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Transcriptome analysis discloses 
dysregulated genes in normal 
appearing tumor‑adjacent thyroid 
tissues from patients with papillary 
thyroid carcinoma
Huiling He1,6,7, Sandya Liyanarachchi1,6,7, Wei Li1,6, Daniel F. Comiskey Jr1,6, Pearlly Yan2,6, 
Ralf Bundschuh2,3,4, Altan M. Turkoglu3, Pamela Brock2,6, Matthew D. Ringel5,6* & 
Albert de la Chapelle1,6

Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer. The molecular 
characteristics of histologically normal appearing tissue adjacent to the tumor (NAT) from PTC 
patients are not well characterized. The aim of this study was to characterize the global gene 
expression profile of NAT and compare it with those of normal and tumor thyroid tissues. We 
performed total RNA sequencing with fresh frozen thyroid tissues from a cohort of three categories 
of samples including NAT, normal thyroid (N), and PTC tumor (T). Transcriptome analysis shows that 
NAT presents a unique gene expression profile, which was not associated with sex or the presence of 
lymphocytic thyroiditis. Among the differentially expressed genes (DEGs) of NAT vs N, 256 coding 
genes and 5 noncoding genes have been reported as cancer genes involved in cell proliferation, 
apoptosis, and/or tumorigenesis. Bioinformatics analysis with Ingenuity Pathway Analysis software 
revealed that “Cancer, Organismal Injury and Abnormalities, Cellular Response to Therapeutics, 
and Cellular Movement” were major dysregulated pathways in the NAT tissues. This study provides 
improved insight into the complexity of gene expression changes in the thyroid glands of patients 
with PTC.

Thyroid cancer is the most common type of endocrine cancer. It is estimated that nearly 44,280 Americans will 
be diagnosed and 2200 will die of the disease in  20211. Papillary thyroid carcinoma (PTC) is the most common 
form of thyroid cancer, accounting for over 80% of all cases and it occurs about 3 times more often in women 
than in  men2,3. Early stage of PTC has an excellent prognosis with an overall 5-year survival rate > 95%; how-
ever, later stage of PTC is associated with a poor prognosis. While the underlying factors that result in PTC are 
incompletely understood, PTC risk is influenced by both environmental and genetic  factors4. Thyroid radiation 
exposure during childhood is the most established environmental factor associated with  PTC5. Lymphocytic 
thyroiditis (LT), the most common benign thyroid disease, often coexists with PTC, although its role in PTC 
development is  controversial6–8. In most studies, obesity has been associated with a higher incidence of thyroid 
 cancer9,10. Genetic alterations also play an important role in PTC risk. PTC can occasionally occur in families 
and a series of GWAS in different populations identified genomic changes that are associated with increased PTC 
 risk11. Somatic genetic alterations that cause activation of the MAPK and PI3K-AKT signaling are common in 
thyroid  cancer12. Mutations in BRAF are particularly common in PTC and can have therapeutic and prognostic 

OPEN

1Department of Cancer Biology and Genetics, The Ohio State University, Columbus, OH 43210, USA. 2Department 
of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA. 3Department of Physics, The Ohio 
State University, Columbus, OH 43210, USA. 4Department of Chemistry and Biochemistry, The Ohio State 
University, Columbus, OH 43210, USA. 5Division of Endocrinology, Diabetes, and Metabolism, Department 
of Internal Medicine, The Ohio State University, Columbus, OH 43210, USA. 6The Ohio State University 
Comprehensive Cancer Center, The Ohio State University, McCampbell Hall South Room 565, 1581 Dodd Drive, 
Columbus, OH 43210, USA. 7These authors contributed equally: Huiling He and Sandya Liyanarachchi. *email: 
matthew.ringel@osumc.edu

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-93526-9&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:14126  | https://doi.org/10.1038/s41598-021-93526-9

www.nature.com/scientificreports/

 implications13–16. High-throughput methods have been developed to measure gene expression profiles and iden-
tify mutations and fusions to improve PTC diagnosis and  treatment17–20.

