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The osseointegration and stability 
of dental implants with different 
surface treatments in animal 
models: a network meta‑analysis
Chun‑Ping Hao1,2,4, Nan‑Jue Cao3,4, Yu‑He Zhu1 & Wei Wang1*

Dental implants are commonly used to repair missing teeth. The implant surface plays a critical role in 
promoting osseointegration and implant success. However, little information is available about which 
implant surface treatment technology best promotes osseointegration and implant stability. The aim 
of this network meta‑analysis was to evaluate the osseointegration and stability of four commonly 
used dental implants (SLA, SLActive, TiUnite, and Osseotite). The protocol of the current meta‑
analysis is registered in PROSPERO (International Prospective Register of Systematic Reviews) under 
the code CRD42020190907 (https:// www. crd. york. ac. uk). We conducted a systematic review following 
PRISMA and Cochrane Recommendations. Medline (PubMed), Cochrane Library, Embase, and the 
Web of Science databases were searched. Only randomized controlled trials were considered. Twelve 
studies were included in the current network meta‑analysis, eleven studies were included concerning 
the osseointegration effect and five studies were included for stability analysis (four studies were 
used to assess both stability and osseointegration). Rank possibility shows that the SLActive surface 
best promoted bone formation at an early healing stage and TiUnite seemed to be the best surface 
for overall osseointegration. For stability, TiUnite seemed to be the best surface. The present network 
meta‑analysis showed that the SLActive surface has the potential to promote osseointegration at an 
early stage. The TiUnite surface had the best effect on osseointegration regarding the overall healing 
period. The TiUnite surface also had the best effect in stability.

Oral implantology has thus far been the major choice for rehabilitation of edentulous regions. For the long-
term success of dental implants, osseointegration is a prerequisite factor. Osseointegration means direct contact 
between the bone and the implant, which is often measured by the bone-to-implant contact (BIC) value under 
an optical  microscope1.

The biocompatibility of implant surfaces is a critical promoter for  osseointegration1,2. Surfaces with suitable 
roughness and high hydrophilicity are likely to promote more bone deposition than other surfaces. Currently, in 
clinical practice, there are four commonly used dental implants: SLA, SLActive, Osseotite, and TiUnite.

SLA has a rough surface that is produced by sandblasting with large grit followed by mixed acid etching with 
hydrochloric and sulfuric materials. Clinical trials demonstrate that the SLA surface could reduce the unloaded 
healing time from 12 to 6  weeks3,4. Currently, the SLA surface is the gold standard for developing novel implants. 
However, the sandblasting process of the SLA procedure may have blasting material embedded into the sur-
face, hindering the osseointegration process. Moreover, the SLA surface is hydrophobic, which may disturb the 
initial cell attachment to  implants5. To overcome these limitations, scientists have been devoted to successively 
modifying the properties of implant surfaces by improving surface wettability and optimizing surface chemistry.

The SLActive surface is an upgrade of the SLA surface so that it has higher wettability. It is prepared by rins-
ing SLA-treated implants under a nitrogen atmosphere and storing them in NaCl solution rather than placing 
them in dry  storage6. Researchers have found that SLActive surfaces have favourable nano-roughness for bone 
 deposition7. The SLActive surface could contribute to bone deposition around implants at an early stage and 
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reduce healing  time8. Reduced healing time could promote early functional loading, playing a critical role in 
increasing patients’ quality of life.

The Osseotite surface is another rough surface with a uniform micro-texture, which is produced by the dual 
acid (HCl-H2SO4) etching method. The acid etching method could roughen the implant surface without blasting 
material contamination. Many studies have suggested that Osseotite surfaces have achieved excellent outcomes 
under immediate loading  conditions9,10.

TiUnite is a new-generation surface in the field of dental  implants11. It is prepared by a specific oxidation 
process in which implants are treated in a galvanic cell containing phosphoric acid electrolyte. The TiUnite 
surface is characterized by a thick  TiO2 layer enriched with highly crystalline calcium phosphate, which could 
promote apatite deposition around  implants12.

The four dental implant surfaces have their own mechanisms in promoting bone deposition. It is unclear 
which implant is the most effective in promoting bone deposition. Moreover, there is little evidence-based sup-
port to guide implant choices in clinical practice.

