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Development of double antibody 
sandwich ELISA as potential 
diagnostic tool for rapid detection 
of Crimean‑Congo hemorrhagic 
fever virus
Neha Shrivastava1, Jyoti S. Kumar1, Pragya Yadav2, Anita M. Shete2, Rajlaxmi Jain2, 
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Crimean-Congo hemorrhagic fever (CCHF) virus, a highly pathogenic viral agent is responsible for 
severe fatal hemorrhagic infections in many parts of the world. The early diagnosis of CCHF infection is 
important for successful clinical management and epidemiological control. The nucleoprotein (NP) of 
CCHFV being highly conserved and immunogenic is used as early diagnostic marker. In this study, we 
report a rapid and sensitive double antibody based antigen capture ELISA to detect Crimean-Congo 
hemorrhagic fever virus (CCHFV). Highly specific polyclonal and monoclonal antibody against NP has 
been generated and used as capture and detector antibody respectively. The assay was able to detect 
viral nucleoprotein in different matrices including human serum, ticks and culture supernatant. The 
detection limit of the developed sandwich ELISA assay was 25 ng of purified antigen. Comparison 
with a real time RT-PCR revealed its detection limit to be 1000 genome equivalents of CCHFV. Further 
the assay was comparatively evaluated with a commercial kit employing gamma irradiated CCHFV, 
revealing a sensitivity and specificity of 100%. This newly developed sandwich ELISA (sELISA) with 
high sensitivity and specificity could be used as an efficient method for the detection of CCHF virus in 
humans, ticks and culture supernatant. The assay will be useful as alternate tool for diagnosis of acute 
infection and is amenable for screening of large scale samples in resource limited settings.

Crimean-Congo hemorrhagic fever (CCHF), a widespread tick borne disease is endemic in more than 30 coun-
tries in the world. The etiological agent CCHF virus belongs to the family Nairoviridae, genus Orthonairovirus 
and order Bunyavirales1. Since last two decades, CCHFV has spread rapidly throughout Africa, Europe and Asia 
and causing fatal hemorrhagic fever in naïve population. Every year, nearly 1000 cases are reported from Middle 
East and eastern European countries. World health organisation (WHO) has included CCHF virus in WHO R&D 
Blueprint as priority agent in order to opt immediate actions to prevent future epidemics. CCHFV is maintained 
in enzootic tick-vertebrate-tick cycle in nature, where ticks act as principal vector and reservoir2. Virus infected 
ticks, rearing in host (small and large animals) can transmit the virus to animals and humans via bite3,4.

CCHFV causes a fatal human infection with high mortality rate. Onset of disease coincides with sudden 
fever, myalgia, dizziness and bodyache leading to nausea, vomiting, diarrhoea, neural impairments, kidney and 
liver failure after 5th day of illness that is associated with higher mortality5,6. The disease also represents hemor-
rhagic symptoms characterized by petechial rash on mucosal surfaces, haematuria, epistaxis and gum bleeding7,8.

In spite of wide distribution and high mortality, vaccines for human use are not widely available. The antiviral 
ribavirin is non-specific and also suffers from limited efficacy. Supportive therapies including passive plasma 
transfusion and non-specific antivirals were attempted during initial stage of illness to reduce the mortality9,10. 
Therefore, a specific and sensitive diagnosis of CCHFV infection becomes crucial to initiate timely tracking and 
treatment of patients.

