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Modelling a multiplex brain 
network by local transfer entropy
Fabrizio Parente * & Alfredo Colosimo

This paper deals with the information transfer mechanisms underlying causal relations between 
brain regions under resting condition. fMRI images of a large set of healthy individuals from the 1000 
Functional Connectomes Beijing Zang dataset have been considered and the causal information 
transfer among brain regions studied using Transfer Entropy concepts. Thus, we explored the influence 
of a set of states in two given regions at time t  (At  Bt.) over the state of one of them at a following 
time step  (Bt+1) and could observe a series of time-dependent events corresponding to four kinds of 
interactions, or causal rules, pointing to (de)activation and turn off mechanisms and sharing some 
features with positive and negative functional connectivity. The functional architecture emerging from 
such rules was modelled by a directional multilayer network based upon four interaction matrices and 
a set of indexes describing the effects of the network structure in several dynamical processes. The 
statistical significance of the models produced by our approach was checked within the used database 
of homogeneous subjects and predicts a successful extension, in due course, to detect differences 
among clinical conditions and cognitive states.

Recently developed multivariate statistical methods allow to model brain fMRI signals in a large-scale network 
where brain regions can be associated based on their functional behaviour. The classical measure used in such 
a context is the functional connectivity, defined as the statistical dependence, usually calculated by temporal 
correlation, between spatially remote  regions1. The above approach, however, has some weak sides since: (1) it 
is a symmetric measure and the influences among regions appear biunivocal, which impairs to explore causal 
relations; (2) it assumes a steady relationship between brain regions, while recent  evidence2,3 show that a time-
varying measure provides a more detailed information. Dealing with the first point,  Friston1 introduced the 
Effective Connectivity (EC) proposing the Dynamic Causal Modelling (DCM) as a tool to extrapolate causal 
 interactions4. Ramsey et al.5, carefully listed a number of problems that can affect modelling effective connectiv-
ity representative of causal relations by means of directed graphs—where nodes are brain regions—including 
the influence of unmeasured and latent (as well as random) variables. Those authors suggest machine learning 
techniques based upon feed forward acyclic  algorithms6 for addressing the above problems. Other methods refer 
to Granger Causal  Analysis7 and Dynamical  Graphics8. Concerning the second point, several approaches were 
proposed, among which the time-windows  correlation2 and the Co-Activation Patterns (CAP)  analysis3. Some 
recent works give a more complete picture of brain dynamics combining the causal analysis and the time-varying 
with a detailed characterization of different states in different  subjects9.

Another relevant issue in the study of interacting brain regions is the assumption that functional connectivity 
values can be split into positive and  negative10–13, corresponding to in-phase and anti-phase signal dependence, 
respectively. As for the negative functional connectivity, although the pre-processing methods (e.g., Global Signal 
Regression, GSR) could insert spurious anti-correlation in fMRI  data14, significant anti-phase signal dependences 
were found by different methodologies: intracranial electrophysiological  measurements11,15, magnetoencepha-
lographic (MEG)  recordings16, as well as  DCM17. Moreover, within the fMRI functional connectivity analysis, 
changes of anti-correlations have been related to some phenotypic and clinical features as working  memory18, 
 aging18,  schizophrenia19 and NMDA  receptors10,20.

In the present paper we report on the information transfer mechanisms proposing a new estimate of causal 
relations by Transfer Entropy (TE) values between brain regions from fMRI data under resting condition. TE 
allows to reckon the influence of the state of two agents (nodes) at a given time over the state of one of them at a 
following  time21. Since the reciprocal influence between the two agents is not symmetrical a directional relation 
can be estimated. In addition, taking advantage of the methods described by Lizier et al.22, different kinds of 
influence (or transfer mechanism) between brain regions could be singled out and evaluated by a data-driven 
statistical analysis. It should be noticed that different information transfer processes can influence one another 
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so that the ongoing brain activity cannot be estimated just by summing up, as if they were independent, the 
effects of each process.

The multiplex network analysis provides a useful tool to explore many complex features of  networks23,24 by 
modelling different kinds of relationships between nodes as different single-layer networks. In other words, a 
multiplex network is generated by several kinds of interactions among the same set of nodes (e.g. people using 
different social media at the same time) and was successfully used in several contexts like diffusion  processes25, 
information and epidemic  spreading26, etc.. Thus, we decided to use a set of indexes to extract dynamical informa-
tion on the whole functional brain network, in the frame of a multiplex (multi-layer) description. In summary, 
we propose to estimate and characterize functional causal interactions among brain regions on the basis of the 
TE and Multiplex Network concepts. A detailed account of the data pre-processing and TE values reckoning is 
provided in ‘Statistical characterization of interaction rules’ section; the interaction rules among brain regions 
are characterized in ‘Classification of interaction rules’ section; and the multiplex network approach in ‘The 
multiplex network’ section. For a synthetic overview of the paper workflow see Suppl. Mat. 1.

Materials and methods
Data collection and pre-processing. The 1000 Functional Connectomes Classic collection, Beijing 
Zang dataset, was used (https://fcon_1000.projects.nitrc.org/indi/retro/BeijingEnhanced.html). The database 
includes 180 brain functional images of healthy individuals acquired in a resting-state condition at the Beijing 
Normal University in China, the study was approved by the Institutional Review Board of Beijing Normal Uni-
versity Imaging Center for Brain Research. The functional images were acquired with a 3.0 T Siemens scanner 
and the following characteristics: 240 EPI volumes; repetition time, 2000 ms; echo time, 30 ms; slices, 33; thick-
ness, 3 mm; gap, 0.6 mm; field of view, 200 × 200 2 mm; resolution, 64 × 64; flip angle, 90. The corresponding ana-
tomical images, including a T1-weighted sagittal three-dimensional magnetization prepared rapid gradient echo 
(MPRAGE) sequence, was acquired covering the entire brain: 128 slices, TR (repetition time) = 2530 ms, TE 
(echo time) = 3.39 ms, slice thickness = 1.33 mm, flip angle = 7, inversion time = 1100 ms, FOV = 256 × 256 mm, 
and in-plane resolution = 256 × 192. The pre-processing step was performed as follows: the functional images 
were oriented to the twentieth scan, realigned and co-registered to the T1 image. Both the functional and the 
anatomical images were normalized to standard space (EPI image in Montreal Neurological Institute coordi-
nates) using the normalization parameters of the T1 image. Then, a spatial gaussian filter was used (4 × 4x4 mm), 
the motion parameters were regressed out and a band-pass filtering in the range 0.008–0.09 Hz used. Afterward, 
the images were corrected by the anatomical CompCorr  method27. SPM8 (Statistical Parametric Mapping, Well-
come Department of Cognitive Neurology, London, UK) and the Functional Connectivity Toolbox (CONN) 
were used in the previous steps, on a MATLAB R2010b platform.

The images of each subject were divided into 90 ROIs by the automatic anatomical  labeling28 and from each 
ROI the time series were extracted. The short names used to identify the ROIs throughout this paper are listed 
in the Suppl. Mat. 2. The Framewise Displacement (FD)  method29 was used to check the movement-linked vari-
ability in single scans. Movements larger than 0.2 mm were taken as an indication of bad scan and a temporal 
mask from the preceding to the following two scans (spanning 8 s) was also considered. Following Power et al.29 
bad scans should be scrubbed off from the analysis. Although this operation does not affect the brain regions 
showing synchronous activation, however the dynamic among regions is influenced, and we decided to remove 
the subject if bad scans > 30 (lasting more than 60 s). As a result, 23 subjects were filtered out.

Causal interactions estimate. In order to pick up significant events, we filtered the z-score normalized 
time-series by four increasing thresholds of standard deviation  fractions30,31: (+ /-)0.25; (+ /-)0.50; (+ /-)0.75; 
(+ /-)1. In such a way, the signal complexity was reduced to single events in which (because of the symmetric 
threshold) three possibilities are considered: 1; − 1; 0, whether the signal is above the positive threshold, below 
the negative threshold, or in between the positive and negative thresholds, respectively (see Fig. 1). Moreover, 
the three above conditions point to possibly significant associated events: activation (1); deactivation (− 1); null-
activation (0). Notice that beside the state of null-activation, not only activation but also deactivation are possi-
bly significant events. Thus, to account for the anti-correlated  interactions10–13, we distinguish the null-activation 
(0) from the deactivation (− 1).

