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3D cyclorama for digital unrolling 
and visualisation of deformed 
tubes
Charalambos Rossides1,2, Sylvia L. F. Pender2,3 & Philipp Schneider1,4*

Colonic crypts are tubular glands that multiply through a symmetric branching process called crypt 
fission. During the early stages of colorectal cancer, the normal fission process is disturbed, leading to 
asymmetrical branching or budding. The challenging shapes of the budding crypts make it difficult to 
prepare paraffin sections for conventional histology, resulting in colonic cross sections with crypts that 
are only partially visible. To study crypt budding in situ and in three dimensions (3D), we employ X-ray 
micro-computed tomography to image intact colons, and a new method we developed (3D cyclorama) 
to digitally unroll them. Here, we present, verify and validate our ‘3D cyclorama’ method that digitally 
unrolls deformed tubes of non-uniform thickness. It employs principles from electrostatics to reform 
the tube into a series of onion-like surfaces, which are mapped onto planar panoramic views. This 
enables the study of features extending over several layers of the tube’s depth, demonstrated here 
by two case studies: (i) microvilli in the human placenta and (ii) 3D-printed adhesive films for drug 
delivery. Our 3D cyclorama method can provide novel insights into a wide spectrum of applications 
where digital unrolling or flattening is necessary, including long bones, teeth roots and ancient scrolls.

In health, crypts or colonic crypts, which are tubular glands in the  colon1 (see Fig. 1), multiply through a sym-
metric branching process called ‘crypt fission’. The process begins with a single parent crypt that splits into two 
identical  daughters2,3. During the early developmental stages of colorectal cancer (CRC), the fission process is 
 disturbed2,4,5. This leads to asymmetrical branching or budding, where the splitting process does not complete, 
and the daughter crypt remains attached to its parent. Standard practice in CRC research involves the use of 
animal models, where animals are sacraficed and their colon excised. Small tissue samples of the colon are 
typically isolated, cut open longitudinally and flattened before being embedded in wax blocks to examine the 
morphological changes of colonic  crypts6–9. Paraffin sections of the physically flattened and embedded colons 
may then be taken parallel to the colonic  mucosa10 to study the shapes of the crypt cross sections (see Fig. 1). 
Conversely, when it is necessary to capture the entire crypt on a microscope slide, for instance to study crypt 
budding, the physical sections of the colon need to be taken along individual crypts, perpendicular to the 
colonic mucosa and across different tissue  layers11,12. In the specific case where the morphology of crypt bud-
ding is of interest, the challenging shapes of the crypts make it difficult to (routinely) prepare such sections 
along individual crypts, resulting in colonic cross sections with crypts that are only partially visible (see Fig. 1). 
Traditionally, this involves turning the murine colon into a Swiss roll, a technique whereby the entire intestine 
(approximately 6–7 cm in length) is cut longitudinally, laid flat, then rolled into a spiral before chemical fixation 
and paraffin  embedding13. After this procedure, the distal colon is then usually located at the centre, whilst the 
proximal colon at the outside of the roll. Two-dimensional (2D) cross-sectional cut sections of the roll allow 
for histological studies of morphological abnormalities or any other tissue features over the whole length of the 
animal colon using conventional light microscopy.

X-ray computed tomography (CT) has been introduced as a three-dimensional (3D) clinical imaging tech-
nique in the 1970s. In the decades that followed, improvements in the attainable spatial  resolution15 have been 
achieved and X-ray micro-computed tomographic (μCT) volumetric imaging has been developed to non-destruc-
tively image small samples (order of  cm3 and smaller) ex vivo, in 3D, and at exceedingly higher spatial resolutions 
(order of μm)16. Using soft tissue-optimised μCT, the 2D nature of traditional thin-section histology can be 
expanded to the native 3D world (‘3D X-ray histology’)17. As μCT is a non-destructive 3D imaging technique, 
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embedded tissue samples can be imaged in their original shape (deformed tubes), without any structural defor-
mations that come along with physical cutting and/or rolling into Swiss rolls, respectively. Imaging and visualising 
the whole colonic volume in 3D by μCT is beneficial because the native shape of the colonic crypts is preserved 
for morphological analysis. Digital unrolling of the imaged colonic volume would facilitate the investigation of 
tubular samples at different tissue depths, and enable identification of crypt budding.