Currently, direct detection of CCHFV relies either on virus isolation in suitable animal model or molec-
ular detection of virus. Both these methods are technically demanding and limited to advanced laboratory. 
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The isolation of CCHFV involves high biohazard risk and can only be attempted in biosafety level-4 (BSL-4) 
laboratories11. Though isolation is a gold standard, however, it plays a limited role in diagnosis12. Although 
molecular assays such as real-time reverse transcriptase polymerase chain reaction (RT-PCR) can be useful for 
early and confirmatory diagnosis, yet most of these formats are expensive and requires high-end equipments13. 
Therefore, these formats may be good at laboratory level but difficult to implement in resource limited settings 
and field hospital at this point of time. Serological diagnostic kits for detection of IgM and IgG antibody are 
commercially available. However, by the time detectable antibody titer appears, the patient starts recovering 
and thus become less significant in clinical outcome of patient. Due to high mortality rate (40%), it is important 
to detect in early stage of infection i.e., during day 3–6 so that the supportive treatment of patient can be initi-
ated. The antigen detection provides an easy alternative for virus detection at early stage of infection. In spite 
of CCHFV being a widely circulating virus, there is a lack of availability of antigen detection system around 
the world. Therefore, there is an urgent need to develop a safe ELISA assay for detection of CCHFV antigen in 
multiple matrices including serum, ticks and culture fluids. The present study is focused on development of safe, 
scalable and rapid sandwich ELISA for detection of CCHF virus in multiple matrices.

Results
Antibodies generation and titration.  The polyclonal antibody (pAb) and monoclonal antibody (mAb) 
against recombinant nucleoprotein were raised in rabbit and mouse respectively following the standard protocol. 
The titer of the generated rabbit anti-rNP polyclonal antibody was found to be 1:64,000. The concentration of 
purified pAb was 2.0 mg/ml. Out of ten hybridoma clones, two highly reacting hybridoma clones were further 
shortlisted (Supplementary Figure 1).The monoclonal antibody 2 (CCHF_mAb2) showed higher titer of 1:3200 
than CCHF_mAb1 of 1:1600 (Fig.  1). The concentration of purified mAb1 and mAb2 were 1.9  mg/ml and 
2.2 mg/ml respectively.

Characterization of generatdxed antibodies and conjugation of mAb with HRP.  SDS-PAGE 
analysis of pAb and mAb showed the characteristic light (25 kDa) and heavy chains (60 kDa) (Fig. 2a).Western 
blot analysis revealed the immunoreactivity of pAb and mAb towards r-NP (56 kDa) (Fig. 2b). Following char-
acterization, mAb_2 was successfully conjugated with HRP enzyme and the titer of the HRP conjugated mAb2 
was found to be 1:1600 (Supplementary Figure 2).

The isotyping assay revealed that both the monoclonal antibodies (CCHF_mAb1 and CCHF_mAb2) belonged 
to IgG2b isotype (Fig. 3). Dominance of IgG2b represents a Th1 response towards CCHF infection.

Figure 1.   Twofold titration of monoclonal antibody (CCHF_mAb1 and CCHF_mAb2) against recombinant 
NP in triplicates. Monoclonal antibody 1 (CCHF_mAb1) showed reactivity titre up to 1:1600 dilution against 
r-NP in indirect ELISA. Monoclonal antibody 2 (CCHF_mAb2) showed the reactivity up to 1:3200 dilution 
against r-NP in indirect ELISA with the cut-off value of 0.5 determined by twice the OD of negative control.
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Standardization of sandwich ELISA (sELISA).  The optimum working concentration of pAb and HRP_
CCHF_mAb2 was determined with checkerboard titration. The optimum titer of pAb IgG and mAb IgG in assay 
was found to be 1:1000 and 1:100 respectively. The assay was optimized with one hundred and ten (n = 110) 
healthy human sera and twenty five (n = 25) healthy tick lysate to obtain minimal background with calculated 
threshold of twice the average of negative controls. The values of negative controls ranged from 0.2 to 0.37.

