340–2.603) 1015.667 0.128

Table 2.  Estimates of the proportion of cases responsible for 80% of transmission ( p80% , following Eqs. (1) 
and (2) using the different mixture distributions, for three COVID-19 datasets. Estimates based on the negative 
binomial distribution correspond to those reported in the literature for the two published datasets.

Dataset Distribution

p80% (95%CI)

Eq. (1) Eq. (2)

Hong  Kong14

NB 0.288 (0.208–0.345) 0.191 (0.145–0.223)

POLN 0.332 (0.236–0.438) 0.195 (0.153–0.242)

POWB 0.294 (0.223–0.358) 0.189 (0.148–0.221)

POGG 0.303 (0.279–0.325) 0.190 (0.145–0.203)

India16

NB 0.319 (0.314–0.324) 0.191 (0.189–0.194)

POLN 0.373 (0.367–0.379) 0.195 (0.193–0.199)

POWB 0.322 (0.318–0.327) 0.189 (0.187–0.191)

POGG 0.333 (0.332–0.335) 0.191 (0.189–0.192)

Rwanda

NB 0.323 (0.223–0.390) 0.138 (0.114–0.157)

POLN 0.389 (0.318–0.459) 0.139 (0.120–0.157)

POWB 0.331 (0.241–0.394) 0.137 (0.117–0.157)

POGG 0.344 (0.337–0.350) 0.137 (0.122–0.151)
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Figure 2.  Proportion of most infectious cases responsible for a certain proportion of transmission, based 
on estimates from (a,b) Hong Kong, (c,d) India, and (e,f) Rwanda. Proportions are obtained based on the 
distribution of the individual reproduction number (left), and based on the complete offspring distribution 
(right). The shaded areas in the right panels represent the range surrounding specific proportions when 
considering the discrete nature of the realized offspring distributions (see Supplementary Methods).
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cases for each distribution and each dataset, while Fig. 2b,d,e show the realized proportions. For Hong Kong, 
we estimate that roughly 12-31% of cases are responsible for 68-100% of all transmission based on the Poisson-
lognormal distribution (Fig. 2b), while based on the negative binomial distribution, we estimate that roughly 
14-31% of cases are responsible for 71-100% of all transmission. For India, we estimate that roughly 10-29% of 
cases are responsible for 61-100% of all transmission based on the Poisson-lognormal distribution (Fig. 2d), 
while based on the negative binomial distribution, we estimate that roughly 11-29% of cases are responsible for 
64-100% of all transmission. For Rwanda, we estimate that roughly 5-19% of cases are responsible for 44-100% 
of all transmission based on the Poisson-lognormal distribution (Fig. 2f), while based on the negative binomial 
distribution, we estimate that roughly 5-19% of cases are responsible for 46-100% of transmission.

Discussion
Since most studies that aim to quantify variation in disease transmission have assumed the offspring distribution 
to follow a negative binomial, we investigated the impact of incorrectly assuming this distribution as an approxi-
mation to the underlying transmission process. Results from our simulation study show that when overdispersion 
increases, estimates of the offspring mean and especially its variance can become quite biased when making 
incorrect assumptions about the underlying data generating distribution. This conclusion remains valid when 
using simulated offspring distributions for only 1000 cases (see Supplementary Table S3). When no variation 
in transmission is present, all distributions performed equally well, although there was a slightly increased bias 
in variance estimates when using the Poisson-Weibull or Poisson-generalized Gamma distribution. We have 
(re-)analyzed three COVID-19 datasets and for two of these datasets (i.e. Hong Kong and India) the Poisson-
lognormal distribution gave the best fit to the observed data in terms of AIC, which was confirmed by the Akaike 
weights assigning the highest probability to this model. This resulted in considerable differences in terms of the 
expected p80% compared to when using a negative binomial distribution, when these proportions were based 
on the distribution of the individual reproduction  number3. For India, p80% was estimated to be significantly 
higher when based on the Poisson-lognormal compared to the other distributions. When accounting for the 
additional variation introduced by the Poisson process, the differences in these proportions of cases responsible 
became negligible. For example, for the Hong Kong data the point estimate when using the Poisson-lognormal 
was 19.5%, compared to the previously reported 19.1% when using the negative  binomial14. When accounting for 
the discrete nature of the offspring distribution, estimated ranges for these proportions were mostly overlapping 
for the different distributions, albeit a bit lower for the Poisson-lognormal distribution. Although most studies 
report p80% , the right-sided panels in Fig. 2 indicate that depending on the proportion of transmission one is 
interested in, there might be a more substantial difference between the distributions. This implies that different 
distributions have different tail properties, underlining the importance of investigating which distribution best 
describes the data at hand. In addition we found that the difference between the distributions increases with an 
increasing level of overdispersion (Fig. 1). We do not suggest to always use the Poisson-lognormal distribution 
instead of a negative binomial, but rather recommend to compare different distributions and select the most 
accurate one, i.e. the best fitting one, as the true underlying process is always unkown. Our analysis of the Hong 
Kong data shows that model selection is important even when the sample size is relatively small.