Apart from colons, volumes that are roughly cylindrical in shape and include features extending radially 
through the tissue depth, are prominent in biological tissues. Examples are teeth roots made up of layers of annual 
cementum growth or the tubular shaft of long bones that contain vascular and bone cell networks. We recently 
applied propagation based phase-contrast X-ray synchrotron radiation CT (SR CT) to non-destructively image 
fossilised cementum increments in 3D, and recorded lifespans in early mammaliaforms by counting the annual 
growth increments in tooth-root  cementum18,19. As cementum increments occasionally split and coalesce, 3D 
imaging and analysis can be superior to alternative 2D techniques and methods, by avoiding errors in counts of 
cementum layers based on the analysis of a limited number of 2D cross  sections20. In bones, the vast bone cell 
networks formed by osteocytes, the most abundant bone cells, are receiving increasing interest. Imaging and 
quantifying their 3D  structure21,22 can enhance the understanding of bone development in health and disease, 

Figure 1.  Colonic histology. 3D schematics of the tissue layers in a healthy colon. (a) The colon is composed 
of four main layers: mucosa, submucosa, muscle layers and serosa. The mucosa is the layer closer to the colonic 
lumen, and it is comprised by a pattern of colonic crypts (tubular glands). (b) The crypts have elongated shapes 
in a cross-sectional view, corresponding to plane ‘L’ (crypts cut longitudinally). Crypts that are cut at an angle 
by a sectioning plane are only partially visible. (c) The crypts have rounded shapes in a cross-sectional view 
corresponding to plane ‘P’ (perpendicular to the elongated crypts). This figure was created with  Inkscape14.
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including osteoporosis and osteoarthritis. 3D imaging approaches for both tooth-root cementum and the osteo-
cyte networks in bone would greatly benefit from a tool to digitally unroll the tubular structure at hand, and 
represent individual tissue layers with images arranged in a stack. Two further biomedical applications, namely 
the study of microvilli in the human placenta and 3D-printed pharmaceutical films, are briefly mentioned here 
as they are discussed in detail as case studies in the ‘Supplementary’ information. Despite the broad range of 
applications and the utility of a tool for digital volume unrolling, to the best knowledge of the authors, unrolling 
of deformed objects of non-uniform thickness has not been tackled yet.

Here, we present a new method to digitally unroll the volume of deformed tubes of non-uniform thick-
ness, including but not confined to, colons, teeth roots, long bones, and 3D-printed pharmaceutical films. Our 
approach reduces the problem of volumetric unrolling of deformed tubes down to the simpler, and already solved 
 problem23–29 of mapping 3D surfaces onto planar equivalents. We begin by reformulating the internal volume of 
the deformed tube into a series of non-intersecting, equidistant, onion-like, 3D surfaces using notions from elec-
trostatics: Virtual electrical charges are applied on the tube’s boundaries, and by deriving the resulting (virtual) 
electric field lines, we can generate internal 3D surfaces that follow the shape of the deformed tube. We then apply 
a proof-of-concept approach to map these 3D surfaces onto planar panoramic views that we call ‘3D cyclorama’ 
(see section ‘Methods: 3D cyclorama design and development’ for a detailed description of the method).

We verified our implementation by testing and quantifying its ability to digitally unroll an in silico phantom 
we designed for this purpose (see supplementary section ‘S.1. Verification of the 3D cyclorama method’). We then 
validated our 3D cyclorama method by testing its capability to digitally unroll a murine colon and identify crypt 
budding during early-stage CRC (see section ‘Validation of the 3D cyclorama method’). Further, two biomedi-
cal case studies are presented in the ‘Supplementary’ information on (i) microvilli in ‘S.2 Case study: Human 
placenta’, and on (ii) 3D-printed pharmaceutical films for drug delivery in ‘S.3 Case study: Pharmaceutical film’. 
These provide insights into a wide spectrum of potential applications of the presented 3D cyclorama method to 
unroll deformed cylindrical tubes of non-uniform thickness.