In clinical practice, it is difficult to measure the osseointegration effect directly because the measurement of 
BIC value requires retrieving implants from patients. Clinicians typically use a resonance frequency analyser to 
measure the stability of dental implants to evaluate the osseointegration status indirectly. However, controversy 
exists about whether the implant stability quotient (ISQ) value could precisely indicate the osseointegration 
condition. Some studies found that there is a relationship between the ISQ and BIC value, while others showed 
that there is no significant relationship between the ISQ and BIC  value13–15.

Therefore, we conducted a meta-analysis on animal models to directly compare the osseointegration effect 
of the four dental implant surfaces. We also synthesized evidence to further study the relationship between the 
ISQ value and BIC value.

Network meta-analysis is an extension of traditional meta-analysis. Network meta-analysis could synthesize 
direct and indirect evidence to enable an evaluation of the effect of multiple interventions at the same  time16. 
Moreover, network meta-analysis provides higher precision by ranking all available treatments even though 
statistical analysis shows that there are no significant differences between  interventions17.

In this network meta-analysis, we aimed to evaluate the osseointegration and stability of the above four com-
mercially available implants in animal models. This network meta-analysis could provide support for clinical 
decision-making and point out directions for further research.

Materials and methods
Overview. The focused question of this review was to compare the effect of titanium implants with different 
surface treatments. The primary outcome was osseointegration measured by the BIC value. The second outcome 
was stability measured by ISQ values.

This network meta-analysis was conducted according to the PRISMA Extension Statement for Network 
Meta-analysis18. The questions were addressed with reference to participants or population (P); intervention 
(I); comparison, control, or comparator (C); outcome (O); and study design (S) (PICOS elements) (Table 1). 
The protocol of the current meta-analysis is registered in PROSPERO (International Prospective Register of 
Systematic Reviews) under the code CRD42020190907 (https:// www. crd. york. ac. uk). Ethics approval was not 
required for this review.

Search strategy and study selection. Medline (PubMed), Cochrane Library, Embase and the Web of 
Science databases were searched by two authors independently. The databases were searched up to June 2020. 
Only trials published in English were considered. For the Medline (PubMed) library, the searching strategy 
was as follows: (((((((dental implants[MeSH Terms]) OR (Dental implants[Title/Abstract])) OR (Implants, 
Dental[Title/Abstract])) OR (Dental Implant[Title/Abstract])) OR (Implant, Dental[Title/Abstract])) OR 
(Dental Prostheses, Surgical[Title/Abstract])) AND (((((((((Surface Properties[MeSH Terms]) OR (Surface 
Properties[Title/Abstract])) OR (Properties, Surface[Title/Abstract])) OR (Property, Surface[Title/Abstract])) 
OR (Surface Property[Title/Abstract])) OR (Wettability[MeSH Terms])) OR (Wettability[Title/Abstract])) 
OR (Implant surface treatment[Title/Abstract])) OR (Implant surfaces treatment[Title/Abstract]))) AND 
((((((Osseointegration[MeSH Terms]) OR (Osseointegration[Title/Abstract])) OR (Peri-implant Endosse-
ous Healing[Title/Abstract])) OR (Endosseous Healings, Peri-implant[Title/Abstract])) OR (Bone-to-implant 
contact[Title/Abstract])) OR (BIC[Title/Abstract]))AND(English[Language]).

For the electronic search, reference management software (Endnote X7) was used. Publications from Medline 
(PubMed), Cochrane Library, Embase, and Wed of Science databases were imported to this software, and dupli-
cates were excluded. Two trained reviewers (Hao CP and Cao NJ) independently screened titles and abstracts for 
inclusion of potentially eligible trials. Then, full-text articles were accessed by the two reviewers independently 

Table 1.  PICOS elements of the questions being addressed.

Participants We will include studies researching the effect of different implant surfaces in animal models

Intervention and Comparison We will include four implant surfaces: SLA, SLActive, Osseotite and TiUnite

Outcome The primary outcomes of interest will be bone-to implant contact (BIC%). The second outcomes will be 
implant stability quotient (ISQ)

Study design Random controlled experiment on animal models (all species, all genders)

https://www.crd.york.ac.uk
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to identify whether they could be included. Any disagreements were resolved by discussion, rereading and 
consultation with the last author (Wang W). The agreement between the two investigators was assessed by the 
kappa statistics.