To elucidate time-dependent interactions, we need the state of a node (B) at a given time step (n), and at the 
following step (n + 1). We also need the state of another node (A) at the time step n, likely interacting with the 
state of (B):  An(state) +  Bn(state) →  Bn+1(state), where the arrow indicates the time flow and (state) defines the 
activity condition (1, − 1, 0) of the node. Given the 3 possible conditions (0, 1 and − 1) and the 3-time dependent 
states  (An,  Bn and  Bn+1),  33 = 27 possible combinations describe the interaction among the two nodes. Hereafter, 
we call "rules" such combinations of interactions.

The TE estimate described by the following equation 21 has been used to quantify the significant probability 
of each combination:

where the state of nodes A and B is specified by: n = the current time step; n + 1 = the following time step; k and 
l = number of time steps before n related to the event P(A) and P(B), respectively. In our analysis the k and l 
parameters were set to 1. However, since the repetition time for the dataset is equal to 2 s, the time between two 
consecutive steps of the time series vector corresponds to 2 s. In Fig. 2 a concise scheme of the method is reported. 
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The TE method deals with the difference (or Kullback–Leibler  divergence32) between the interaction: 
P
(
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n ;B

(l)
n

)

 ; and the non-interaction hypotheses as described by a general Markov process: P
(

An+1|A
(k)
n

)

 . 
Thus, if the interaction hypothesis is verified, a positive value is assigned to that rule and all negative values are 
set to 0, assuming they indicate a misinformation  transfer33. Among the 27 interactions also indicated as "rules", 
the not significant ones were filtered out by a series of statistical tests after reshuffling the original pre-processed 
BOLD signals for each subject. Thus, since only the time-sequences are randomized, the marginal frequency of 
events in each brain region is unchanged, and the local TE could be re-calculated for each brain region combina-
tion, for all subjects and rules (more details in the Suppl. Mat. 3). The correlation among significant rules was 
explored by a hierarchical clustering  method34.

Network analysis. The interaction rules can be represented by a series of not symmetrical networks, where 
links are not reciprocal (A → B ≠ A ← B). Accordingly, any interaction between nodes (ROIs) is described for each 
subject by a weighted and directional network (W = {wi,j}) where links are represented by weight (w) and direc-
tion. In such a frame, the nodes are characterized by the sum of the associated weights: si =

∑

jwi,j , where  wi,j is 
the weight of a link between nodes i and j. This quantity is called node strength. Moreover, due to a possible asym-
metry between mutual interactions, in-strength and out-strength can be separately calculated by summing the 
weights of in- and out- connections (i.e., inverting subscripts i and j), and the total sum is defined total-strength. 
This can be also applied to directional binary networks (values = 1 or 0), producing in-, out-, and total- degrees.

Multiplex networks. In the case of a multiplex network the classical metrics of the network theory applies to 
each single-layer network included in the multiplex. Thus, for a global description, the introduction of new 
network indexes is required: a) in a system including N nodes and M layers, each layer α (with α = 1, …, M) 
is associated to an adjacency matrix Aα = {aαi,j} , where aαi,j = 1 if nodes i and j are connected by a link in the α 
layer; b) in a weighted network (W) each aαi,j ≠ 0, is associated to a weight w; c) in a directional network links 
are from i to j. A multiplex network can be specified by the vector of adjacency matrices of the M layers as 
W = {W[1], …,W[M]}, where W [α] = {w

[α]
i,j  } and we can define the strength of node i by the vector: si = {si

[1], … ,   
si

[M]} where i = 1, …,N, and the strength of node i in layer α as: s[α]i =
∑

jw
[α]
i,j  . As an alternative, a multiplex 

network is obtained by summing up all (or a set of) layers calculating the weighted aggregated overlapping adja-
cency matrix: Ow = {owi,j}, where owi,j =

∑

αw
[α]
i,j  . In this case the strength of node i, is calculated by the weighted 

overlapping degree: owi =
∑

jo
w
i,j =

∑

αs
[α]
i  . The directional version of this formalism is obtained by splitting 

Figure 1.  Flow chart of brain signal processing. Brain signals of each subject were submitted, after pre-
processing, to the following procedure: Z-score normalization of time-series; thresholding by four symmetrical 
thresholds; discretization of signal values in: 1, − 1 and 0. Thus, each signal is redefined as a dynamic process 
involving: activation (1), de-activation (− 1) and null-activation (0).
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the node strength into the corresponding in-, out- and total-strength. In summary, we introduce two ways to 
describe a multiplex network:

• the vector of adjacency matrices, W;
• the weighted aggregated overlapping adjacency matrix, Ow.

The W contains all the information of the multiplex network preserving any difference between layers and 
allows to calculate any structure formed by the combination of all (or set of) layers. However, its combinatorial 
nature needs a huge computing time. The second approach, on the other hand, loses the architecture of the layers 
and, although faster, may miss the structural features of the network. To characterize the whole brain functional 
network we used both methods, comparing the results in each condition.

Network dynamics. The influence of the network structure on dynamical processes can be estimated by appro-
priate indexes in the framework of the analysis of  reciprocity35–37 (RI) and of  subgraphs38,39. The RI estimates 
the occurrence of mutual relationships among node pairs looking at the number of reciprocal links normalized 
to the total number of  links35. In the case of weighted networks, however, the number of links (different for 
each connection type) cannot be easily calculated and, among the proposals introduced to face the problem, we 
chose the reciprocity method described in Squartini et al.36. An extension to a multiplex directional  network37 
introduced the notion of multireciprocity, i.e., the tendency of links in one layer to be reciprocated by links in 
another layer. In summary, RI values normalized to a null-model network in the range [+ 1, − 1] (see the Statisti-
cal Analysis Section below) indicate:

• reciprocate connections (RI > 0);
• reciprocation avoidance (RI < 0);
• independent behaviour (RI = 0).

Figure 2.  Characterization of dyadic interactions. Given the state value of two ROIs (A, B) at the time step 
(n) and the state of one of them (B) at the following time step (n + 1), a causal relation from (A) to (B) can 
be estimated by the Transfer Entropy (TE) through the calculation of: P(An), marginal frequency of A in a 
particular state (1, − 1 or 0) at the time step n; P(Bn) and P(Bn+1), marginal frequencies of B in a given state (1, − 1 
or 0) at the time step n and at the time step n + 1; P(An;Bn), joint frequency of A and B in a particular state at 
the time step n; P(Bn+1|Bn), conditional frequency of B in a particular state at the time step t = n + 1 taking into 
account the marginal frequency P(Bn); P(Bn+1|Bn;An) , conditional frequency of B in a particular state at the time 
step t = n + 1 taking into account the joint probability P(An;Bn); ln P(Bn+1|An;Bn)

P(Bn+1|Bn)
 : a direct comparison between the 

causal hypothesis P(Bn+1|An;Bn) and the null-hypothesis P(Bn+1|Bn). Taking into account the three possible states 
(1, − 1 and 0) and the three positions  (An,  Bn and  Bn+1) a total of 27 combination rules are possible.
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Concerning subgraphs, the recent introduction of  graphlets38, suggests the following definition of a subgraph: 
a combination of in- and out-links within a set of connected nodes where double links are not allowed. Notice 
that different combinations of in- and out-links can draw the same geometric pattern, called isomorphic, to 
be counted only once (see Fig. 3, panel A). According to  Onnela39 we characterize a subgraph by two indexes: 
Intensity (I) and Coherence (C). The I index is defined as the geometric mean of the subgraph links:

where g is a subgraph;  wij is the weight of g between node i and j;  lg is the set of links in g and |lg| is their number. 
In such a way, only triads formed by non-zero links are taken into account (a link = 0 would nullify the product). 
Moreover, a continuum set of low intensity values in a subgraph indicates a possible noise effect of link weights. 
The C index is calculated as the ratio between the geometric and arithmetic average of subgraph weights and 
checks the similarity of weight values within a subgraph. Since high level of I could be due to a single link, C 
indicates whether a whole set of subgraph links participate to the I value. Note that we use C instead of Q (used 
by Onnela et al.39) in order to distinguish the Q index of modularity described below. The Intensity (I) and 
Coherence (C) indexes were used in this paper to quantify the magnitude as well as the statistical significance 
of each subgraph (see also Suppl. Mat. 4). In our work we studied the geometry of closed 3-nodes subgraphs 
in a directional network. Concerning the trajectories of subgraphs, we adopted the classification proposed by 
Takaguchi and  Yoshida40, where two kinds of subgraphs are considered: Cycle and Flux triads (Fig. 3, panel B):

• Cycle triads is a subgraph of three connected nodes having non-zero weight in both in- and out-connections, 
namely a directional cycle;

• Flux triads is a connected subgraph in which one node has non-zero weight in both in- and out-connections, 
and the other two nodes only have in- and out- non-zero connections, respectively.