Despite the great advancement in PTC research, the molecular characteristics of histologically normal appear-
ing tissue adjacent to the tumor (NAT) from PTC patients are not well characterized. NAT is commonly used as 
a control to enable identification of PTC-specific gene expression profiles of coding and noncoding  genes19,21–24. 
However, our knowledge of the gene expression profile changes in NAT of patients with PTC versus those without 
PTC is incomplete. Defining PTC NAT-specific genetic alterations might identify alterations in histologically 
normal tissue that facilitate PTC oncogenesis and/or progression. For example, we reported previously that 
overexpression of miR-221 in PTC-associated  NAT21.

Ria et al. compared gene expression levels of histologically normal thyroid tissues from patients with neoplas-
tic and non-neoplastic thyroid diseases and found twenty-eight genes to be differentially expressed in normal tis-
sues surrounding thyroid cancer; however, tumor tissue was not included in this  analysis20. Aran et al. compared 
RNA-seq data sets from heathy tissue samples obtained at autopsy generated as part of the Genotype-Tissue 
Expression (GTEx) project with NAT tissues from a variety of cancer types analyzed in The Cancer Genome 
Atlas (TCGA)25. They described unique gene expression profiles of NAT in several tumor types, including thyroid 
 cancer25. While enabling important comparisons between NAT and normal tissue, postmortem mRNA degrada-
tion in autopsy in the normal tissue may introduce important differences from snap frozen  NAT26. In addition, 
the impact of the co-existence of LT and patterns of sex-biased gene expression were not  addressed27–31. While it is 
not clear whether sex-biased expression is present in NAT, PTC has a marked female sex predisposition suggest-
ing it may be important in this  disease32. Overall, while useful for PTC diagnostics, the use of NAT as the baseline 
for comparative gene expression studies may mask early changes preceding the appearance of histologically 
recognizable tumor that might enable deeper understanding of the requirements for PTC development, more 
might be influenced by changes in adjacent tissues that occur in response to the tumor. To address this gap in 
knowledge, we compared gene expression profiles in snap-frozen thyroid tissues of normal thyroid from patients 
without thyroid cancer, NAT and PTC to identify molecular changes in gene expression unique to the NAT.

Results
Evaluation of expression patterns with bulk RNA‑seq data. We performed whole transcriptome 
sequencing (RNA-seq) on three groups of thyroid tissue samples, N (n = 12), NAT (n = 46), and T (n = 16). The T 
samples were paired with NAT in 16 out of the 46 patients. Deconvolution analysis confirmed a high percentage 
of thyroid cells in each sample (Supplemental Fig. S1). After filtering genes with zero counts and low expression 
levels, 22,411 genes were used for analysis. Based on the read counts of these genes, the 74 RNA-seq samples 
were hierarchically clustered without supervision. The N and NAT samples clustered together, while the T sam-
ples clustered as a separate sub-group (Fig. 1A). Samples with co-existing LT on histopathology were identified 
(NAT/LT+). Among the 21 NAT-PTC/LT+ samples, 15 samples clustered together while 6 samples were scat-
tered with NAT samples without LT (NAT/LT−).

We performed dimensionality reduction analysis to compare the transcriptomes of all 74 samples. Princi-
pal component (PCA) analysis and t-Distributed Stochastic Neighbor embedding (t-SNE) plots are shown in 
Fig. 1B,C. Gene expression patterns tended to correlate with sample groups, with N samples found clustered 
tightly relative to the other two groups. In general, the NAT samples constituted an intermediate expression state 
between N and T; the expression profiles of NAT were closer to the N tissue cluster. In addition, the NAT/LT+ 
and NAT/LT− showed differences in gene expression patterns as seen in the PCA plot (Fig. 1D).

Differentially expressed genes (DEGs) between NAT and N. We performed DEG analysis com-
paring NAT and N samples. The cut-off for differential expression was a change of at least 1.5-fold and a BH 
multiple testing corrected p-value < 0.05 (model was adjusted for age, gender, and LT), and 1000 permutation 
p-value < 0.05. Ultimately, we obtained 650 DEGs between NAT and N using these criteria.