Evaluation of sandwich ELISA.  Using the standardized protocol, the sELISA assay was evaluated with 
commercial NP antigen. The limit of detection was found to be 25 ng of viral antigen. The detection limit of the 
assay with in-house r-NP was also tested in parallel and similar detection limit of 25 ng was obtained (Table 1, 
Fig. 4). Further, on evaluation with CCHFV spiked in different matrices (culture supernatant, serum and tick 
lysate), sELISA was able to detect up to 10–3 dilution in culture supernatant and 10–2 dilution in both human sera 
and tick lysate due to matrix interference. The similar dilutions when tested in parallel with real time RT-PCR 
could detect up to 10–4 dilution. The comparison revealed a limit of detection of 1000 genome equivalents (GE) 
in terms of RNA copy number (Table 2).

Figure 2.   (a) 10% SDS-PAGE analysis of antibodiesraised against recombinant nucleoprotein. Lane 1 was 
loaded with polyclonal antibody and Lane 2 was loaded with monoclonal antibody (CCHF_mAb2) revealing 
characteristic heavy chain (60 kDa) and light chain (25 kDa) of antibodies. (b) Western blot analysis using 
polyclonal (Lane 1) and monoclonal (CCHF_mAb2) (Lane 2) antibodies showing immune reactivity with 
56 kDa recombinant nucleoprotein (NP) of CCHF virus.
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Specificity of the CCHF sandwich ELISA assay.  All the samples of DENV 1–4, KFDV, Yellow fever 
virus and apparently healthy individuals were found non-reactive with the developed sELISA assay (Supple-
mentary Figure 3).

Comparative evaluation with commercial ELISA kit.  The prototype was also subjected to compara-
tive evaluation with commercial Vecto-Crimea CHF ELISA kit (Vector Best, Russia) using γ irradiated CCHFV 
spiked samples. The protocol was followed as per the user manual. Data was comparatively evaluated and found 
that the commercial kit was able to detect up to 10–2 dilution of virus; while in-house prototype sELISA was able 
to detect the virus up to 10–3 in culture supernatant and 10–2 in both healthy human sera and tick lysate (Table 3). 
Sensitivity and specificity of the assay was found to be 100% with commercial antigen ELISA. The percent agree-
ment and correlation coefficient between the two assays were 100%. However, the Vector-best antigen ELISA 
detected the CCHF culture fluid upto10–2 whereas in-house sandwich ELISA detected the dilution up to 10–3.

Discussion
CCHFV infection causes a fatal hemorrhagic fever in humans with high mortality rate14. Early detection of 
CCHFV becomes more crucial due to limited availability of vaccines and effective antivirals. Early diagnosis 
of CCHFV via RT-PCR is an expensive protocol and is not amenable in remote settings. The current disease 
outbreaks like a box of Pandora demands simple detection systems to track the disease and control the outbreak 
situations. So far, commercial serological ELISA kit (Vecto-Crimea, Russia) is available for antigen detection 
but is not intended for human use (mentioned in kit’s manual). Other serological in-house assays are meant 
to detect antibodies in different ELISA formats either in indirect ELISA or in sandwich ELISA15–17. It has also 
been reported that CCHF in cell culture does not form a clear plaque, leading to difficulties in accurate virus 
quantification, crucial for the development of immunodiagnostics and vaccines18,19.

Figure 3.   Isotyping of monoclonal antibodies (CCHF_mAb1 and CCHF_mAb2), analysed for isotypes IgG1, 
IgG2a, IgG2b, IgG3, using indirect ELISA in duplicates with depicted cut-off value of 0.37.

Table 1.   Comparative evaluation with commercial CCHF antigen and in-house recombinant antigen.

Recombinant antigen Expression host 10–1 (250 ng) 10–2 (25 ng) 10–3 (2.5 ng) 10–4 (0.25 ng) 10–5 (0.025 ng)

In-house NP E. coli  +   +  − − −

Commercial NP Mammalian (HEK293)  +   +  − − −
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Keeping these limitations in mind, the current study was focussed to develop a double antibody based sand-
wich ELISA for early detection and quantification of CCHFV in different matrices including serum sample, tick 
and culture supernatant. The CCHFV nucleoprotein being the most conserved structural protein among all the 
circulating genotypes was targeted to develop the assay. Therefore, pAb and mAb were generated against native 
NP to serve as capture and detector molecules respectively in sELISA format.