(2)Ig =





�

(i,j)∈lg

wi,j





1/|lg |

Figure 3.  Triadic motifs and subgraphs. (A) the whole set of motifs within three nodes. (B) The Cycle (top) 
and Flux (bottom) subgraphs with the corresponding isophorms. (C) The three orders of Flux subgraphs in the 
multiplex network:  0th order having all links in the same layer  (M1);  1st order with two links shared in a same 
layer  (M1) and one in another layer  (M2);  2nd order in which each link belongs to different layers  (M1,  M2 and 
 M3). (D) Functional characterization of nodes and links in a Flux subgraph (top); Models of Flux subgraphs of 
 1st and  2nd order used in this paper (bottom). For more details see the text and Suppl. Mat. 4.
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To characterize triads in a multiplex network we adopted the definitions reported by Battiston et al.24 (Fig. 3, 
panel C). A  0th order triad is referenced by its type (Cycle or Flux) associated to the belonging layer. In the case 
of  1st and  2nd order Cycle subgraphs, the names are derived by the sequence of layers. Figure 3, panel D provides 
a schematic picture of the functional characterization of nodes and links.

Centrality and modularity analyses. In the Centrality  analysis41 nodes can be sorted by specific features account-
ing for interactions within the whole system. The node degree is used to characterize node centrality and, in a 
directional and weighted network, the corresponding metrics. We defined as central the nodes having a strength 
value higher than, at least, the third quartile of their distribution and corresponding to the 75th percentile (upper 
quartile) of the dataset. In our case two kinds of central nodes are possible: in-strength nodes, where the cerebral 
regions tend to concentrate a major part of in-flux pathways, and out-strength nodes, where the brain regions 
are characterized by a major amount of out-flux pathway. Thus, in-strength and out-strength indicate nodes 
endowed with a major in-flux or out-flux, respectively; in the brain system central nodes could be the main sink 
in the first case and the main source areas in the second case.

In a multilayer description, besides the study of the node degree distribution in each layer, the distribution 
of central nodes across different layers was reckoned according to the following definitions:

• Local central node: if present in not more than 25% of the total layers;
• Intermediate multiplex central node: if present in the range between 25% and 75% of the total layers;
• Multiplex central node: if present in more than 75% of the total layers.

In binary and bidirectional networks, a widely used definition of  Modularity42,43 accounts for nodes grouped 
into sets densely connected internally among each other through the Q index. In this way, a node can be included 
in a finite number of communities. The difference between the fraction of links in a community and the expected 
fraction of links in a null model is estimated as follows:

where  Ai,j is the link between nodes i and j in the adjacency matrix A;  ki and  kj are the node degrees of nodes i 
and j; m is the total number of links in the network and δci,cj is the Kronecker delta symbol, where ci and cj are 
the labels of the community to which nodes i and j are assigned. In Eq. (3) the term  Ai,j refers to the real network, 
and the term ki∗kj

2m  is the probability of an edge between nodes i and j in a random graph. In a directional network 
a different approach is needed, and Newman updated the Q estimate to account for the direction of  links43. Thus, 

the second term in Eq. (3) is defined as: 
kini ∗koutj

m  , where kini  is the in- degree of node i, koutj  is the out- degree of 
node j, and m the total number of links. The random model for directional network refers to the probability 
distribution of nodes i and j being directly linked. In weighted networks the fraction of edges is substituted by 
the fraction of weights in a community. In Eq. (3) the matrix  Wi,j is inserted as an adjacency weighted matrix 

and the 
sini ∗soutj

mw
 as a null model, where sini  and  soutj  indicate the in- and out-strength on nodes i and j, respectively, 

and  mw is the sum of the whole set of weights in the network.

Reckoning network indexes. For the calculation of the previously described indexes an original script (available 
upon request from one of the authors, F.P.) was designed, except for the random models and the modularity 
analysis, where we used scripts from the MATLAB Brain Connectivity  Toolbox44 (BCT). The global indexes 
were calculated for each subject separately, while the local (centrality) and the modularity analysis were carried 
out over mean matrices across all the subjects. For the randomized models, the algorithm proposed by Rubinov 
and  Sporn45 were used, in which the weighted directional network is randomized preserving the in-strength 
distribution. However, since fully connected matrices are obtained from averaged networks, in the modularity 
analysis a combinatorial weight randomization was used. In all cases random models refer to averages of 100 
randomizations.

Ethical approval. All procedures performed in studies involving human participants were in accordance 
with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki 
declaration and its later amendments or comparable ethical standards.

Informed consent. Informed consent was obtained from all individual participants included in the study.

Results
Statistical characterization of interaction rules. Different interaction rules show different patterns of 
TE values summed over all subjects as a function of the signal threshold: the rules showing an increasing and 
a decreasing trend are indicated in the top and bottom panels of Fig. 4, respectively. It is worth noting that the 
Mean Squared Error (MSE) analysis shows an increasing trend in the same twelve rules (Figs. 4 and 5, top panel) 
while the remaining rules show a decreasing, flat and fluctuating mixed behaviour (Fig. 5, bottom panel). A 
series of t-test for independent samples (right tail) were performed to compare real and random local TE at the 
highest signal threshold (1 S.D.) for the twelve rules in Fig. 4, top panel. The ANOVA analysis shows a significant 

(3)Q =
1

2m

∑

ij

[

Ai,j −
ki ∗ kj

2m

]

δci,cj
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effect of rules (p < 0.0001) at the higher signal threshold (1 S.D.) and in Fig. 6 the post-hoc analysis confirms a 
significant increasing of local TE for eight of the above mentioned twelve rules. Thus, eight rules share all the 
assumptions indicated in the statistical methods (see also Suppl. Mat. 3) and we restricted the analysis to those 
rules, where at least two of the previously described features, namely increasing trend of local TE and MSE at 
increasing threshold, appeared. Moreover, the result can be replicated by an unpaired t-student test (right-tail) 
performed for each subjects of the dataset independently for the following four rules (Table 1):

• An (1) +  Bn (0) →  Bn+1 (1);
• An (− 1) +  Bn (0) →  Bn+1 (− 1);
• An (1) +  Bn (− 1) →  Bn+1 (0);
• An (− 1) +  Bn (1) →  Bn+1 (0).

The remaining four rules, namely:

• An (1) +  Bn (0) →  Bn+1 (− 1);
• An (− 1) +  Bn (0) →  Bn+1 (1);
• An (1) +  Bn (1) →  Bn+1 (0);
• An (− 1) +  Bn (− 1) →  Bn+1 (0);

showed results with a higher variability between subjects. To remove any potential source of noise we excluded 
from any further analyses 49 subjects (corresponding to the 31% of the database) since they did not produce 
significant (t-test independent sample) results in the distribution study reported in Table 1. A final relevant 
observation concerns the following rules:

• An (1) +  Bn (1) →  Bn+1 (1);

Figure 4.  Sums of local TE in the interaction rules at increasing signal thresholds. The sums include the 
individual values of the subjects in the database (see the Methods). Top panel: rules with an increasing trend at 
increasing thresholds. Bottom panel: rules with mixed trends at increasing thresholds. Right panel: threshold 
values in the filtering procedure and colours association.
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• An (− 1) +  Bn (− 1) →  Bn+1 (− 1);
• An (1) +  Bn (− 1) →  Bn+1 (− 1);
• An (− 1) +  Bn (1) →  Bn+1 (1);

characterized by an increasing trend in the MSE, and not significant results in the right-tailed (although signifi-
cant in the left tailed) comparison test (not shown). Thus, the decrease of their local TE at increasing thresholds 
indicates a lower probability of expression in the time vector than in the random counterpart. Such rules can be 
reduced to two couples: in the first couple the target node (B) assumes the same state of the previous time step 
if the source node (A) falls in the same state; in the second couple, the target node (B) assumes the same state of 
the previous time step if the source node (A) falls in the opposite state. Thus, both couples can represent a state 
preservation process, since they maintain their state in time given an equal or opposite state of the source node 
(A). We may argue that such combinations are less favoured than others and that an underlying mechanism 
stands in the way of this dynamic. It seems that brain regions can be characterized by single and unique events, in 
agreement with previous  findings29,46. However, it must be considered that only few peaks survive at the highest 
threshold level, so that a persistent value of the same state over time could anyway be less likely. In addition, an 
effect due to the reshuffling/randomizing method cannot be excluded.