A flowchart presented in Fig. 1 shows the process of searching, screening, and determining eligibility accord-
ing to the PRISMA Extension Statement for Network Meta-analyses18.

Criteria for selecting studies for this review. Studies conducted in healthy animal models investigating 
the osseointegration and stability of titanium implants with SLA surfaces, SLActive surfaces, TiUnite surfaces, 
and Osseotite surfaces were included. Moreover, studies published in English were taken into account. Animal 
disease models, immediate implantation models, bone defect models, and studies on nontitanium implants were 
excluded.

Data extraction. Data extraction from the included studies was conducted by two reviewers independently 
using a predesigned extraction form. The following key data were extracted from each included study: name of 
the first author, year of publication, sample size, mean and SD values of BIC and ISQ for each group and healing 
period. Studies providing all of this information were included in the current network meta-analysis. Where 
necessary, we contacted the authors of the included studies to collect missing data. Any disagreements were 
resolved by discussion with each other or consulting the third author (Zhu YH).

Risk of bias. We assessed the quality of the included studies with SYRCLE’s risk of bias  tool19. The follow-
ing fronts were considered: selection bias (sequence generation, baseline characteristics, and allocation con-
cealment), performance bias (random housing and blinding), detection bias (random outcome assessment and 
blinding), attrition bias (incomplete outcome data), reporting bias (selective outcome reporting), and other 
(other sources of bias).

Based on the characteristics of the current network meta-analysis, each animal model received different 
implants at the same time. Therefore, sequence generation, allocation concealment, random housing, blinding 
of performance bias (blinding trial caregivers and researchers), and random outcome assessment were not suit-
able for assessing the quality of studies included in our meta-analysis. The random placement of implants in 
animal models and random sacrifice of experimental animals at different time points may have influenced the 
outcome. Therefore, in the current network meta-analysis, we evaluated seven domains: baseline characteristics, 
random implant placement, blind outcome assessor, random sacrifice, incomplete outcome data, selective out-
come reporting, and other sources of bias. Two independent authors (Hao CP and Cao NJ) assessed the studies 
and signified the risk of bias in the domains by indicating ‘yes’, ‘no’ or ‘uncertain’.

Analysis. Statistical heterogeneity and meta‑regression analysis. The Q-test and the  I2 statistic were used 
to measure the heterogeneity of the network meta-analysis. According to the Cochrane recommendation, if  I2 
was below 40%, the heterogeneity could be considered low. If  I2 was above 40%, we explored heterogeneity with 
network meta-regressions further. The potential source of heterogeneity could be the publication year, different 
animal species, healing period, and sample size.
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Figure 1.  Prisma flowchart.
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Transitivity across treatment comparisons. Network meta-analysis is based on the transitivity assumption, 
which means that the distribution of potential effect modifiers is similar across various treatment  comparisons20. 
The potential modifiers could be the year of publication, animal species, and sample size. We complied with the 
included criteria strictly to ensure that the included studies were sufficiently similar.

Inconsistency analysis. Node-splitting analysis was also conducted to identify statistical inconsistency in the 
network meta-analysis (NMA). There was no relevant inconsistency in the evidence when P > 0.05. Conclusions 
drawn from consistency models were  reliable21. Nevertheless, if P < 0.05, we conducted sensitivity analyses to 
determine potential sources of inconsistency.

Publication bias. We conducted funnel plots to assess the publication bias in this meta-analysis. If the distribu-
tion was not roughly symmetrical, this was suggestive of an increased risk of  bias22.

Grading of recommendations assessment, development, and evaluation. The evidence was evaluated by the CIN-
eMA (Confidence in Network Meta-Analysis) system. CINeMA is a modified version of the GRADE (Grading 
of Recommendations, Assessment, Development, and Evaluations) approach, which grades evidence from net-
work meta-analysis  specifically23. We assessed the confidence of the results in six domains: within-study bias, 
indirectness, imprecision, heterogeneity, incoherence and publication bias. We evaluated each term by the qual-
ity of the included studies and the guidance of the CINeMA system.