Figure 4.   Determination of limit of detection of sandwich ELISA using in-house and commercial CCHF 
recombinant nucleoprotein antigen. Cut-off value was calculated as twice the value of negative control. Limit of 
detection was found to be 25 ng of viral nucleoprotein antigen.

Table 2.   Comparative evaluation of in-house developed sELISA in different matrices with real time RT-PCR 
assay.

Dilution of CCHFV
CCHFV spiked in culture 
supernatant

CCHFV spiked in human 
sera CCHFV spiked in tick lysate CCHFV real time RT-PCR

Equivalent RNA copy 
number (IVT RNA)

10–1  +   +   +   +  10,000

10–2  +   +   +   +  1000

10–3  +  − −  +  100

10–4 − − −  +  10

10–5 − − − − 1

Table 3.   Comparative evaluation of in-house developed sELISA with VectoCrimea CHF antigen ELISA kit 
using different dilutions of inactivated CCHFV in different matrices.

Commercial CCHF antigen ELISA kit In-house developed sELISA

Dilution of CCHFV
CCHFV spiked in culture 
supernatant

CCHFV spiked in tick 
lysate

CCHFV spiked in culture 
supernatant

CCHFV spiked in human 
sera

CCHFV spiked in tick 
lysate

10–1  +   +   +  +   + 

10–2  +   +   +  +  + 

10–3 − − +  − −

10–4 − − − − −

10–5 − − − − −
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Following optimization, the assay was evaluated with commercial antigen produced using heterologous 
mammalian expression host. This NP antigen was expressed using a gene derived from CCHF strain IbAr10200, 
belonging to genotype III20,21. Though the CCHF_mAb2 was generated using in-house r-NP of a CCHFV belong-
ing to genotype IV as an antigen22, its cross reaction to a heterologous genotype confirms its applicability for 
multiple CCHFV genotypes. The sELISA assay was able to detect both the recombinant antigens with a limit 
of detection of 25 ng. Sandwich ELISA on evaluation with virus, revealed the detection limit up to 1000 RNA 
copies which is sufficient to detect the virus in early stage. It has been reported that CCHFV RNA titers ranges 
from 3.2 × 105 and 4.3 × 106 in mild and severe human cases respectively23. Another study reported a viral load 
≥ 1 × 109 RNA copies/mL as marker for prediction of fatal outcome in CCHF infection24. Further, the viral load of 
CCHFV in tick to cause viremia in vertebrate is approximately 102.2 PFU, equivalent to 1.1 × 105 RNA copies25,26. 
This indicates that the assay can easily detect the virus in human and ticks in early stages of infection.

The assay also did not reveal cross reactivity with Dengue, KFD and Yellow fever virus. The comparative 
evaluation with commercial kit revealed a sensitivity and specificity of 100%. Furthermore, the sELISA picked an 
additional dilution up to 10–3 dilution of CCHFV in culture supernatant, indicating higher sensitivity compared 
to commercial kit. The sELISA detection assay reported in this study is a highly sensitive, specific and cost-
effective tool for early diagnosis and surveillance of CCHFV in humans and ticks in endemic areas, particularly 
in resource limited settings.

Materials and methods
Chemicals and reagents.  Recombinant nucleoprotein, Fruend’s complete and incomplete adjuvants 
(Sigma, USA), RPMI 1640 media and Bovine serum albumin (Thermo Fisher Scientific, USA), IgG purifica-
tion kit, anti-mice HRP, anti-rabbit HRP conjugated secondary antibody (Sigma, USA), HRP-conjugation kit 
(Abcam, USA), Maxisorp plate (Nunc, Denmark), Mouse IgG isotyping kit and 3,3,5,5-tetramethylbenzidine 
(TMB) (Invitrogen, USA).