Classification of interaction rules. In order to characterize the eight rules selected in Table 1, we explored 
their interaction pattern shown by the correlation matrix in Fig. 7 (left panel), from which the following con-
siderations emerge: 1) Rules having a similar functional meaning, although with a different node state, appear 
more related to each other. This points to dynamical processes operating in the frame of different sets of states; 2) 
positive and negative relations may exist among particular sets of rules. Figure 7 (right panel) shows a hierarchi-
cal classification splitting the eight rules into two groups at the first level, which are further split into four pairs 
of rules, matching the anti-correlated rules of the previous analysis. Taking into account the two related forms of 
each pair the following points can considered:

Figure 5.  Mean Squared Error (MSE) of local TE as a function of signal thresholds. Top panel: rules with an 
increasing trend at increasing thresholds. Bottom panel: rules with mixed trend at increasing thresholds. For the 
meaning of columns and colours and the sequence of rules, see Fig. 4.
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• G1)  An (1) +  Bn (0) →  Bn+1 (1) and  An (1) +  Bn (− 1) →  Bn+1 (0) have the functional meaning of (de)activation 
and "turn off ", respectively. In the former case A (de-) activates B to its own state, while in the latter A turns 
off B if they are in the opposite state;

• G2)  An (1) +  Bn (0) →  Bn+1 (− 1) and  An (1) +  Bn (1) →  Bn+1 (0) have, again, the functional meaning of (de-)
activation and "turn off ", respectively. In the first case A (de)activates B to the opposite than its own state, 
while in the latter A turns off B if they are in the same state. Notice, the definition of "turn off " is used to 
distinguish a process pointing to a de-activation (− 1) from the process pointing to a null-activation (0). Con-
cerning the logical relations: one pair of rules (G1) concern a transition of B to the same state of A (0 → state 
A); another pair (G2) describe a transition of B to the opposite state of A (0 → non-A state).

Table 2 shows the grouping of rules in line with the above sketched functional criteria:

• ActS = (de-)activates B to the same state of A;
• ActO = (de-)activates B to the opposite state of A;
• TfS = turns off B if A and B are in the opposite state;

Figure 6.  Post-hoc analysis of ANOVA one way. The distribution of local TE in the 27 different rules (see the 
text for details) shows that the first eight rules form a cluster independent from the others.

Table 1.  Distribution of significant local TE among subjects. Fraction of 109 subjects with the same results for 
the different rules, p < 0.0001 Bonferroni corrected (157 repetitions).

Interaction rules % of subjects

An (1) +  Bn (0) →  Bn+1 (1) 100

An (− 1) +  Bn (0) →  Bn+1 (− 1) 100

An (1) +  Bn (− 1) →  Bn+1 (0) 100

An (− 1) +  Bn (1) →  Bn+1 (0) 100

An (1) +  Bn (0) →  Bn+1 (− 1) 97

An (− 1) +  Bn (0) →  Bn+1 (1) 97

An (1) +  Bn (1) →  Bn+1 (0) 83

An (− 1) +  Bn (− 1) →  Bn+1 (0) 79

An (1) +  Bn (1) →  Bn+1 (1) 0

An (− 1) +  Bn (− 1) →  Bn+1 (− 1) 0

An (1) +  Bn (− 1) →  Bn+1 (− 1) 0

An (− 1) +  Bn (1) →  Bn+1 (1) 0
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• TfO = turns off B if A and B are in the same state.

In other words, we have a double classification for such rules: a) a simpler process of changing the target node 
(activate or turn off), and b) a more comprehensive process pointing to uniformity or differentiation within the 
system, namely to a converging (ActS and TfS) or diverging (ActO and TfO) state among nodes. It is noticeable 
that the G1 and G2 rules refer, respectively, to the positive and negative functional connectivity and tend to be 
expressed in different and non-overlapping set of links.

The multiplex network. The four matrices ActS, ActO, TfS and TfO correspond to the main four layers in 
the vector of adjacency matrices of a multiplex network, hereafter defined as α-hierarchical level. We extended 
the analysis to two matrices calculated as weighted, aggregated, overlapping adjacency matrices from those in 
the α-hierarchical level, namely S matrix (Same state, combination of ActS and TfS), and O (Opposite state, com-
bination of ActO and TfO). The new vector of adjacency matrices was defined in a β-hierarchical level. Finally, 
a T matrix was calculated as the weighted aggregated overlapping adjacency matrix from S and O matrices, cor-
responding to a linear combination of the first four layers and which defines the γ- hierarchical level. Figure 8 
contains a global representation of the multiplex network including the above-mentioned hierarchical levels.

In Table 3 the characteristic indexes of each layer in the considered hierarchical levels are reported. The T 
matrix, containing the whole set of weights, appears almost completely connected. In the α-hierarchical level, 
ActS contains the larger amount of TE values compared to ActO matrices, while the TfS and TfO show the lowest 
(and almost the same) values. Similar results are found for the connection density. Consequently, the S rule has 
higher values in both weights and connection density as compared the O rule.

Reciprocity and multireciprocity. As a first global feature of the multiplex network we looked at the Reciproc-
ity Index (RI). Table 4 shows the clear difference with the random model (p < 0.001) reached for all matrices 
but for ActS and ActO, as well as for their interactions in the vector of adjacency matrices. In detail, for the 
α-hierarchical level both TfS and TfO show negative values, indicating an asymmetric behaviour. Similar results 
are detected for the multireciprocity in the interacting matrices ActS/TfS and ActO/TfO, while opposite results 
hold for the interacting TfS/TfO, as well as for ActS/TfO and ActO/TfS. An asymmetric behaviour is also found 

Figure 7.  Classification of functional rules. Left panel: correlation matrix among rules (Pearson C.I. scale on 
the right axis). Right panel: dendrogram produced by a hierarchical cluster analysis. In the hierarchical structure 
symmetrical rules are clustered: (a) In the same group in the first level: (101, − 10–1), (1–10, − 110) (10–1, − 101), 
(110, − 1–10); (b) again in two groups in the second level [(101, − 10–1), (1–10, − 110)]; [(10–1, − 101), 
(110, − 1–10)]. Rules grouped in the second level appear anti-correlated in the correlation analysis of the left 
panel).

Table 2.  Proposed functional classification of the rules. The significant rules show a specific nested structure 
and possible functional role as defined by the four relations: (de-)activation, turn off, same state and opposite 
state. The two-by-two combination of these features (see the text) point to a functional process described by an 
appropriate interaction matrix.

Function G1 G2

(De-) Activation
An (1) +  Bn (0) →  Bn+1 (1)
An (− 1) +  Bn (0) →  Bn+1 (− 1)
ActS

An (1) +  Bn (0) →  Bn+1 (− 1)
An (− 1) +  Bn (0) →  Bn+1 (1)
ActO

Turn off
An (1) +  Bn (− 1) →  Bn+1 (0)
An (− 1) +  Bn (1) →  Bn+1 (0)
TfS

An (1) +  Bn (1) →  Bn+1 (0)
An (− 1) +  Bn (− 1) →  Bn+1 (0)
TfO
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in the β-hierarchical level matrices S and O, but the opposite behaviour for their interaction S/O, as well as for 
their sum in the γ-hierarchical level matrix T.

Subgraph analysis. Looking at the combination of different patterns of links in the Cycle and Flux triads, the 
following number of subgraphs in the three hierarchical levels were observed:

• α-hierarchical level: 4 Cycle and 4 Flux  (0th order), 12 Cycle and 36 Flux  (1st order), 8 Cycle and 24 Flux  (2nd 
order);

• β-hierarchical level: 2 Cycle and 2 Flux  (0th order), 2 Cycle and 6 Flux  (1st order);
• γ-hierarchical level: 1 Cycle and 1 Flux  (0th order).