Data synthesis and analysis. We used Stata 14 software and the st0410, st0411, and st0156-2 software packages 
to perform major data  analysis24,25. We employed R software with the gemtc package to conduct meta-regression 
 analysis26. As our results were extracted as continuous outcomes, the data are presented as the mean differences 
(MDs) with 95% confidence intervals. If the interventions showed no statistically significant difference, a rank-
ing plot was conducted to explore the possible best  measures27.

Results
Study selection. A PRISMA flow diagram describing the process of literature search and selection is pre-
sented in Fig. 1. The search of Medline (PubMed), Cochrane Library, Embase, and Web of Science databases 
revealed 5159 potentially relevant publications. After screening titles and abstracts, we selected 227 studies for 
further evaluation. A total of 215 articles were excluded after a full-text review due to their study design and no 
report of the outcome we were investigating. Therefore, 12 studies were included in the NMA. Their character-
istics are described in Table 2. In addition, a network plot depicting the corresponding comparisons within the 
network is illustrated in Fig. 2. We assessed the agreement between the two investigators by Cohen’s kappa (ĸ) 
test. The kappa value was 0.83.

Table 2.  The characteristics of included studies.

Author Year Study groups Healing period Country

Dagher 2014
Group 1: SLA (n = 4)
Group 2: SLActive (n = 4)
Group 3: TiUnite (n = 4)

2 Months Lebanon

Lai 2009 Group 1: SLA (n = 2)
Group 2: SLActive (n = 2) 8 Weeks China

Rios-Santos 2018 Group 1: SLA (n = 4)
Group 2: SLActive (n = 4) 8 Weeks Spain

Streckbein 2013 Group 1: TiUnite (n = 6)
Group 2: Osseotite (n = 6) 12 Weeks Germany

Schlegel 2011 Group 1: SLA (n = 6)
Group 2: SLActive (n = 6) 90 Days Germany

Gottlow 2012 Group 1: SLActive (30)
Group 2: TiUnite (30) 6 Weeks Sweden

Abdel-Haq 2011 Group 1: SLA (n = 5)
Group 2: SLActive (n = 5) 6 Weeks Syria

Romero-Ruiz 2019 Group 1: SLA (n = 8)
Group 2: SLActive (n = 8) 8 Weeks Spain

Ernst 2014 Group 1: SLActive (n = 6)
Group 2: TiUnite (n = 6) 8 Weeks Switzerland

Choi 2018 Group 1: SLA (n = 4)
Group 2: SLActive (n = 4) 10 Days Korea

Buser 2004 Group 1: SLA (n = 7)
Group 2: SLActive (n = 7) 8 Weeks Switzerland

Sul 2009
Group 1: SLA (n = 10)
Group 2: TiUnite (n = 10)
Group 3: Osseotite (n = 10)

6 Weeks Sweden
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Assessment of risk of bias. The quality of the included studies was assessed by two review authors inde-
pendently using SYRCLE’s risk of bias tool. Regarding bias, we categorized studies as ‘yes’, ‘uncertain’ or ‘no’. The 
result showed overall good quality. Details of bias assessment are shown in Table 3. The support of bias judge-
ment is presented in Supplementary Appendix S1.

Osseointegration effect of implant surfaces. Osseointegration effect of implant surfaces in the overall 
healing period. A total of 11  studies15,28–37 with a sample size of 168 (40 implants with SLA surfaces, 76 implants 
with SLActive surfaces, 46 implants with TiUnite surfaces and 6 implants with Osseotite surfaces) were analysed 
for the effect of implant surfaces on osseointegration.

The forest plot (Fig. 3A) showed that the TiUnite surface had a statistically significant advantage over the 
SLA surface (MD = 12.96; 95% CI 1.52, 24.39). There were no significant differences between other comparisons.

Moreover, network meta-analysis could allow provide rank possibility calculations. If the effect size difference 
between treatments was small, it was possible to make decisions following the guidance of rank probabilities. 
The details of rank possibility are shown in Fig. 4A.