To assess for possible sex effect on the NAT DEGs, we compared gene expression levels between NAT from 
females (n = 37) and males (n = 9) and identified 52 sex-different genes (Supplemental Table S2). Notably, 22 
(42.3%) sex-different genes were found in the Y chromosome, while 7 (13.5%) genes were in the X chromosome 
and 23 (44.2%) in autosomes. In contrast, among the DEGs of NAT vs N, the majority (623, 96.3%) were in auto-
somes, 23 (3.5%) genes were in the X chromosome, and none in the Y chromosome. There were 4 sex-difference 
genes overlapping with the DEGs of NAT vs N, which were removed for subsequent analysis. Of the final 646 
DEGs of NAT vs N, protein coding genes accounted for 273 (42.3%), with 131 (48.0%) upregulated and 142 
(52.0%) downregulated. The top 40 coding DEGs are shown in Table 1. The rest of the 373 (57.7%) genes, can be 
categorized as: pseudogenes (n = 244), lincRNAs (n = 26), snRNA (n = 20), snoRNA (n = 17), antisense (n = 20), 
processed transcripts (n = 14), sense_intronic (n = 11), misc RNA (n = 11), scaRNA (n = 5), sense_overlapping 
(n = 2), TEC (n = 2), and retained intron (n = 1). The noncoding genes in the categories of lincRNA, lncRNA, 
snRNA, snoRNA, and scaRNA are provided in Table 2. Data on the classification and description of gene biotypes 
can be found in Ensemble (http:// useast. ensem bl. org/ info/ genome/ geneb uild/ bioty pes. html). The 646 DEGs 
between NAT and N are provided in Supplemental Table S3.

To investigate the impact of LT, we first performed differential gene expression analysis of NAT/LT− vs N and 
NAT/LT+ vs NAT/LT− using the criteria described above, and obtained 632 DEGs and 1793 DEGs, respectively. 
The 632 DEGs between NAT/LT− and N are provided in Supplemental Table S4. There are 474 common DEGs 
between NAT vs N and NAT/LT− vs N (Fig. 2). All the top 40 coding DEGs and the top 40 non-coding DEGs of 
NAT vs N are present among the DEGs of NAT/LT− vs N except one coding gene (Tables 1, 2). In contrast, there 
are only 37 common DEGs of all NAT vs N with NAT/LT+ vs NAT/LT− gene list (Fig. 2). Of the 37 LT-related 
genes, 23 showed opposite directions of gene expression between the two comparisons.

http://useast.ensembl.org/info/genome/genebuild/biotypes.html
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Figure 1.  Gene expression patterns and correlation with clinical information. (A) Sample clusters. Euclidean distance 
and average linkage clustering method was used. Gender and the presence of lymphocytic thyroiditis (LT) in each 
sample are marked with color bars. (B) Plot of principal component analysis. (C) t-SNE plot. (D) Principal component 
analysis with confidence ellipses according to tissue type. A total of 22,411 genes after filtering were included in the 
analysis. All the plots were created with log transformed normalized gene expression estimates.
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Cho et al. reported aging-related transcriptomic changes in healthy thyroid tissue using the autopsy-derived 
GTEx  dataset33. They performed weighted correlation network analysis using all 322 GTEx samples, including 
22 LT-positive samples and identified 552 LT-related genes. Of these genes, 456 are included in our annotated 
22,411 gene list. Of these 456 genes, 440 (96.5%) are overlapping with the DEGs of NAT/LT+ vs NAT/LT− (Sup-
plemental Table S5).

DEGs between T and NAT. Using the same approach, we performed pair-wise DEG analysis between T 
and NAT (n = 16 pairs) and obtained 6,713 DEGs (4,550, 67.8% coding and 2,163, 32.2% non-coding genes). The 
top 40 DEGs are summarized in Supplemental Table S6. The overlap of the DEGs in NAT vs N, NAT/LT− vs N, 
and T vs NAT is shown as a Venn diagram in Fig. 3. It is noteworthy that tumor samples yield more dysregu-
lated genes than NAT vs N while only a small number of shared DEGs is observed. We also analyzed the TCGA 

Table 1.  Top 40 differentially expressed coding genes between NAT and  Na. a NAT, normal appearing tumor 
adjacent tissue; N, normal thyroid control. b The human genome GRC38 was used for gene mapping and 
annotation. c Benjamini and Hochberg multiple testing corrected p-value. Model was adjusted for age, gender 
and LT status. d NAT/LT−, normal appearing thyroid tissue without co-existance of lymphocytic thyroiditis. 
e Yes, the gene is overlapping with the DEGs of NAT/LT− vs N; No, no overlapping.