A summary of the whole set of possible subgraphs at various hierarchical levels are provided in Suppl. 
Mat. 4. Figure 9 shows that the whole set of significant subgraphs for both I and C indexes are of the Flux type 
belonging to the α-hierarchical level, and most of them fall in the  1st and  2nd order. These subgraphs share the 

Figure 8.  Schematic overview of the multiplex network defined in this paper. The four α-hierarchical level 
matrices (ActS, TfS, ActO and TfO) are in the central core; the β-hierarchical level matrices (S and O) on the 
left and the right side of the core, respectively, and the γ-hierarchical level matrix (T) on the bottom side. 
The interactions among single-layers of the vector of adjacency matrices at the α- and β-hierachical level, are 
indicated by blue and red dashed double arrow, respectively. The weighted aggregated overlapping adjacency 
matrices to the higher hierarchical level are indicated by green (from the α- to β-hierachical level) and orange 
(from the β- to γ-hierachical level) arrows.

Table 3.  Descriptive statistics of layers in a multiplex network. The Interaction Rules refer to the layers in the 
multiplex network represented in Fig. 8. Weights and Connection density values are given as averages ± S.D.

Hierarchical level Layer Weight Connection density

α Acts 56.1 ± 3.5 0.64 ± 0.02

α TfS 26 ± 1.1 0.57 ± 0.02

α ActO 40.5 ± 2.8 0.56 ± 0.02

α TfO 25.9 ± 1.2 0.55 ± 0.01

β S 82.2 ± 3.6 0.83 ± 0.01

β O 66.4 ± 3.2 0.76 ± 0.01

γ T 148.6 ± 4.4 0.99 ± 0.002
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Table 4.  Reciprocity index (RI) in the multiplex network. Asterisks indicate significant values (p value < 0.05, 
Bonferroni corrected).

Hierarchical level Layer
RI
(mean ± S.D.)

α ActS 0.01 ± 0.03

α TfS  − 0.08 ± 0.02*

α ActO  − 0.01 ± 0.03

α TfO  − 0.08 ± 0.02*

α ActS/TfS  − 0.05 ± 0.02*

α ActO/TfO  − 0.03 ± 0.02*

α ActS/TfO 0.08 ± 0.02*

α ActO/TfS 0.13 ± 0.02*

α ActS/ActO  − 0.01 ± 0.03

α TfS/TfO 0.05 ± 0.02*

β S  − 0.06 ± 0.04*

β O  − 0.05 ± 0.04*

β S/O 0.09 ± 0.03*

γ T 0.03 ± 0.02*

Figure 9.  Significant Flux subgraphs of different order. Top left: The Flux subgraph in the ActS layer appear 
different from random (Flux ActS = I: 1654.2 ± 190.6; p value: 6 ×  10−4 but the coherence does not reach a clear 
significance (0.03), indicating a low stability; Top right, middle left: Flux subgraphs within ActS and ActO 
interacting layers appear quite robust, as well as ActS and TfO. ActS and TfS Flux shows a significant I but not 
C. Bottom left and right: As for the  2th order subgraph in the α-hierarchical level, most of the flux combinations 
show a significant intensity (I). However, only two reach significance for Coherence (C): Flux ActO/TfS/ActS 
and Flux TfO/TfS/ActS. See the text for further comments.
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same interaction rule acting on the sink (source to sink: ActS; middle to sink: TfS), but differ in the middle way, 
alternating the two opposite rules: ActO and TfO. Other less stable (not significant C) Flux triads act with the 
same rules:ActS, ActO, TfO. In the case of the β-hierarchical level, both S and O make a Flux subgraph, while 
their interaction produces a Cycle subgraph. However, no subgraphs reach a clear significance in both I and C, 
in this hierarchical level. In Table 5 a complete summary of the above results is reported.

Centrality features. The Centrality Index of each layer shows different patterns of different brain areas (nodes) 
as a function of their in- out-connection weights. In what follows each layer will be separately considered in each 
hierarchical level. Central nodes of ActS and TfS rules are inserted in Fig. 10, in red (ActS) and yellow circle 
(TfS), respectively. Regarding the first one, most of the out-strength and in-strength central nodes fall in the 
vision related brain regions (calcarine, lingual and fusiform) and limbic/DMN areas; the total strength confirms 
the previous brain areas as the main nodes of this rule. Conversely, central nodes of the TfS rule have a well 
distinct pattern of in- and out-strength central nodes, mainly centred in the sub-cortical regions of basal ganglia 
(caudate, putamen, pallidum) and limbic (amygdala). Other hubs of out-strength are found in motor related 
areas (SMA and middle cingulum) and in the frontal superior gyrus, while in-strength hubs cover a sparse corti-
cal area including temporal, frontal and limbic brain regions.

The nodes of ActO and TfO rules are inserted in Fig. 10 in blue circle and green circle, respectively. Central 
nodes of ActO cover almost the whole area of the dorso-lateral pre-frontal cortex and the inferior parietal gyrus 
(parietal inferior, angular, supramarginal). However, in the out-strength also sensory-motor (SMA, insula), sub-
cortical (pallidum and putamen) and DMN (cingulum posterior) regions appear as central nodes. The TfO rule 
has an intermediate pattern between the TfS and the ActO, having the cingulate cortex (anterior and posterior) 
and sub-cortical regions (thalamus, pallidum, caudate, putamen) as the main out-strength central nodes, and 
the fronto-parietal cortex as in-strength central nodes.

In the β-hierarchical level, Fig. 11 (orange circle: S; violet circle: O) confirms as central regions the sensory-
limbic related areas and the fronto-parietal network for S and O rules, respectively. However, less evident appears 
the sub-cortical action of the TfS and TfO components since the weights of these last rules are covered by those 
of the ActS and ActO rules. More intriguing is the result at the higher hierarchical level of the T matrix (Fig. 11, 
black circle), where the main out-strength central nodes are detected in a sparse brain region (sub-cortical, 
motor and attention networks), and the same holds for the in-strength ones (sensory-related areas, limbic and 
sub-cortical regions).

In conclusion, looking at the results of the α-hierarchical level (corresponding to the vector of adjacency 
matrices), several nodes appear in more than one layer: intermediate multiplex nodes (two layers). In particular, 

Table 5.  Intensity and Coherence values of Subgraphs at different hierarchical levels. Asterisks on the p values 
indicate significance after Bonferroni correction—see the text for details.

Hierarchial level Order Subgraph
Intensity (I)  mean ± S.D. 
p value Coherence (C) P value

α 1st Cycle ActS/TfO/ActS 1094.7 ± 80.0 0.030 n.s

α 1st Flux ActO/ActO/ActS 1012.0 ± 83.6 4 ×  10−6* 0.001*

α 1st Flux ActO/ActO/TfS 726.4 ± 64.2 0.01 0.05

α 1st Flux ActO/ActS/ActO 1077.4 ± 89.7 3 ×  10−7* 5 ×  10−4*

α 1st Flux ActS/ActO/ActO 1082.6 ± 89.5 3 ×  10−13* 5 ×  10−5*

α 1st Flux ActS/ActS/TfS 1136.6 ± 90.6 0.03 n.s

α 1st Flux ActS/TfO/TfO 806.4 ± 50.4 8 ×  10−11* 2 ×  10−4*

α 1st Flux ActS/TfS/TfS 855.3 ± 58.0 1 ×  10−4* 0.04

α 1st Flux TfO/ActS/TfO 795.0 ± 50.3 0.02 0.02

α 1st Flux TfS/ActS/TfS 838.3 ± 57.3 0.03 n.s

α 1st Flux TfS/TfS/ActO 754.0 ± 60.2 0.01 n.s

α 2nd Cycle ActO/TfS/ActS 918.3 ± 44.0 0.0006* n.s

α 2nd Cycle ActS/TfO/TfS 797.5 ± 44.3 0.02* n.s

α 2nd Cycle ActS/TfS/ActO 918.3 ± 41.8 0.0003* n.s

α 2nd Cycle TfS/TfO/ActS 798.0 ± 43.2 0.02 n.s

α 2nd Flux ActO/ActS/TfO 902.7 ± 46.2 1 ×  10−5* 0.005

α 2nd Flux ActO/TfS/ActS 889.6 ± 43.4 4 ×  10−6* 0.002*

α 2nd Flux ActS/ActO/TfO 893.7 ± 47.2 2 ×  10−8* 0.003

α 2nd Flux ActS/TfO/ActO 886.6 ± 46.7 1 ×  10−5* 0.02

α 2nd Flux TfO/ActS/ActO 896.2 ± 44.8 0.0006* 0.01

α 2nd Flux TfO/TfS/ActS 779 ± 43.5 2 ×  10−5* 0.002*

β 0th Flux S 3870.5 ± 252.9 0.03 n.s

β 0th Flux O 2877 ± 129.5 0.01 n.s

β 1st Cycle S/O/S 3330.2 ± 117.4 0.02 n.s
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Figure 10.  Central nodes in the α-hierarchical level of the multiplex network. The coloured circles are 
associated to the rules at the α-hierarchical level: red = ActS; orange = Tfs; blue = ActO; green = TfO, and in each 
circle the brain regions acting as local central nodes are reported. The intermediate multiplex central nodes 
are in the intersections. In bold are the in-strength central nodes. Notice that: (a) the basal ganglia regions are 
shared by the TfS and TfO rules; (b) the fronto-parietal cortex falls within the AcsO and TfO rules; (c) a sparse 
number of brain regions covering the middle cingulum, the parahippocampus and the superior temporal gyrus, 
are found in the ActS and TfS rules.