The rank plot (Fig. 4A) suggested that the TiUnite surface had the highest possibility of being the best surface 
to promote osseointegration (Rank 1 = 75.0), followed by the Osseotite surface (Rank 2 = 37.3), SLActive surface 
(Rank 3 = 56.6), and SLA surface (Rank 4 = 71.9).

TiUnite

SLActive

Osseotite

SLA

TiUnite

SLActive

Osseotite

SLA

A

C

B

TiUnite

SLActive

SLA

Figure 2.  Network plot of comparisons. (A) BIC value of final healing stage; (B) BIC value of early healing 
stage; (C) ISQ value of final healing stage. The width of the lines is proportional to the number of trials directly 
comparing each pair of treatments. The size of each node is proportional to the number of studies for each 
intervention.
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Osseointegration effect of implant surfaces in the early healing period. To comprehensively investigate the osse-
ointegration effect of implants, we further studied the osseointegration of implants at the early healing stage. 
Because studies researching Osseotite did not report BIC values at early stages, we only compared the osseointe-
gration effects of SLA, SLActive, and TiUnite in the early healing period.

The forest plot (Fig. 3B) indicates that the SLActive surface had a statistical advantage over the SLA surface 
(MD = 16.65; 95% CI 8.71–24.59) and TiUnite surface (MD = 7.47; 95% 0.05–14.89). There was no significant 
difference between other comparisons. The rank plot revealed that SLActive had the highest possibility of being 
the most effective surface for osseointegration (Rank 1 = 97.4), followed by the TiUnite surface (Rank 2 = 94.1) 
and SLA surface (Rank 3 = 96.7) (Fig. 4B).

Stability of implant surfaces. A total of  515,29,30,33,38 studies with a sample size of 89 (27 implants with SLA 
surfaces, 30 implants with SLActive surfaces, 22 implants with TiUnite surfaces, and 10 implants with Osseotite 
surfaces) were analysed for the effect of different implant surfaces on stability.

The forest plot (Fig. 3C) indicated that TiUnite showed a significant advantage in stability over SLActive 
(MD = 9.8; 95% CI 1.04–18.56). The rank possibilities (Fig. 4C) showed that the TiUnite surface may have been 
the best in stability (Rank 1 = 79.0), followed by the Osseotite surface (Rank 2 = 47.4), SLA surface (Rank 3 = 56.7), 
and SLActive surface (Rank 4 = 74.0).

Node‑splitting analysis to assess inconsistencies in network meta‑analysis. To evaluate the 
robustness of the models, we conducted node-split analysis. Node-split analysis reveals a potential inconsistency 
by assessing whether direct and indirect comparisons on a particular node (the split node) are in  agreement21.

In current analyses, the BIC value in the early healing period did not show any inconsistencies. However, in 
the overall healing period, few inconsistencies were detected in the comparison between SLActive and TiUnite. 
To further explore the source of inconsistencies, we conducted sensitivity analysis.

We excluded studies with high risk of  bias15,36. After omitting one study with a high risk of  bias36, inconsist-
encies disappeared. After omitting this study, SLActive showed a significantly higher BIC value than SLA. The 
rank possibility was similar to the previous outcome. This outcome indicates that although a few inconsistencies 
exist in the current NMA, the results are reliable. As for stability, an inconsistency could be detected. To further 
explore the source of the inconsistency, we also conducted sensitivity analysis. After omitting one  study38, the 
inconsistency disappeared. The rank possibility was similar to the previous outcome.

Heterogeneity and network meta‑regressions. The  I2 of the BIC value in the early healing stage was 
0% and that in the final healing stage was 10%, indicating that heterogeneity in our meta-analysis was low and 
that there was a high level of confidence in the evidence NMA.

We conducted meta-regressions to further explore the effect of potential modifiers (publication year, healing 
period, animal species, and sample size) on the final healing period. The results showed that these modifiers 
did not have a significant effect on outcomes. The details of the network meta-regressions are shown in Sup-
plementary Appendix S2.

Publication bias. We conducted funnel plots to assess publication bias in this meta-analysis. Visual inspec-
tion suggested that publication bias could be considered low (Fig. 5).

Assessment of the confidence of evidence. The confidence of evidence was assessed using the CIN-
eMA system. The comparisons in this network meta-analysis showed moderate and low rates of confidence. The 
details of the confidence of evidence are provided in Supplementary Appendix S3.