Gene  IDb Gene name P  valuec Fold change (NAT/N) DEGs of NAT/LT− vs  Nd

ENSG00000213977.7 TAX1BP3 2.43E−12 3.67 Yese

ENSG00000147586.9 MRPS28 4.97E−11 2.39 Yes

ENSG00000257727.5 CNPY2 1.34E−08 2.21 Yes

ENSG00000148180.18 GSN 2.1E−08 3.82 Yes

ENSG00000174903.15 RAB1B 4.09E−08 −1.59 Yes

ENSG00000203791.14 METTL10 4.15E−08 1.93 Yes

ENSG00000170296.9 GABARAP 8.02E−08 4.17 Yes

ENSG00000143368.9 SF3B4 7.59E−07 −1.56 Yes

ENSG00000136371.10 MTHFS 2.29E−06 2.42 Yes

ENSG00000171295.12 ZNF440 2.73E−06 1.53 Noe

ENSG00000088038.17 CNOT3 4.31E−06 −2.16 Yes

ENSG00000132471.11 WBP2 6.74E−06 −1.62 Yes

ENSG00000277203.1 F8A1 8.99E−06 −1.75 Yes

ENSG00000183889.12 AC138969.4 1.44E−05 −1.84 Yes

ENSG00000198171.12 DDRGK1 1.87E−05 −1.54 Yes

ENSG00000128739.21 SNRPN 2.59E−05 2.29 Yes

ENSG00000104969.9 SGTA 2.76E−05 −1.51 Yes

ENSG00000263290.5 SCAMP3 3.07E−05 −1.58 Yes

ENSG00000164039.14 BDH2 3.16E−05 1.71 Yes

ENSG00000147955.16 SIGMAR1 3.26E−05 −1.56 Yes

ENSG00000175274.18 TP53I11 5.42E−05 −1.74 Yes

ENSG00000270011.6 ZNF559-ZNF177 5.71E−05 2.80 Yes

ENSG00000205544.3 TMEM256 6.32E−05 3.71 Yes

ENSG00000111775.2 COX6A1 6.36E−05 2.28 Yes

ENSG00000100350.14 FOXRED2 6.66E−05 −1.87 Yes

ENSG00000279576.1 AP000769.1 8.82E−05 16.16 Yes

ENSG00000181264.8 TMEM136 9.61E−05 1.54 Yes

ENSG00000115239.21 ASB3 9.75E−05 1.69 Yes

ENSG00000100348.9 TXN2 0.000123 −1.57 Yes

ENSG00000167182.13 SP2 0.000132 −1.82 Yes

ENSG00000277462.1 ZNF670 0.000133 2.05 Yes

ENSG00000167644.11 C19orf33 0.000162 19.70 Yes

ENSG00000134590.13 FAM127A 0.000174 −1.62 Yes

ENSG00000239697.10 TNFSF12 0.000177 −1.83 Yes

ENSG00000164898.12 C7orf55 0.000191 3.25 Yes

ENSG00000124614.13 RPS10 0.000237 13.41 Yes

ENSG00000188257.10 PLA2G2A 0.000277 −14.64 Yes

ENSG00000196757.7 ZNF700 0.000284 1.59 Yes

ENSG00000116649.9 SRM 0.000299 −1.83 Yes

ENSG00000189171.14 S100A13 0.000328 1.93 Yes
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RNA-seq data of 56 paired (T and NAT) thyroid tissue samples and compared with our data. The DEGs of T vs 
NAT of the OSU cohort was highly correlated with those of the TCGA data (Supplemental Fig. S2, Supplemental 
Table S4).

Dynamic gene expression changes. Dimensionality reduction analysis showed that the gene expres-
sion patterns of NAT samples present an intermediate expression state between N and T. We analyzed the gene 
expression changes of the 646 DEGs of NAT vs N and their expression changes between T vs NAT. We grouped 
the expression changes between sample types into six patterns: (1) upregulated from N to NAT to T (up-up, 
n = 38); (2) up-regulated in NAT, but not changed in T (up-stable, n = 354); (3) up-regulated in NAT, but down-
regulated in T (up-down, n = 37); (4) downregulated from N to NAT to T (down-down, n = 31); (5) Downregu-

Table 2.  Top 40 differentially expressed non-coding genes between NAT and N. The abbreviations, gene 
annotation, and statistics are the same as described in Table 1.