Figure 11.  Central nodes in the β - and γ-hierarchical level of the multiplex network. The coloured circles are 
associated to the rules as follows: orange = S ( β) ; violet = O ( β) ; black = T (γ), and in each circle the brain regions 
acting as local central nodes are reported. In the intersections are the brain regions acting as intermediate 
multiplex central nodes. The asterisks indicate overlapping brain regions between the intermediate (β) and 
the highest (γ) hierarchical level. In bold are the in-strength central nodes. Notice that: (a) only in the black 
circle are localized brain regions that do not appear in the intermediate hierarchical level; (b) overlapping brain 
regions of the α—level disappear in the β—level.
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the basal ganglia regions (caudate, putamen, pallidum and thalamus) appear to be shared among the TfS and 
TfO rules as out-strength central nodes, as well as in the total strength. Thus, these sub-cortical regions appear 
as a possible intermediate station for the modulation of the Turn Off rules. Moreover, the ActO and TfO rules 
taken together cover most of the prefrontal and parietal cortex for outward connections. As a matter of fact, the 
O rule seems having a major role in these brain areas. Finally, the ActS and TfS rules share the cingulum middle, 
as an out-strength central node, and the parahippocampus and the temporal superior gyrus as in-strength central 
nodes, respectively. Again, these results are confirmed by the central nodes found in S rules of the β-hierarchical 
level. No central nodes are found between the ActS and ActO rules. In Figs.10 and 11 a summary of local and 
intermediate central nodes is reported within the corresponding layer. A more detailed account of single con-
nections is included in Suppl. Mat. 6.

Modularity. When compared to the random model, only ActS and S rules show a significant increment of Q 
values (Table 6). In both rules the same three main modules were found (Table 7): the first one referring to the 
visual cortex and its process-related areas; the second one including the Default Mode Network (DMN) and lim-
bic regions; the last one covering most of the Task Positive Network (TPN) and including dorsolateral prefrontal 
cortex, parietal cortex, basal-ganglia, auditory cortex and sensory-motor cortex.

A specific left/right asymmetry is detected in the caudate: left and right split in DMN/limbic and in the TPN 
module, respectively. We hypothesize that the caudate tend to get connected with both modules, as a sort of 

Table 6.  Q index comparison between static and dynamic modularity. Only ActS and S rules show a 
significant increment of Q values (p < 0.001) when compared to the random model.

Hierarchical level Rule Q

α ActS 0.11*

α TfS 0.004

α ActO 0.007

α TfO 1*10−16

β S 0.07*

β O 0.003

γ T 0.004

Table 7.  Modules of ActS rule. The network includes three main clusters: the visual cortex; the limbic/DMN; 
the sparse brain regions belonging to the TPN. Unless explicitly indicated, all modules refer to both (L/R) 
hemispheres.
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bridging node. Note that since this analysis concerns averaged matrices, the networks obtained is fully connected, 
and the combinatorial randomization was used.

Discussion
In order to explore causal influences between brain areas a data-driven approach is proposed, using fMRI data 
under resting state and taking advantage of the Transfer Entropy (TE) concepts. In the Suppl. Mat. 1 and 2 a flow 
chart of the adopted analytical strategy as well as the brain areas (ROIs) used in this paper, are included. As com-
pared to previous works in the  field1,7,8, we describe a new way to estimate the functional brain causal interactions 
by TE parameters somehow similar to the Granger  Causality7,47. At difference with the latter method, however, 
we use a non-parametric approach and avoid a whole set of a priori statistical assumptions. Another and most 
popular method is the Dynamic Causal  Modelling1 (DCM), based on a series of differential equation arranged 
in a hemodynamic  model46, a recent updating of which has been proposed for the resting state  condition4. The 
above-mentioned models, however, do not consider the different kinds of brain interactions although a recent 
work of Zhou et al.17 focused on negative interactions looking at feed-back (negative) and feed-forward (posi-
tive) connections.

Transfer entropy (TE) parameters. The TE estimate was initially proposed by Vicente et al.48 to charac-
terize brain causal interactions. In our case we use a discrete time-series analysis where continuous values in a 
time-series are converted into a finite number of discrete events by threshold filtering the amplitude of BOLD 
signals. This allows the detection of cerebral states closer to the temporal resolution of the data acquisition with 
no (or few) assumptions and no substantial waste of information. In this respect Tagliazucchi et al.31 showed 
that only considering spontaneous events the resting-state network can be recovered by a continuous signal 
fluctuations method. In addition, Petridou et al.49 deconvolving a hemodynamic response function in the resting 
state, clarified how spontaneous events may contribute to the correlation strength and the power spectra of slow 
spontaneous fluctuations. We found four different kinds of interactions among brain areas, which by hierarchical 
clustering can be reduced to two sets sharing similarities with positive and negative functional connectivity and 
in which two alternative mechanisms are active: (de)activation and turn-off. A particular modulation of brain 
areas emerges including not only activations and de-activations but also a subtle mechanism of turning off. The 
individual variability of the observed events was checked by a statistical analysis on each subject. All positive 
interactions (ActS and TfS) were validated on the whole data set, while the negative ones (ActO and TfO) seem 
less accurate. This agrees with the higher variability of anti-correlations in 0-lag correlations estimates of brain 
 connectivity13. A possible explanation is the different synchronization timing for the negative  connectivity16,50. A 
more speculative proposal invokes a faster transfer mechanism associated to negative interactions. Exploring the 
variability changes as a function of different levels of time-lag connectivity would provide additional evidence to 
that. In our approach the distinction between positive and negative functional connectivity is a leading idea and 
our results, although preliminary, could open the door to a reliable detection of clinical differences among indi-
viduals in different cognitive states. In this regard, to compare functional and causal brain connectivity, as for 
the Dynamic Causal Modelling (DCM) estimation, the bivariate correlation appears the most natural method 
to study the hypothetical relation between the brain states transition and the causal brain  interaction5, the CAP 
 approach3, using a discrete method to analyse the BOLD signal, would be our favoured one.

Functional interpretation of the rules. Assuming that brain states can be estimated by the fluctuat-
ing combination of node  connections51 defining a functional connectivity state or meta-state, a particular cog-
nitive condition could be characterized by a finite set of meta-states52 where different connectivity patterns 
 alternate53,54. As a matter of fact, several evidence showed how these dynamics draw a phase transition between 
more or less integrated/segregated network  structure55. Brain dynamics are usually defined in terms of meta-
stability56 or multi-stability57 in the dynamical system frame. Both terms point to a fluctuating dynamic between 
different sets of synchronized states as a possible explanation of functional flexible (in)stability, (see Breakspear 
 201757 for a general review). In such a frame, the four rules we found provide an exhaustive description of the 
network dynamic: activation rules change the node states from 0 to 1 (or − 1); the turn off rules gets back to 0 the 
node state. Both the ActS and TfS rules promote some uniform node states: the former one changes the target 
node to the same state of the source, the latter turns off the target node if in the opposite state of the source. Con-
versely, the ActO and TfO rules promote a process inducing the activation to an opposite state than the source 
node and turning off nodes having the same state than the source node, respectively. In brief, these rules can 
describe a self-sustained dynamic, following an initial condition and perturbed by external or internal stimuli.

Assuming that the state of co-activated brain regions can be driven by causal interactions (ActS) while the 
mutual de-activation can be maintained by the ActO rule, both ActS and ActO may share a similar physiological 
 interpretation10,11,58.