Preparation of antigen.  Recombinant nucleoprotein (NP) was used as antigen to generate specific anti-
bodies for capturing viral antigen. A recombinant E. coli clone expressing CCHF NP of strain NIV112143 (Gen-
Bank Accession no. JN572089) was revived and r-NP was purified as per Shrivastava et al.22. Briefly, cultured 
and harvested cells were suspended in lysis buffer (50 mM NaH2PO4, 300 mM NaCl, and 10 mM imidazole, 
pH 8.0) supplemented with phenylmethylsulfonylfluoride (PMSF), lysozyme, and protease inhibiting cocktail 
(Sigma-Aldrich, USA). The culture was incubated at 4 °C for 30 min and sonicated at 9 pulse on/off for 30 min. 
The sonicated culture was centrifuged at 10,000×g for 20 min and the supernatant was loaded on the pre-equil-
ibrated polypropylene column containing Ni–NTA slurry for 2 h at 4 °C for efficient binding. The column was 
washed with 10 bed volumes of wash buffer (50 mM NaH2PO4, 300 mM NaCl, and 20 mM imidazole, pH 8.0) 
and eluted with elution buffer (50 mM NaH2PO4, 300 mM NaCl, and 250 mM imidazole, pH 8.0). The protein 
was concentrated and dialyzed with dialysis buffer (50 mM NaH2PO4 and 300 mM NaCl) and further utilized 
for immunization purpose.

Generation and purification of polyclonal antibody (pAb).  All animal experiments were approved 
by the Institutional Animal Ethics Committee (IAEC) constituted by the Committee for the Purpose of Control 
and Supervision of Experiments on Animals (CPCSEA), Ministry of Environment and Forestry, Government 
of India (Regd. no. 37/GO/Rbi/S/99/CPCSEA) vide protocol no. Viro-14/57/PKD. The affinity purified r-NP 
was used to raise polyclonal antibody in female New Zealand white rabbit. Purified NP (100 µg) along with 
Fruend’s complete adjuvant in 1:1 ratio (1 ml) was subcutaneously immunized in the 4 week old female rab-
bit, procured from DRDE Animal facility division. The booster doses were subsequently given twice within an 
interval of 15 days with Fruend’s incomplete adjuvant. On the day 7th of post second booster, 20 ml blood was 
collected from marginal ear vein of the rabbit and titrated using indirect ELISA. Immunoglobulin G was puri-
fied from antiserum with protein A sepharose column using Pure-1A antibody purification kit as per manufac-
turer’s instruction (Sigma, USA). Briefly, the serum was diluted with 3 volume of loading buffer and the culture 
supernatant was diluted with 1 volume of loading buffer. The diluted material was loaded to the column. The 
column was washed with 5 ml loading buffer per ml of resin. Following washing twice, the column was applied 
with elution buffer and the fractions were collected up to 10 ml. Assay elute fractions were analyzed for protein 
by absorbance at 280 nm. The positive protein fractions were pooled and neutralized with 1.5 M Tris base at pH 
6.8. The protein was dialyzed in PBS (pH 7) at 4 °C for 4 h. The protein was further quantified with bicinchoninic 
acid (BCA) reagent and estimated at an absorbance of 562 nm. Purified IgG was titrated using indirect IgG 
ELISA22 and utilized for the development of sandwich ELISA for virus detection.