Gene ID Gene name Gene biotype P value Fold change (NAT/N)
DEGs of NAT/LT− 
vs N

ENSG00000242299.1 RP11-234A1.1 processed_pseudogene 3.671E−24 8.28 Yes

ENSG00000254911.3 SCARNA9 antisense 1.74E−18 7.48 Yes

ENSG00000233328.3 PFN1P1 processed_pseudogene 1.19E−15 −7.49 Yes

ENSG00000136149.6 RPL13AP25 processed_pseudogene 2.877E−14 7.24 Yes

ENSG00000272779.1 LL22NC03-80A10.6 transcribed_unpro-
cessed_pseudogene 1.681E−13 4.04 Yes

ENSG00000226525.5 RPS7P10 processed_pseudogene 4.401E−13 6.42 Yes

ENSG00000278771.1 Metazoa_SRP misc_RNA 4.444E−10 3.68 Yes

ENSG00000253954.3 HMGN1P38 processed_pseudogene 7.143E−10 −3.10 Yes

ENSG00000259918.1 NDUFA5P11 processed_pseudogene 4.037E−09 −3.79 Yes

ENSG00000243199.1 RP11-408P14.1 processed_pseudogene 4.037E−09 5.23 Yes

ENSG00000233913.7 CTC-575D19.1 processed_pseudogene 1.224E−08 6.18 Yes

ENSG00000251733.1 SCARNA8 scaRNA 1.336E−08 −6.45 Yes

ENSG00000178464.6 CTD-2192J16.15 processed_pseudogene 1.507E−08 4.98 Yes

ENSG00000256745.1 RP11-680H20.1 processed_pseudogene 2.153E−08 3.88 Yes

ENSG00000235776.2 AC000089.3 processed_pseudogene 2.215E−08 20.89 Yes

ENSG00000259706.1 HSP90B2P processed_pseudogene 2.254E−08 2.53 Yes

ENSG00000230629.2 RPS23P8 processed_pseudogene 3.119E−08 3.54 Yes

ENSG00000224631.4 RP11-51O6.1 transcribed_processed_
pseudogene 4.399E−08 7.42 Yes

ENSG00000231767.3 RP11-92K2.2 processed_pseudogene 5.442E−08 7.41 Yes

ENSG00000272101.2 AC243587.1 processed_pseudogene 1.158E−07 3.74 Yes

ENSG00000236534.1 H3F3BP1 processed_pseudogene 2.069E−07 4.02 Yes

ENSG00000236698.1 EIF1AXP1 processed_pseudogene 2.363E−07 2.61 Yes

ENSG00000274574.1 AC006359.1 snRNA 2.363E−07 −3.56 Yes

ENSG00000212607.1 SNORA3B snoRNA 2.957E−07 −4.84 Yes

ENSG00000282670.1 AC254944.3 lncRNA 4.208E−07 4.36 Yes

ENSG00000234797.5 RPS3AP6 processed_pseudogene 4.208E−07 5.31 Yes

ENSG00000239470.3 RP11-16F15.2 processed_pseudogene 4.208E−07 6.50 Yes

ENSG00000235174.1 RPL39P3 processed_pseudogene 4.568E−07 3.07 Yes

ENSG00000214389.2 RPS3AP26 processed_pseudogene 7.386E−07 4.28 Yes

ENSG00000174977.8 AC026271.5 processed_pseudogene 7.838E−07 2.76 Yes

ENSG00000243829.1 CTB-33G10.1 processed_pseudogene 1.064E−06 61.76 Yes

ENSG00000256393.1 RPL41P5 processed_pseudogene 1.876E−06 4.31 Yes

ENSG00000253683.1 CTB-79E8.3 processed_pseudogene 2.023E−06 3.24 Yes

ENSG00000178660.6 ARMC10P1 processed_pseudogene 2.181E−06 3.17 Yes

ENSG00000266992.1 DHX40P1 unprocessed_pseudo-
gene 2.205E−06 3.79 Yes

ENSG00000274026.1 FAM27E3 transcribed_processed_
pseudogene 2.293E−06 −3.17 Yes

ENSG00000265727.2 RN7SL648P misc_RNA 4.46E−06 1.97 Yes

ENSG00000198618.5 PPIAP22 processed_pseudogene 4.543E−06 4.31 Yes

ENSG00000220749.4 RPL21P28 processed_pseudogene 4.871E−06 3.83 Yes

ENSG00000283390.1 RP11-134F2.7 processed_pseudogene 4.871E−06 42.91 Yes
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Figure 2.  Venn diagram of differentially expressed genes (DEGs) among samples. Venn diagram to illustrate 
the overlapped DEGs between NAT vs N, NAT/LT− vs N, and NAT/LT+ vs NAT/LT−.