Conversely, the turn off rules do not seem to overlap any of the functional measurements in use.
From a neurophysiological point of view, such interactions could be associated to two functions: 1) turning 

off a co-activated set of brain regions; 2) enhancing the excitability of brain regions. The former function arises 
when a particular action has to be suppressed, the latter function puts the node in the condition to be changed 
to an alternate state (notice that 1 or − 1 cannot be changed without passing from 0). Thus, the rule has both 
abilities: turning off a functional state of a brain region and enhancing the excitability of the region towards 
interactions. Such a mechanism could be related to the inhibition of a tonic depolarization, for example the 
action of a GABAergic interneuron. However, these considerations remain speculative at this stage and to check 
the above sketched dynamical features appropriate simulations should be performed, e.g., in some agent-based 
simulation  environment59.
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In summary, a specific synchronization of action rules within a given geometrical network could generate 
different dynamical patterns, and each change of nodes’ state can be driven by the network connection itself, 
without necessarily needing an external or internal disturbance.

Network analysis. A multilayer network was analysed on the asymmetric adjacency matrix of each sub-
ject. This matrix describes the network of the corresponding interaction rule and accounts for the 8100 possible 
interactions between the 90 brain regions. Three hierarchical levels have been considered as indicated by the 
hierarchical clustering analysis (Fig. 7), as well as all the possible inter-layer relations. It appears that the most 
significant features characterize the lower hierarchical level only, while merging the information in a higher hier-
archical level seems to mitigate (or dilute) the specific trait of the single rule network in the lower hierarchical 
level. The four basics rules show peculiar features characterizing each of them in a specific manner.

In dealing with the dynamic exactly occurring between brain regions a main problem for us was the lack 
of knowledge concerning the real timing of events in the reciprocal connections as well as triads. Although we 
know that rules tend to be arranged in a particular structure, we ignore whether the links work together (are 
synchronous), or in sequence. However, we can infer the possible temporal sequence by studying the logical rela-
tions among rules. Thus, a particular combination of links can be inferred, and the relative dynamic predicted. 
For example, in the case of triadic subgraphs the links from the source node could be synchronous, while the 
connection from the middle to the sink node could work afterwards: on the sink node cannot insist at the same 
time two links endowed with the Turn Off (TfS or TfO) and the (de-)activation (ActS or ActO) rules, because 
they need a different state on the node (1 or − 1 state for the Turn Off rules and 0 for the De-/Activation rules).

Reciprocity and multireciprocity. As a former comment it can be noted that the brain networks show a not 
reciprocal nature, most marked in the turn off rules. The same is obtained for interacting matrices in the same 
kind of process (ActS/TfS and ActO/TfO), indicating a preferential unidirectional flow of interactions within the 
same functional rule. However, reciprocal connections arise between opposite interaction processes, pointing to 
a possible feedback mechanism. Similar relations are found for the higher hierarchical level S and O, while in the 
T matrix the network lost the single layers detail becoming almost reciprocal.

Concerning the dynamic, the links from two biunivocal nodes can be synchronous or in sequence as a func-
tion of the state availability of the node  Bn towards the state of the node  An and vice versa. The interaction rules 
with a significant reciprocal connectivity are: a) TfS/TfO, b) ActS/ActO and c) ActO/TfS. In the first case TfS 
and TfO rules cannot be expressed at the same time since the combination of state (same and opposite state, 
respectively) can work in one direction only, same consideration concerns the sequence hypothesis (the  Bn+1 
state, necessarily 0, is not available for the turn off rules). Thus, a timing dependence action cannot be defined 
between these reciprocal connections. In the second and third cases a synchronous action is not possible since 
0 state, required for the node  Bn in the (de-)activation rules, does not correspond to a possible state of the node 
 An for any kind of rule. Conversely, a particular sequence interaction is possible, and a hypothetical feed-back 
mechanism can be defined (see Suppl. Mat. 5).

By our results, the ActO rule is not characterized by a reciprocal connection (n.s.), indicating a low probability 
of bi-directional connections. In this regard, we hypothesize that the mutual deactivations are expressed by dif-
ferent hubs of TPN and DMN connecting different non-hub regions, in terms of crossing but not overlapping 
structures. This architecture would be in line with the model proposed by the network analysis of the (static) 
negative brain functional  connectivity13, and possibly confirmed by the single links analysis in Suppl. Mat. 7 and 
commented in the following Sect. (4.3.3 Cerebral circuits).

Subgraphs. The proposed dynamic of the  1st order subgraphs are reported in Fig. 12. The three cases in the top 
right panel of the figure point to the same (de-)activated state between the source and the sink node. At the same 
time, the last two (bottom right panel) result in the same null (0) state. We asked whether these properties are 
shared by other combinations of subgraphs and, by the same procedure on the other  1st order subgraphs (left 
panel), we checked that these triads are unique. Thus, taking into consideration the possible logical temporiza-
tion, we hypothesize two general dynamic: 1) a switch two pathway for the same target with different temporiza-
tion (direct and indirect pathway); 2) a reinforce pathway to have a synergic action on the sink node.

In the case of the  2nd order subgraphs, a more complex situation emerges including the remarkable condi-
tions depicted in Fig. 13, in which: the source node seems to operate by two alternative ways on the sink node 
(activated or turned off) modulating an intermediate reaction in the indirect pathway (top left panel). Moreover, 
a whole series of fine modulations seems to occur along the direct and indirect pathways characterizing most of 
the information transfer mechanisms of the considered phenomena (top right and bottom panels). As a summary 
conclusion, it appears that the brain dynamic promotes a non-competitive behaviour in both first and second 
order subgraphs. This is quite reasonable to overcome possible conflicting situations. Moreover, the mecha-
nisms are arranged in a hierarchical way: in the first order (two layers) only the congruent triads, for the direct 
and indirect pathways, are promoted; in the second order a possible compensatory mechanism (feedforward) 
appears. This suggests that the complexity of the brain dynamic emerges when more than one connection type 
is considered. However, merging the rules in the higher hierarchical levels may lose the specific information on 
the interaction of single layers and hide significant results.

At our knowledge, we report for the first time a subgraph analysis in a multiplex network derived from an 
fMRI dataset. Other papers studied a multiplex brain network using MagnetoEncephaloGraphy (MEG)60,61, but 
due to the quite different approaches we did not try a critical comparison with those results. In a previous works 
carried out using fMRI datasets, not in a multiplex perspective, the close triangle motifs are lacking, and the open 
motifs are detected as significant  subgraphs62. The same was found in a classical paper on anatomical connectivity 



18

Vol:.(1234567890)

Scientific Reports |        (2021) 11:15525  | https://doi.org/10.1038/s41598-021-93190-z

www.nature.com/scientificreports/

by Sporn and  Kotter63. In our work no triads are detected in the single layers (but for a trend in the case of ActS). 
Thus, it is possible to consider that the open motifs could characterize the single layer, while the triad motifs 
may arise only when more than one layer are taken into consideration. Furthermore, we did not find significant 
triangle subgraphs at higher hierarchical levels and hypothesize that in a general estimation of only directional 
connections the role of the possibly different connection pathways is hidden. In the same way, in the anatomical 
connectivity a functional characterization of connections is lacking, and thus important information about the 
system is lost. It is worth mentioning that a comparison between anatomical and functional connectivity in a 
multiplex approach has been only recently  proposed64.

Cerebral circuits. On the basis of our results, the following general considerations concerning a possible cer-
ebral circuit including the four rules can be drawn:

• the ActS rule can play a major role in the intra-module cortico-cortical connections and in carrying perturb-
ing stimuli both external (vision) and internal (limbic / DMN areas);

• the fronto-parietal network and the DMN show a reciprocal, but non-overlapping, deactivation dynamic 
using the ActO rule;

• sub-cortical regions (mainly basal ganglia) are connected with large cortical networks using the turn off rules 
(TfS and TFO) and appear as possible intermediate stations of brain cortex modulation.

A schematic overview describing this circuit is reported in Fig. 14.
The analysis of the brain functional multiplex network allows a comprehensive comparison with previous 

works.
As for the ActS rule, the DMN/limbic and vision related areas are the main out-strength and in-strength 

nodes. At the same time, the modularity analysis shows a significant subdivision of the network into more 
connected modules: vision, DMN/limbic and sparse regions of TPN. These results point to a possible recursive 
nature of that rule.