Generation and purification of monoclonal antibody (mAb).  Monoclonal antibodies were raised 
against purified recombinant NP of CCHFV in in-house bred 4 weeks old female Balb/C mice at M/s Imgenex, 
India. On the day 7 post immunization the mice were bled from retro-orbital plexus using heparinised capillary, 
and the serum was separated by centrifugation and further titrated with indirect ELISA. The mouse showing 
high antibody titre was sacrificed by cervical dislocation and the splenocytes were fused with myeloma cells as 
per Kohler-Milstein’s protocol. Briefly, 7 days post second booster dose, a single cell suspension of spleenocytes 
was prepared aseptically in RPMI-1640 media as primary culture. A fusion cell suspension was prepared with 
myeloma cells Sp2/0 as per the standard protocol using HAT media. Following culture for 7–12 days, hybridoma 
cells were expanded further for limiting dilution to obtain monoclonal antibody secreting hybridoma clones. 
Ten hybridoma clones were screened and titrated using indirect IgG ELISA against NP as an antigen. The high 
titered monoclonal antibodies (n = 2) were purified as described above and stored at − 20 °C.
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Characterization of antibody.  The purified polyclonal antibody and monoclonal antibody were electro-
phoresed on 10% reducing SDS-PAGE. For immunoblotting, recombinant NP was electrophoresed and subse-
quently transferred to nitrocellulose membrane. The membrane was blocked with 5% skimmed milk powder 
(SMP) in 0.1% PBST and incubated at 4 °C for overnight. The blot was washed and treated with 1:2000 and 1:500 
dilution of purified polyclonal and monoclonal antibody respectively and incubated at 4 °C for 4 h. Following 
incubation, the membrane was washed with 0.1% PBST and treated with 1:5000 dilutions of anti-rabbit and 
anti-mouse HRP conjugated secondary antibody at 37 °C for 2 h. The blot was further developed with DAB/
H2O2as substrate.

Titration of monoclonal antibody.  Shortlisted monoclonal antibodies were titrated with indirect ELISA 
assay. Briefly, 300 ng of r-NP was coated in each well of microtiter plate (Nunc, Denmark) at 4 °C for overnight. 
The wells were subsequently blocked with 5% SMP for 4 h, followed by washing with 0.05% PBST to remove 
blocking buffer. Hybridoma cell supernatants in the twofold dilution (1:100 to 1:6400) were applied to wells at 
37 °C for 60 min. Following incubation, wells were washed with wash buffer (0.1% PBST) and 1:5000 dilution of 
anti-mouse HRP secondary antibody (Sigma, USA) was added in each well and incubated at 37 °C for 60 min. 
Following incubation and washing, the reaction was developed with TMB/H2O2 solution (Invitrogen, USA). The 
reaction was stopped with 1 N HCl and absorbance was recorded at 450 nm.

Isotyping of monoclonal antibody.  The sub-class of mAb (CCHF_mAb1 and CCHF_mAb2) were deter-
mined using mouse IgG isotyping kit (Cat. No. 88-50630-88, Invitrogen, USA). ELISA plate was coated with 100 
µL/well of capture antibody in coating buffer. Each well was coated with isotype specific antibody and blocked 
with 250 µL of blocking buffer and incubated at room temperature for 2 h. Following incubation, 50 µL/well of 
assay buffer A (1×) was added to all wells and incubated at room temperature for 2 h. Wells were washed and 
incubated with detector antibody and incubated. Plate was washed and developed with TMB/H2O2 incubated at 
room temperature for 10 min and stopped with 1 N HCl. The absorbance was recorded at 450 nm wavelength.

HRP conjugation of monoclonal antibody.  The purified CCHF_mAb2 was conjugated with horserad-
ish peroxidase enzyme (HRP) using HRP conjugation kit (Abcam, USA) as per manufacturer’s instruction to 
accelerate the speed compared to conventional sandwich ELISA method.