Figure 3.  Venn diagram of differentially expressed genes (DEGs) among samples. Venn diagram to illustrate 
the overlapped DEGs between NAT vs N, NAT/LT− vs N, and T vs NAT.
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lated in NAT but not changed in T (down-stable, n = 148). (6) Downregulated in NAT but upregulated in T 
(down-up, n = 38) (Fig. 4, Supplemental Table S2). We performed the similar gene expression pattern analysis 
with the DEGs of NAT/LT− vs N, and T vs NAT samples without co-existence of LT (T/LT- vs NAT/LT−) as 
shown in Supplemental Table S4. Among the common DEGs of NAT vs N and NAT/LT− vs N, most of them 
showed consistent expression patterns (Supplemental Table S7).

Clustering of DEGs between NAT and N. To identify groups of patients with similar gene expression 
and pinpoint co-regulated genes under a subset of samples, we performed hierarchical cluster analysis with the 
646 DEGs of NAT vs N, using Euclidean distance and average linkage method as depicted by dendrogram in 
Fig. 5. Of 58 samples used in the clustering analysis, the 12 N samples and one NAT sample are clustered together 
into a group labeled SC #1. The rest of the 43 NAT samples are sub-grouped into three major clusters (SCs 
#2–4), with one outlier not belonging to any of the clusters. The co-existent LT samples (NAT/LT+ samples) are 
randomly scattered among the SCs #2–4 clusters (Fig. 5). There are 4 major gene clusters. Gene clusters 1 and 2 
are largely down-expressed in NAT with variations among samples. Genes in cluster #3 show relatively higher 

Figure 4.  Line plots showing gene expression patterns. Fold changes from N to NAT to T are plotted. (A) 
Up-up, 38 genes. (B) Up-stable, 354 genes. (C) Up-down, 37 genes. (D) Down-down, 31 genes. (E) Down-stable, 
148 genes. (F) Down-up, 38 genes. Up, p-value < 0.05 and log2(fold change) >  = 0.584; Down, p-value < 0.05 
and log2(fold change) < −0.584; Stable, not belonging to “Up” or “Down” groups; some stable genes may have 
relatively high/low fold changes but the p-values are not significant.
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expression in NAT and are mainly enriched in one sample cluster of SC #2. Genes in cluster #4 show relatively 
higher expression in NAT in three sample clusters of SCs #2–4.

Annotation of the functions of the DEGs between NAT and N. To explore the functions of the dys-
regulated genes in NAT, we analyzed related diseases and biological functions using Ingenuity Pathway Analysis 
(IPA) software. The top five categories of “Disease and Biological Functions” include “cancer, organismal injury 
and abnormalities, cellular response to therapeutics, cellular movement, and hematological system development 
and function” (Supplemental Fig. S3). There are 261 genes associated with cancer (Supplemental Table S8). We 
further examined these cancer genes and found that the great majority of them (256/261, 98.1%) are protein 
coding genes. The five non-coding cancer genes include one antisense gene, one processed transcript, and three 
pseudogenes. “Cancer” genes accounted for 88.0% (256 out of 273, 93.8%) of the total protein coding DEGs of 
NAT vs N. Molecular and cellular functions included “cellular response to therapeutics, cellular movement, cell 
death and survival, cell morphology, and cell to cell signaling and interaction (Supplemental Table S9). The top 
3 molecular networks (Supplemental Fig. S4) are associated with developmental disorder, embryonic devel-
opment, vitamin and mineral metabolism (network 1), cell signaling, post-translational modification, protein 
synthesis (network 2), and connective tissue development and function, protein synthesis, tissue morphology 
(network 3).