A last consideration concerns the possible role of the ActS rule as source of internal/external perturbation. 
If the experimental design deals with the resting state, it should not be surprising that the main ActS nodes fall 
in that state. As a matter of fact, subjects are open-eyes and free to perceive visual stimuli. Moreover, since they 
are not engaged in any task, other main perturbations may arise from internal stimuli. The main nodes fall, in 
fact, in the processing visual perception, as well as in the limbic and DMN brain networks, commonly activated 
in the rest  condition65.

Figure 12.  Dynamic of  1st order subgraphs. Source, middle and sink nodes are in red, blue and green colour, 
respectively. From the source node two pathways can be characterized: an indirect pathway (i.p.) passing 
through the middle node, and a direct pathway (d.p.) going directly to the sink node. The time-dependent 
changes of the nodes state are reported for both indirect (i.p.) and direct pathways (d.p.). The triads in the left 
and right sections are not isophorms. For the difference between top and bottom panels see the text. Links can 
work in a synchronous or sequential way depending upon the relative state of the interacting nodes.
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Figure 13.  Dynamic of  2nd order subgraphs. Source, middle and sink nodes are in red, blue and green colour, 
respectively. (A) On the sink node the ActS rule applies on the direct pathway, and the TfS on the indirect 
pathway. The middle node is modulated by an opposite rule: ActO and TfO for the ActO/TfS/ActS and the 
TfO/TfS/ActS triads, respectively. (B) the ActS/TfO/ActS and Acts/ActO/TfO, are symmetrical Flux triads in 
which the same mechanism operates: indirect pathway (de-)activates the sink node in the opposite state than 
the source, while the direct pathway turn off the sink node if in the same state of the source. The same occurs, 
although with inverted pathways, for the Flux ActS/TfO/ActO, in which the indirect way turns off the sink 
node if in the same state of the source, while the direct way changes its state to the opposite than the source. (C) 
The Flux TfO/ActS/ActO operates as a competition solving mechanism: since the sink node is subjected to the 
competing rules ActS and ActO, the source to middle pathway solves the impasse turning off the ActS rule and 
promoting the opposite state. It is worth to note that also in this case the symmetrical form promoting the ActS 
rules is not significant.

Figure 14.  Minimal scheme of brain circuits. Integrating the single nodes link information and the centrality 
analysis within the network modularity architecture, different patterns of brain areas are associated to a specific 
rule (for details see ‘Centrality and modularity analyses’ section). Red line = ActS; orange line = Tfs; blue 
line = ActO; violet line = TfO.
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It is quite interesting that the ActO rule appears associated to the pre-frontal brain regions which, according to 
previous evidence, are the main hubs of an anticorrelated  network13. These regions have been recently associated 
to a causal interaction suppressing the DMN  activity66 while previous studies identified, by a DCM  approach17, 
the dorsal attention network (superior parietal lobe, FEF and inferior frontal gyrus) and the salience network 
(anterior cingulate, anterior insula and prefrontal cortex) as inhibitory nodes on the DMN, but not vice versa. In 
such a context, we found that the same prefrontal and parietal regions appear as a main in-/out-strength station, 
endowed with both active and passive roles.

Studying in deep the single connections, in the TPN/DMN competitive behaviour a large amount of connec-
tions involve the DMN hubs (frontal medial orbitalis and cingulate posterior) and a number of frontoparietal 
brain regions (frontal inferior, SMA, insula, parietal inferior and supramarginal), while the lateral frontal cortex 
(frontal middle and inferior) is deactivated by the medial part of the same lobe. Similar results are produced by 
studies of causal connectivity estimated by Granger  Causality7. Although, in general, different results may be due 
to different causal estimation methods, the Granger Causality, a data-driven approach based upon time-delay 
signals, is more in line with our method. As a matter of fact, previous works argued that the TE results coincide 
with those of Granger for Gaussian  variables67. In this regard, since the large amount of variable to check (90 
ROIs for 180 subjects) and the sample variability, some of those may satisfy the statistical premises of Granger, 
pointing to similar results. Such a results, however, could be ascribed to some technical details more than physi-
ological issues, not allowing a direct comparison between the two methods.

Finally, taking into consideration both turn off rules (TfS and TfO), the basal ganglia circuit appears as the 
most involved in the modulatory interactions above. According to structural and functional evidence about 
basal ganglia in human and non-human  primates68,69, the main cortico-striatal connections are located in the 
prefrontal, motor and limbic cortical areas. In our results the putamen modulates the motor related areas (SMA, 
pre-central, rolandic operculum) using the TfS rules, and the limbic (rectus) and the DMN (cingulum poste-
rior, precuneus, angular gyrus) using the TfO. As for the caudate, a high number of connections come from the 
medial/orbital frontal regions of the DMN (anterior cingulate, the frontal superior medial and medial orbitalis 
gyrus) and the limbic network (parahippocampus, the olfactory cortex and the rectus) only with the TfS rule.

It is worth remembering that the basal ganglia are topographically differentiated on the basis of their cortical 
projections in the following  way70: the most rostral and ventral part are connected to the medial and orbital fron-
tal regions; the central and dorsolateral parts of putamen take connection with the primary and supplementary 
motor cortices; the dorsal caudate is connected to the dorsal prefrontal and parietal regions, while the posterior 
part of the caudate with the posterior lobe (including temporal, parietal and occipital cortex). Recent functional 
studies in humans confirmed this structural evidence using fMRI  data71. In our work we could not distinguish 
the anatomical subdivision of putamen and caudate and check the precise anatomical location of the connections. 
However, the cortical topographic differences resulting from our data were obtained by measuring different kinds 
of connections. Thus, it is not possible to exclude that cortico-striatal functional connections could depend upon 
different kinds of dynamical interactions. The detailed mapping of such interactions, a demanding experimental 
and modelling endeavour, deserves priority in our future work.

Limitation and future prospects. The major limitations of our study concern:

• the low time resolution of fMRI  data72, such data, in fact, have no well-defined time resolution, and spurious 
results can be easily obtained. Fast fMRI  acquisition73 would be a possible solution to the problem.

• the resting state paradigm, in such an experimental condition subjects are not checked for a particular 
request, and less robust results can be obtained. In order to overcome this point, in a further step of our study 
comparison between different states will be explored.

• the spatial resolution, as a matter of fact, we used a not-so-recent  atlas28 (AAL) to compare our results with 
our previous work. Taking into consideration that different brain atlas with different spatial resolution could 
give different results, an in-depth analysis of the causal connectivity as a function of spatial resolution is also 
in our research plans.

Conclusion
Recently developed multivariate statistical methods allow to model brain fMRI signals in a large-scale network 
where brain regions can be associated based on their functional behaviour. We report on a systematic study of the 
causal relations in information transfer mechanisms between brain regions under resting condition. Keeping in 
mind the bulk of problems which affect, in general terms, any causal inference model of fMRI  data5, we tried to 
address them by an approach extending the feedforward algorithms and including—among other things—cyclic 
graphlets in a model-free and data-driven method.

We first introduced a new method to estimate effective connectivity from brain functional data and found 
four kinds of significant brain interactions (rules). Then, the complex interaction patterns of brain regions were 
studied in the frame of the multiplex network analysis characterizing the brain network properties at both 
dynamical and structural levels. In the first case a feedback and feedforward mechanism are inferred charac-
terizing the dyadic (reciprocal) and triadic (subgraphs) network structure. At the structural level, a particular 
pattern of brain regions can be characterized by a different kind of functional interaction, pointing to a general 
description of possible cerebral circuits within a brain modular architecture. Thus, we describe for the first time 
a multilayer (multiplex) network derived from a causal estimated relation on fMRI dataset.

Moreover, by hierarchical clustering methods the four rules can be reduced to two sharing some peculiar 
(anatomical and functional) properties with positive and negative functional connectivity and suggesting pos-
sible common neurophysiological mechanisms.
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The research strategy followed in the paper has been compressed in the form of flowchart and reported in 
Suppl. Mat. 1 while Fig. 14 depicts a possible cerebral circuit including the four rules.

Finally, since our model stems from a dataset of healthy subjects without a specific phenotypic characteriza-
tion and in a resting state condition, a systematic evaluation of possible different brain connectivity patterns 
would be precious in different experimental conditions, as well as within different phenotype subjects.
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