Our analyses indicated that the negative binomial distribution often does not adequately capture the propor-
tion of cases that generate only one secondary case, thereby possibly overestimating the importance of super-
spreading events. This overestimation was observed when the proportion of cases responsible was obtained based 
on the distribution for the underlying individual reproduction number. When accounting for the Poisson process, 
superspreading was found to be only slightly more important when using a negative binomial distribution to 
describe the data, compared to a Poisson-lognormal distribution. A negative binomial distribution enables easy 
comparison between different studies through its dispersion parameter k3. However, this should not be a reason 
to only use negative binomial offspring distributions without exploring other alternatives. In fact, estimates of k 
become meaningless when the negative binomial does not accurately describe the underlying distribution. The 
results from different studies can also be compared by their estimated p80% , which is often reported as well and 
can be obtained for any distribution that best describes the data. In addition, p80% has a more intuitive interpre-
tation than the negative binomial dispersion parameter k. It should be noted that there are different approaches 
for obtaining these proportions, and care should be taken when comparing these results between studies because 
of the difference in interpretation. Lloyd-Smith et al.3 assume SSEs to be realizations from the right-hand tail 
of the distribution of the individual reproduction number, hence their approach is based on this continuous 
distribution and only depends on the level of overdispersion (Suppl. Fig. S1a). In contrast, Endo et al.15 have 
based these estimates on the complete offspring distribution, taking into account additional variation arising 
from the discrete Poisson process. In this way, the second approach accounts for more heterogeneity. However, 
if the effective contact process in reality is not a Poisson process, this approach may result in biased estimates. 
We also indicate that these proportions based on the negative binomial or another discrete distribution should 
be expressed as a range instead of a fixed number, which has not been accounted for in previous studies.

In this study we have considered the three-parameter Poisson-generalized Gamma distribution, which has as 
special cases the Poisson-lognormal, Poisson-Weibull, and negative binomial distribution. Although the Poisson-
generalized Gamma distribution has the advantage of being very flexible due to the additional parameter, the 
disadvantage is that because of this added complexity the estimation is computationally more extensive, especially 
for large datasets. Furthermore, parameter estimation can be difficult because different parameter sets can give 
rise to the same density function. In general, parameter estimation becomes more difficult when the amount of 
overdispersion is high and incorrect assumptions about the underlying data generating distribution are made. For 
that reason we were not able to fit the Poisson-Weibull and Poisson-lognormal distributions in some scenarios 
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of our simulation study. This occurred when the data were highly overdispersed ( k < 0.1), which is less likely to 
be encountered in  practice13.

Inference of the amount of heterogeneity in transmission is paramount for identifying a disease’s potential 
of superspreading. Correctly quantifying this heterogeneity is important because it affects estimates of other 
epidemiological parameters, modulates the degree of unpredictability of an epidemic, and needs to be taken into 
account when modeling disease control and planning control  strategies23. When there is evidence of substantial 
superspreading, control measures should focus on limiting the potential for SSEs to occur by restricting large 
events and avoiding crowding in other public spaces. Typically, when control measures are taken, one aims to 
prevent transmission from those cases expected to have a high individual reproduction number, without knowing 
whether they will actually realize these secondary cases. Control measures thus act on the individual reproduction 
number and the expected transmissions, whereas their effect will be observed at the level of realized transmis-
sions. In general, for a given proportion of individuals that are ‘controlled’, greater targeting of individuals with a 
higher expected number of secondary cases (e.g. those individuals that are expected to have a lot of contacts) will 
result in a lower effective R and higher extinction  probability3. When p80% is low, this implies that the majority 
of infected individuals do not transmit the virus and thus the epidemic cannot be sustained if superspreading 
events are prevented by e.g. restricting large gatherings. On the other hand, for higher p80% , more individuals 
will contribute to transmission and additional control measures that focus on regular contacts (e.g. work, school, 
family) become more  important24. Also, because of the increased speed at which the epidemic spreads when 
SSEs are present, heterogeneity could lower doubling  times25.