Discussion
In the present study we performed transcriptome analyses with three groups of thyroid tissue samples and 
characterized their expression profiles. We focused on the dysregulated genes in NAT. Our data suggest that 
NAT harbors unique molecular changes in gene expression. The majority of dysregulated genes in NAT did not 
overlap with those in tumors, implying different molecular pathways in these two tissues. We did not observe a 
significant impact of sex difference in gene expression profile in NAT.

We hypothesized that the unique expression of specific genes in NAT either could indicate early molecular 
events required for PTC tumorigenesis and/or represent local responses to the primary tumor. Consistent with 
these hypotheses, the biological functions of the DEGs between NAT and N revealed that about one third of the 
NAT genes are related to cancer involving cellular functions and maintenance, cell-to-cell signaling and inter-
action, cell movement, and cellular development. Some of these genes are reported to play a role in cancer. For 
example, gelsolin (GSN) has been found to be dysregulated in various  cancers34–36. GSN regulates the formation 
of the actin  cytoskeleton37, is frequently overexpressed in cancer, and it promotes cell  motility38–40. GSN also is 
associated with epithelial-mesenchymal  transition41,42. In our study, GSN was overexpressed in NAT and slightly 
but significantly overexpressed in PTC tumor. Interestingly, in the  TRPV/PV mouse model of thyroid cancer, 

Figure 5.  Dendrogram and clusters generated using 646 differentially expressed genes of NAT vs N. The heat 
map was generated based on 58 samples (46 NAT and 12 N). The annotation bars (above heat map) show 
sample clusters (SC1-SC4) and gender and the LT status of samples. The bar on the left side demonstrates the 
range for scaled and centered log2 expression. Red means higher expression and green means lower expression. 
Four major gene clusters are marked.
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gelsolin is functionally important in Akt-dependent cancer progression, suggesting a functional role for this 
particular gene in thyroid cancer  biology35,36.

We observed dysregulated expression of a set of small RNA molecules (scaRNA, snoRNA and snRNA) in NAT 
versus normal thyroid controls. Interestingly, there were few identified in PTC, consistent with analysis of TCGA 
43. Emerging evidence has revealed the potential significance of snoRNAs and snRNAs in  oncogenesis44,45. For 
example, SNORD78 (C/D box) is overexpressed in non-small cell lung and prostate  cancer46. SNORD50A/B (C/D 
box), which directly binds and inhibits K-Ras, is deleted across multiple cancer  types47. Small nuclear RNAs have 
been incompletely studied in thyroid  cancer48. Our results suggest that additional functional studies are needed.

PTC is reportedly more common among patients who suffered from LT in some, but not all,  studies7,49. We 
found a group of genes preferentially dysregulated in NAT from patients with PTC co-existing with LT. These 
genes are largely overlapping with LT-related genes in thyroid tissue samples from individuals without thyroid 
cancer, likely reflective of the underlying LT rather than thyroid  cancer33. Overall, our data suggest that the dif-
ferential gene expression in NAT was not driven by LT. The dysregulated genes in NAT largely related to cancer 
rather than LT. Among the DEGs of NAT vs N, there was a small set of genes showing either continuous upregula-
tion (up-up pattern) from N to NAT to T, or continuous downregulation (down-down pattern) from N to NAT 
to T, suggesting they might be candidate genes involved in early molecular events in thyroid tumorigenesis. 
Further validation work is warranted, along with functional studies.

In summary, we address a key gap in the understanding of the molecular underpinning of PTC by com-
prehensively characterizing differentially expressed genes in normal-appearing tumor-adjacent thyroid tissue 
from PTC patients using fresh frozen tissue samples,. These results provide a basis for further functional studies 
defining the earliest tissue requirement that enable PTC development and/or unique events that occur in the 
histologically normal tissue adjacent to the primary tumor. Additional research is required to determine the 
roles of the identified genes and processes in PTC tumorigenesis and progression to determine their potential 
roles as biomarkers and/or treatment targets.