Table 3.  Risk of bias assessment of included studies.

Study
Baseline 
characteristics

Random implants 
placing

Blind outcome 
assessor Random sacrifice

Incomplete outcome 
data

Selective outcome 
reporting

Other sources 
of bias

Dagher 2014 Low High Unclear Unclear Low Low Low

Lai 2009 Low Low Low Unclear Low Low Unclear

Rios-Santos 2018 Low Low Low Low Low Low Unclear

Abdel-Haq 2011 Low Low Low Unclear Low Low Low

Choi 2018 Low Low Unclear Unclear Low Low Low

Romero-Ruiz 2019 Low Unclear Unclear Unclear High Low Low

Schlegel 2011 Low Low Unclear Unclear Low Low Unclear

Gottlow 2012 Low Low Unclear Unclear Low Low Unclear

Ernst 2014 Low Low Unclear Low Low Low Unclear

Buser 2004 Low Unclear Unclear Unclear Low Low Unclear

Streckbein 2013 Low Unclear Unclear Unclear Low Low Unclear

Sul 2009 Low Low Unclear Unclear Low Low Low
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Figure 3.  Forest plot of four titanium implant surfaces. (A) BIC value of final healing stage; (B) BIC value of 
early healing stage; (C) ISQ value of final healing stage.
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Figure 4.  Rank probability plot of four titanium implant surfaces. (A) BIC value of final healing stage; (B) BIC 
value of early healing stage; (C) ISQ value of final healing stage.
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Discussion
This network meta-analysis evaluates the osseointegration effect and stability of four implant surfaces (SLA, 
SLActive, Osseotite, and TiUnite). To the best of our knowledge, this network meta-analysis is the first to evalu-
ate the effect of dental implant surfaces on the osseointegration effect and stability.

Compared with traditional meta-analyses, network meta-analyses could assess direct and indirect evidence 
and compare the effects of  interventions16. Moreover, if the effect size between treatments was small, network 
meta-analysis provided the opportunity to determine rank possibilities of compared interventions to improve 
the accuracy of the  assessment17.

For the overall osseointegration effect, eleven studies were included. Nine out of the 11 studies were con-
ducted between 2010 and 2020, indicating that this problem is gaining attention. The rank possibility (Fig. 4A) 
showed that TiUnite may be the best surface, followed by Osseotite, SLActive, and SLA. Moreover, the forest 
plot (Fig. 3A) indicated that TiUnite had a significantly higher BIC value than SLA. There was no significant 
difference in the other comparisons.

Because the ability to promote early bone deposition is also important, we compared the osseointegration 
effect at the early healing period (approximately 2 weeks). The results revealed that SLActive had the highest 
osseointegration effect at the early stage. Although SLActive did not show a significant advantage over SLA in 
the overall healing period, SLActive had a significantly higher BIC value than SLA in the early healing period. 
Rapid osseointegration and shortened healing time are the goals of modern dentistry; these goals play critical 
roles in improving patients’ quality of life. Therefore, SLActive is an advanced surface too.

The reason that TiUnite showed the best osseointegration effect among the above four investigated surfaces 
in the overall healing period may be related to its advanced surface properties. The TiUnite surface is prepared 
by a special oxidation process to create a thick porous  TiO2  layer39. The porous  TiO2 layer is enriched with highly 
crystalline calcium phosphate to imitate the natural bone environment for cell attachment, which may have 
the potential to promote apatite  formation39. Many studies have been conducted to research the performance 
of TiUnite surfaces in clinical practice. These studies found that this novel surface exhibited a higher bone-to-
implant value than the turned surface, achieving a longer survival  rate40. Therefore, the TiUnite surface may have 
advanced osteoconductive properties to enhance  osseointegration12.

Although the rank possibility shows that the Osseotite surface may be the second-best surface in osseointe-
gration, there is no statistically significant difference between the Osseotite surface and any of the other three 
surfaces. One possible reason for this outcome may be that the number of Osseotite implants in our network 
meta-analysis was small, which may have resulted in potential bias.