Standardization of sandwich ELISA (sELISA).  The purified pAb and HRP_mAb2 was used as capture 
and detector antibodies respectively to determine the optimal concentration by checkerboard titration. In brief, 
1:250, 1:500, 1:1000 and 1:1500, 1:2000 and 1:4000 dilutions of 1  mg/ml stock of polyclonal antibody were 
coated (100 μl/well) and incubated at 4 °C for overnight. Further the plates were blocked with 5% skimmed milk 
powder (SMP) in PBS and a fixed antigen concentration (100 μg/well) in healthy human serum and healthy tick 
lysates was added in each well for 1 h. Following incubation, the twofold serially diluted (initial concentration 
1:50, 1:100, 1:500, 1:1000) HRP_mAb2 (2 mg/ml stock) was added in respective wells and incubated at 37 °C for 
1 h. The plate was incubated at 37 °C for 1 h and washed, the reaction was then developed with TMB and stopped 
with 1 N HCl. The absorbance was recorded with ELISA plate reader (BioTek, USA).

Evaluation of sELISA with commercial antigen.  The standardized sandwich ELISA was evaluated for 
its efficacy in detecting a mammalian cell (HEK) expressed nucleoprotein (The Native antigen, UK). The com-
mercial antigen (NP) was spiked in 0.05% PBST, serially tenfold diluted and tested as per standardized protocol 
and the limit of detection was calculated. This was also compared with in house E. coli expressed r-NP following 
the same protocol.

Evaluation of sELISA with CCHF virus.  Sandwich ELISA was evaluated with tenfold serial dilutions of 
gamma irradiated CCHF virus (10–1 to 10–5) in different matrices viz., culture supernatant, serum and tick lysate 
with standardized protocol. CCHF virus strain NIV1040505 (GenBank number MH396640-MH396642) was 
used in this study. For CCHFV inactivation, Co-60 source (Gamma Chamber; GC 5000) was used. For complete 
inactivation of the CCHFV, gamma irradiation dose of 24 kGy has been used for 2 h. Before further use, inactiva-
tion of the virus stock was confirmed by two blind passages in Vero cells. Serum and tick specimens referred to 
NIV during various CCHF outbreaks in India were used for the evaluation of the assay.

Quantitative real‑time PCR (qRT‑PCR) of CCHFV.  The same dilutions were tested with real time RT-
PCR and the data was comparatively analyzed27. Taqman real time RT-PCR was performed using TaqMan fast 
virus one-step master mix in 20 µl reaction mixture (Thermo Fisher Scientific, USA) using ABI7500 Dx real time 
PCR system (Applied Biosystems, USA). The primer/probe set used for the real time RT-PCR targeting S-gene of 
CCHFV were Forward Primer: 5′-CAA​AGA​AAC​ACG​TGC​CGC​TT-3′; Reverse Primer: 5′-ATT​CAC​CTC​GAT​
TTT​GTT​TTC​CAT​-3′ and Probe: 5′-ACG​CCC​ACA​GTG​TTC​TCT​TGA​GTG​TTA​GCA​-3′. PCR cycling condi-
tions included 50 °C for 30 min and at 95 °C for 2 min followed by 45 two-step cycles at 95 °C for 15 s and at 
55 °C for 60 s. Following cycling, the result was analyzed from the amplification plot.

Cross‑reactivity analysis of sandwich ELISA.  Cross reactivity of the sELISA assay was analysed with 
culture supernatants of Dengue virus serotypes [DENV-1, RR107 (KF289072); DENV-2, GWL18 (AY324614); 
DENV-3, ND143 (FJ644564); DENV-4, ND 73 (HM237348)], Kyasanur forest disease virus strain 12839 
(MG720080) and Yellow fever virus 17D strain (KF769015).
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Statistical analysis.  All the generated data was analyzed with Medcalc 2.0 software.

Ethics statement.  All methods are reported in accordance with ARRIVE guidelines. All methods were per-
formed in accordance with the relevant guidelines and regulations. For animal experiments, the study protocol 
for all experiments was approved as protocol no. Viro-14/57/PKD by the Institutional Animal Ethics Committee 
(IAEC) constituted by the Committee for the Purpose of Control and Supervision of Experiments on Animals 
(CPCSEA), Ministry of Environment and Forestry, Government of India (Regd. no. 37/GO/Rbi/S/99/CPCSEA).
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