Materials and methods
Patients and sample collection. The study protocol was reviewed and approved by the Institutional Review Board 
of The Ohio State University (IRB number: 2006C0047) and was performed in accordance with ethical principles 
for medical research involving human  subjects50. Informed consent was obtained from all participants and/or 
their legal guardians about this study. Normal appearing tumor-adjacent thyroid tissue samples (NAT, n = 46) 
and paired PTC tumor samples (T, n = 16) were obtained from 46 PTC patients undergoing thyroid surgery. The 
NAT samples were procured from tissues outside of tumors. Twenty-one samples had co-existent lymphocytic 
thyroiditis (LT) (PTC/LT+) while 25 did not have LT (PTC/LT−). Of the 16 patients with paired tumor samples 
8 were LT+. Normal thyroid tissue samples (N, n = 12) were obtained from laryngeal cancer patients without 
thyroid lesions who had thyroidectomy as part of their cancer surgery. There were no thyroid diseases revealed 
in the pathology reports of these normal thyroid samples. The tissue samples were snap-frozen in liquid nitrogen 
and stored at −80 ◦ C. Clinical information is in Supplemental Table S1.

RNA isolation and quality assessment. Total RNA was isolated using TRIzol reagent (Invitrogen) 
according to the manufacturer’s instructions. The purity of extracted RNA was measured using a NanoDrop 
ND-1000 spectrophotometer (NanoDrop Technologies LLC). The concentration was assessed by Qubit 2.0 Fluo-
rometer (Agilent Technologies) using an RNA HS Assay Kit. Samples with RNA integrity number greater than 4 
as assessed by a BioAnalyzer (Agilent Technologies) with no visible sign of genomic DNA contamination from 
the HS Nanochip tracings were used for total RNA library generation.

Preparation of RNA‑seq libraries and RNA sequencing. RNA-seq libraries were prepared using the 
Illumina TruSeq Stranded Total RNA Sample Prep Kit with Ribo-Zero Gold (catalog #RS-122-2201) according 
to the manufacturer’s protocol. The sequencing was performed in paired end manner, generating 2X 100 bp 
paired-end reads using the Illumina HiSeq 2500 system. Pre-alignment data QC were assessed with FastQC. 
Post-alignment data quality was assessed with an in-house quality control pipeline/database for RNA-seq  data51. 
RNA-seq data were trimmed for any adapter sequences using  AdapterRemoval52.

Gene expression estimate. RNA-Seq reads were mapped to the human genome (GRCh38p7) using 
HISAT2 and quantified using the featureCounts in the Subread package for 63,299 Ensemble transcriptome/
genes53,54. Deconvolution analysis was performed to estimate “normal:tumor” cell fraction for each  sample55. To 
eliminate bias due to very low expression, genes were filtered-out if each group had zero read counts for more 
than 25% of the samples or had average read counts below 10. The relative transcript abundance was measured 
in normalized counts obtained by the median of the ratios normalization method of  DESeq256.

Dimensional reduction analysis. Dimensional reduction analysis and visualization was performed using 
principal component (PCA) analysis and t-Distributed Stochastic Neighbor embedding (t-SNE) with the Rtsne 
(version 0.15) library in R  package57. PCA is an unsupervised linear dimensionality reduction method while 
t-SNE is an unsupervised non-linear method that preserves the local structure of the data. PCA plots and t-SNE 
plots were created with log transformed normalized gene expressions using all remaining genes after filtering.

Differential expression and computational functional analysis. Differential expression analyses 
were performed with DESeq2, adjusting for age, gender, and LT. Non-paired comparison of NAT vs N and 
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paired comparison of T vs NAT were performed. The Benjamini & Hochberg (BH) method was used to correct 
p-values for multiple testing. Furthermore, 1000× permutation analysis of samples creates the distribution of the 
DESeq2 statistic. To exclude artifactual results due to gender bias, genes that showed a significant sex-difference 
(p-value < 0.05) between males and females among NAT samples were filtered out. Cluster analyses and heat 
maps were generated to visualize differentially expressed genes. Network, functional and canonical pathway 
analyses of differentially expressed genes between NAT and N were performed using Ingenuity Pathway Analysis 
(IPA) software (Ingenuity Systems Inc, www. ingen uity. com).

The Cancer Genome Atlas (TCGA) RNA‑seq data set. The TCGA HTSeq counts were downloaded 
from the GDC Data portal (https:// portal. gdc. cancer. gov/, accessed on March 2020). The DeSeq2 analysis was 
performed with 58 pairs of T/NAT.

Data availability
All publicly available datasets used in this study were referenced in the Methods section. Our RNA-seq data have 
been deposited in NCBI’s Gene Expression Omnibus (GEO) with GEO Series accession number GSE165724.
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