The SLActive surface is the third best surface for promoting osseointegration in the overall healing period. 
The SLActive surface was prepared by the same sandblasting and acid etching process as the SLA surface and 
then rinsed under a nitrogen atmosphere and stored in NaCl  solution41. Researchers have proven that SLActive 
surfaces have higher wettability than SLA surfaces, reducing the water contact angle from 139.9° with SLA to 
0° with SLActive, which may be due to the reduction in  contamination42. High surface energy could enhance 
the interaction between the bone and  implants43. It is believed that the higher surface energy of SLActive could 
achieve more bone apposition than the SLA surface at an early stage; however, the difference decreased as the 
healing time  extended44. In our network meta-analysis, we verified the above hypothesis that the SLActive surface 
showed a significantly higher BIC value than the SLA surface at the early healing period; however, there was no 
significant difference between the two surfaces in the overall healing period. Therefore, SLActive is a valuable 
surface for promoting early healing and early loading.

The SLA surface was launched in 1998 by the ITI dental implant  system45. It is a landmark in the field of 
dental implants with superior advantages in osseointegration. Currently, it is an industry standard to test novel 
implant surfaces. In the meta-analysis, the other three surfaces showed a better osseointegration effect than the 
SLA surface, indicating that these novel surfaces are great developments for promoting osseointegration.
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In clinical practice, clinicians usually measure the ISQ value of dental implants to assess the implant osse-
ointegration condition indirectly. However, the ability of the ISQ value to reflect the actual bone healing condi-
tion is doubtful. The correlation between the ISQ value and BIC value is controversial. In the present network 
meta-analysis, for stability, 5 studies were included with a sample size of 89. The forest plot shows that TiUnite 
has a significant advantage over SLActive, which is not consistent with the osseointegration outcome. These 
conflicting outcomes indicate that implant stability may not precisely reflect the actual bone healing condition. 
One explanation for this outcome may be that stability is influenced by many factors, e.g., bone condition, the 
site of implantation, implant method, and the length of the  implants46.

In the current network meta-analysis, we revealed that the TiUnite surface is a promising technology. The 
 TiO2 layer of TiUnite is effective in enhancing bone deposition. SLActive is an implant with considerable clini-
cal value in promoting early osseointegration. The higher wettability of the SLActive surface is helpful in early 
bone deposition.

The major strength of this network meta-analysis was that the four researched implants are all commercially 
available. Compared with implants produced by researchers themselves, commercial implants have great homo-
geneity, improving the reliability of the current meta-analysis.

The present network meta-analysis also has some limitations. First, all of the included studies were animal 
experiments. Osseointegration in humans is different from that in animal models. It is difficult to find an ideal 
animal model due to the considerable differences in bone characteristics between animals and  humans47. There-
fore, the extrapolation of current outcomes to actual human conditions should be interpreted with caution. 
Second, numerous animal models were used in the 12 included studies, including sheep, dogs, pigs, and rabbits. 
To address this confounding factor, we conducted meta-regression analysis. The results indicated that animal 
species did not significantly modify the overall outcome. We expect further research to better address this issue 
and provide reliable guidance for clinical practice.

In conclusion, this network meta-analysis evaluated the osseointegration effect and stability of SLA, SLActive, 
TiUnite, and Osseotite surfaces. For osseointegration, our network meta-analysis shows for the first time that 
for a long observation period, the TiUnite surface is the best for promoting osseointegration, followed by the 
Osseotite, SLActive and SLA surfaces. However, the SLActive surface has the greatest advantage in promoting 
rapid osseointegration at an early stage. Regarding stability, all implants have ISQ value greater than 60 indicating 
they are all  eligible48,49. Moreover, rank possibilities show that TiUnite is the best, followed by Osseotite, SLA, 
and SLActive. More comprehensive studies are needed to verify our findings.

Conclusions
Our network meta-analysis shows that in the long-term healing period, TiUnite is the best for osseointegration 
among the four implants evaluated. Moreover, in the early healing stage, SLActive is the surface that provides 
the best osseointegration effect. Regarding stability, all implants are eligible with ISQ value greater than 60. Rank 
possibilities show that TiUnite seems to be the best, followed by Osseotite, SLA, and SLActive.

Data availability
All data generated or analysed during this study are included in this published article (and its Supplementary 
Information files).
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