Detailed contact tracing data, including information about the time of data collection, are needed to obtain 
empirical offspring distributions, but these are often not available. Even if available, most of these datasets will 
be of limited sample size. In general, small samples might be less likely to include values from the right-hand tail 
of a distribution. Outbreak data obtained from contact tracing however tend to be biased toward including these 
right-hand tail observations because outbreaks that are detected are often those that go on for a few generations, 
tending to include a highly infectious individual among the early generations, and in this way counteracting 
the small-sample bias that would occur when these observations are  lacking26. Although it has been shown that 
there is minimal risk of overestimating the negative binomial dispersion parameter k when using MLE with small 
 samples26, we cannot be certain this also applies to other Poisson mixture distributions. However, we believe 
that for the purpose of our study MLE, and consequently AIC for model comparison, is a valid approach. When 
possible, temporal changes in the offspring distribution should be accounted for, especially when the dataset is 
large and collected over multiple time periods. This work should be extended such that the considered distribu-
tions can be used to infer the offspring mean R and its overdispersion from final size  data11, which are often more 
readily available. In a recent study by Brooks-Pollock et al.21 it was found that assuming a branching process 
with a negative binomial distribution of secondary cases systematically underestimated the frequency of large 
tuberculosis clusters, while a Poisson-lognormal model was able to capture the entire distribution.

Rock et al.27 have mentioned the distinction between ‘super-spreaders’ and ‘super-shedders’, who are both 
responsible for an above average number of secondary cases but for different reasons. In a meta-regression 
analysis, Chen et al.28 investigated the relationship between the dispersion parameter k and respiratory viral load 
(rVL). They found that heterogeneity in rVL facilitates variation in individual infectiousness and hence may be 
associated with overdispersion in the number of secondary cases. Another recent study has shown that highly 
heterogeneous contact behavior is required to produce extreme  superspreading29. Future work should thus aim 
to disentangle heterogeneity coming from variation in contact rates versus heterogeneity coming from varia-
tion in viral shedding. Furthermore, assuming a homogeneous Poisson process for effective contacts is likely 
a simplification of the real contact process, hence the use of other distributions to describe the contact process 
should also be considered. In a recent study, Wong and  Collins20 have suggested that the offspring distribution 
for SARS-CoV-2 is fat-tailed, and that this tail part of the distribution is consistent with a generalized Pareto 
distribution. For completeness, we have fit discrete Pareto offspring distributions to the three datasets used in 
this study, but did not find evidence that this provided a better description of the complete offspring distribu-
tion (see Supplementary Table S1 and Supplementary Fig. S3). Overall, the results of the present study suggest 
that, whenever possible, several distributions should be compared in terms of their fit to the observed data 
before making inferences on the amount of heterogeneity because resulting conclusions on the importance of 
superspreading may be different.

Methods
Poisson mixture distributions. Differences in infectious disease transmission among individuals can 
arise either from differences in infectiousness or from differences in susceptibility, and can be interpreted in 
terms of the underlying contact and infection  processes30. An effective contact is a contact that can lead to 
transmission, whereas an infectious contact occurs when an effective contact is realized between an infectious 
and susceptible individual. Effective contacts can be described using a Poisson counting process. Overdispersion 
occurs when the variance of a distribution exceeds its mean, which is not accounted for by a Poisson distribution 
with constant rate. Instead if the rate itself is a random variable drawn from a particular distribution, this over-
dispersion can be captured. When there is high overdispersion, a small proportion of infected individuals will 
be responsible for the majority of transmission. Let Y denote the effective contact process that follows a Poisson 
distribution, Y ∼ Po(ν) , where ν represents the individual reproduction number that allows for heterogeneity in 
transmission. The effective contact process Y is then described by a Poisson mixture distribution. In this work 
we focus on the three-parameter generalized Gamma distribution for ν , because of its flexibility and the fact that 
it has as special cases the Gamma, Weibull, and lognormal  distribution22. Table 3 shows the resulting Poisson 
mixture distributions, each with mean R and variance σ 2 . More details can be found in Supplementary Methods.
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Simulation study. To assess the possible bias in estimates of the reproduction number R and its overdisper-
sion, which are based on assuming a certain offspring distribution for the underlying transmission process, we 
investigate the influence of the choice of distribution on the corresponding estimates. For this purpose, we will 
use the standard deviation (SD) as a measure for quantifying the degree of overdispersion (Suppl. Fig. S10). 
Using each of the mixtures in Table 3 we generate 1000 datasets containing the distribution of secondary cases 
for 10,000 individuals, to avoid small-sample bias. We set the mean number of secondary cases (i.e. the offspring 
mean) to 0.8 to represent local epidemic outbreaks with control measures in place, and vary the standard devia-
tion σ ∈ {1, 1.5, 3} corresponding to different levels of overdispersion (negative binomial k ∈ {3.2, 0.44, 0.08} ). 
We also consider a scenario without heterogeneity where the data are generated from a Poisson distribution with 
variance equal to the mean, R = σ 2 = 0.8 . We then estimate the parameters of the mixture distributions for 
each simulated dataset ( i = 1, . . . , 1000 ) using maximum likelihood estimation (MLE) and obtain the estimated 
mean R̂i and standard deviation σ̂i of the offspring distribution. For each distribution we calculate what we refer 
to as bias in the estimates as ¯̂x − x , where x is the true value of the parameter of interest and ¯̂x is the sample mean. 
Following Burton et al.31, a bias larger than |0.5SE(x̂) | is substantial, where SE(x̂) is the empirical standard error 
of the estimate x̂ across all simulated datasets (i.e. the between-sample variability). We also obtain the bias as a 
percentage of the SE(x̂) , which ideally would be smaller than 40% in either  direction32. Further, we calculate the 
mean squared error (MSE) as a measure of overall accuracy by taking into account the bias as well as the vari-
ability in the estimates. For example, a more flexible model such as the Poisson-generalized Gamma distribution 
is expected to have lower bias, but as a consequence of its complexity the variability is expected to be  higher33.

Expected versus realized proportions of transmission. After estimating the mean R̂ and variance σ̂ 2 of the con-
sidered mixture distribution, we can obtain the proportion of cases responsible for a given proportion of trans-
mission. Following Lloyd-Smith et al.3, the parameters R̂ and σ 2 = σ̂ 2 − R̂ specify the probability density func-
tion (pdf) fν(x) and cumulative distribution function (cdf) Fν(x) of the distribution describing the individual 
reproduction number ν . The cdf for disease transmission is defined by

and denotes the expected proportion of transmission due to infectious cases with ν < x , while 1− Ftrans(x) 
denotes the expected proportion of transmission due to those cases with ν > x . If p is the proportion of transmis-
sion for which we want to know the expected proportion of cases responsible, a, we first need to find x such that 
1− Ftrans(x) = p . The value x then denotes the threshold value of the reproduction number for which 1− Ftrans(x) 
is the expected proportion of transmission p due to cases with ν > x . We can then obtain the expected propor-
tion of cases which have their reproduction number ν > x as P(X > x) = 1− P(X ≤ x) = 1− Fν(x) . This is 
the expected proportion of infectious cases a that is responsible for a proportion p of all transmission. Note that 
in case of a homogeneous Poisson process the relation between a and p will be linear (Supplementary Fig. S1b) 
because the variance of the mixing distribution will be zero.

If we want to take into account the additional variation coming from the Poisson process, we need to extend 
the method above for use with the Poisson mixtures (i.e. the offspring distributions). Endo et al.15 have done 
this for the negative binomial distribution and we extend this for the other mixtures in the following way. The 
cdf for disease transmission is now defined by

where f (⌊x⌋) is the density function of the mixture distribution evaluated at the integer part of x. Ftrans(x) now 
denotes the proportion of transmission that is due to cases that have their number of secondary cases r < x . 
Again we first need to find x such that 1− Ftrans(x) = p , where x then denotes the threshold value of the repro-
duction number for which 1− Ftrans(x) is the proportion of transmission p due to cases with r ≥ x . The propor-
tion of cases that have r < x is defined as

(1)Ftrans(x) =
1

R̂

∫ x

0

xfν(x)dx

(2)Ftrans(x) =
1

R̂

∫ x

0

⌊x⌋f (⌊x⌋)dx

(3)F(x − 1) =

∫ x

0

f (⌊x⌋)dx.

Table 3.  Different mixture distributions, assuming a Poisson distribution for the effective contact process.

Distribution for ν Offspring distribution R σ
2

ν ∼ Ga(α,β) Y ∼ NB(µ, k) µ = α
β µ(1+

µ
k ) =

α
β
(1+ 1

β
)

ν ∼ LogN(µlog , σlog) Y ∼ PoLN(µlog , σlog ) eµlog+
σ2
log
2 eµlog+

σ2
log
2 +

[
(e

σ 2
log − 1)e

2µlog+σ 2
log
]

ν ∼ Weibull(p,l) Y ∼ PoWB(p, l) lŴ(1+ 1
p ) lŴ(1+ 1

p )+ l2
[
Ŵ(1+ 2

p )−
(
Ŵ(1+ 1

p )
)2]

ν ∼ GG(a,d,p) Y ∼ PoGG(a, d, p) a
Ŵ( d+1

p )

Ŵ( dp )
a
Ŵ( d+1

p )

Ŵ( dp )
+ a2

[
Ŵ( d+2

p )

Ŵ( dp )
−

(
Ŵ( d+1

p )

Ŵ( dp )

)2]
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The proport ion of  cases  that  have their  number of  secondar y cases  r ≥ x  is  then 
P(X ≥ x) = P(X > x − 1) = 1− F(x − 1) . This is now the proportion of cases a that is responsible for a pro-
portion p of all transmission. However, as this is a continuous approximation of a discrete distribution, we should 
account for “uncertainty” in these point estimates of a and p introduced by the fact that it is unlikely that there 
exists an integer x for which 1− Ftrans(x) exactly equals p. To do this, we use a discrete version of the method 
proposed by Lloyd-Smith et al.3 (see details in Supplementary Methods). We then obtain a range for the propor-
tion of cases a responsible for a certain proportion of transmission p, which is then also expressed as a range.

More details on the difference between these two approaches can be found in Supplementary Methods. 
Essentially, Lloyd-Smith et al.3 estimate the expected proportion of cases responsible, whereas Endo et al.15 
estimate the realized proportion. We investigate the impact of the assumed offspring distribution on estimates 
of the proportion of infectious cases responsible for a certain amount of transmission.

Application to COVID‑19 data. Using MLE, we fit the different Poisson mixture distributions to three 
datasets containing the distribution of secondary cases for COVID-19. From the estimated parameters we calcu-
late the mean R and standard deviation σ of the offspring distribution, and obtain their 95% confidence intervals 
(CI) by sampling 100,000 values from a multivariate normal distribution for the parameters of the offspring dis-
tribution. We compare the models in terms of AIC (Akaike information  criterion34, which indicates goodness-
of-fit for a given model while penalizing model complexity), with lower values indicating a better description 
of the data, and goodness-of-fit based on observed vs. expected distribution of secondary cases. We further 
quantify model selection uncertainty using Akaike weights wi . These weights can be interpreted as the prob-
ability that model i is the best model for the data, conditional on the full set of candidate models  considered35. 
We also investigate the impact of the different distributions on the inference of p80% . Confidence intervals for 
p80% are obtained by sampling 1000 values from a multivariate normal distribution for the parameters of the 
offspring distribution. We use two publicly available datasets, one containing the offspring distribution for 290 
cases in Hong  Kong14, and one containing the offspring distribution for 84,965 cases in  India16. Hong Kong had 
successfully limited its number of confirmed cases during the early stages of the  pandemic36, but has since then 
seen several  resurgences37. Although India responded rapidly by imposing a strict lockdown, it is now one of 
the worst-affected countries in Asia, and has the second highest number of infections  worldwide38. The third 
dataset contains the offspring distribution for 795 cases in Rwanda (personal communication), which had a 
cumulative number of COVID-19 cases of 6.4 per 10,000 population on December 31, 2020. Rwanda has used a 
multi-sectoral approach to contact tracing by involving community health worker teams and local government 
 authorities39 These datasets were chosen because of availability at the time of our analyses. Other country-spe-
cific studies, including France, China, Canada, and Italy, on COVID-19 have been reported in literature, but at 
the time of analysis those contact tracing data were not publicly  available40,41. Validity of the MLE/AIC approach 
was confirmed by a positive-definite Fisher information matrix for each model under each dataset, indicating 
no singularity issues.

Data and code availability
The data from Hong Kong and India used in this study are publicly available. The empirical offspring distribution 
from Rwanda and the code to generate data as used in the simulation study are available on GitHub, as well as 
all relevant R code to perform the analyses (https:// github. com/ cecil ekrem er/ PoiMi xtSS).
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