Methods: 3D cyclorama design and development
Overview. To the best of the authors’ knowledge, the problem of digital unrolling of deformed tubes has not 
been solved and addressed in the literature to date. However, the problem of digital unrolling of 3D surfaces has 
been extensively studied, where predominant applications include straightening wrinkled  paper23–25 and virtual 
unrolling of ancient  papyri26–29. These methods usually attempt to recover text that is written on deformed sheets 
by fitting 3D surfaces and digitally mapping them onto planar images. Surface meshing (generating a set of 
interconnected points that represent the surface) and image deformation are also extensively used in computer 
graphics for image or 3D model  representation30–34. These methods typically require a set of mapped points 
(source points mapped to target points) to locally stretch or shrink the image or surface (non-rigid image defor-
mation) so that the source points match up with their targets. When it comes to volumetric image deformation, 
i.e., flattening of thin sheets with uniform thickness, commercial software such as the plug-in developed by the 
Konrad-Zuse-Zentrum Berlin (ZIB)26 for Amira (Amira 6.5; ZIB/Thermo Fisher Scientific, Germany/USA) are 
available. However, unrolling volumetric deformed tubes or scrolls of non-uniform thickness adds another level 
of complexity. Our approach to this problem is to simplify the geometry by reformulating the deformed tube of 
non-uniform thickness into a series of non-intersecting, equidistant, onion-like 3D surfaces, which may then be 
mapped onto 2D (planar) equivalents via any of the existing methods.

We first define the tube volume using the inner and outer boundary of the tube in 3D. Given an image stack 
depicting the deformed cylindrical tube, these boundaries are defined as a collection of inner and outer bound-
ary contours drawn manually on 2D image slices. We then virtually charge the sample boundaries with (virtual) 
electrical charges, and simulate the field lines of the resulting electrostatic field (see Fig. 2a). This allows us to 
define intermediate or internal contours that are non-intersecting and follow the shape of the sample. Each 
internal contour is defined at a certain percentage of the local thickness of the deformed tube (see Fig. 2b) so that 
each internal contour corresponds to a relative local thickness. The internal contours are used to create internal 
(onion-like) re-slicing surfaces. This is the point where the problem is simplified to the already solved problem 
of mapping re-slicing surfaces onto 2D equivalents: Several approaches exist to solve this problem, as mentioned 
earlier (see also section ‘Discussion’), with varying degrees of complexity. Here, we adopt a simple method to non-
rigidly map the re-slicing surfaces onto rectangular 2D surfaces. The 2D (planar) surfaces are stacked together 
to provide panoramic views at different depths of the tubular volume, which we call ‘3D cyclorama’ (see Fig. 3d). 

We implemented and tested the 3D cyclorama method as a Jython script in  Fiji35 (ImageJ version 2.0.0-rc-
68/1.52 g, Java 1.8.0_66), a scientific image processing software package written in Java that is distributed as an 
extended version of  ImageJ36,37. Jython is an implementation of the Python programming language that runs on 
Java platforms and is provided as one of the available scripting languages in Fiji. In the following, we describe in 
detail the implementation and validation of our 3D cyclorama method.

Meshing: generation of internal contours and re-slicing surfaces. A sampling grid (set of onion-
like surfaces) within the deformed tube is generated as a set of intermediate or internal contours, corresponding 
to incremental relative local depth levels (0% to 100%) as follows: Given is a stack of images depicting 2D cross 
sections of a vertically aligned deformed tube, for instance provided as individual reconstructed CT slices at dif-
ferent heights of the sample. Thus, each slice represents a deformed 2D annulus that is defined by its inner and 
outer boundaries. The boundaries are subsequently used to interpolate the enclosed cross-sectional area and 
describe the internal contours at different relative local thickness levels.

We define the local thickness by employing notions from physics, namely electrostatics. Firstly, we assume 
that the inner and outer boundaries of the cross sections are loaded by opposite electrical charges. We calculate 
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the (virtual) 2D electric field lines within the enclosed space described by those boundaries as shown in Fig. 2. 
The theory governing electrostatic  fields38 ensures that electric field lines never cross and that they never form 
closed loops (they always start at one boundary and cross the tube to reach the other boundary). Moreover, the 
electric field lines are always perpendicular to the charged boundaries. These properties make the electric field 
lines an ideal tool for the definition of the relative local 2D thickness, which we define here as the length di of 
the respective electric field line i, spanning the inner and outer boundary of the tube’s cross section (see Fig. 2b).

Figure 2.  Generation of 3D cycloramas through electrostatic fields. (a) Boundary contours are defined on the 
deformed tube boundaries as sequences of charged points �pi and �p′i . Each electric field line is built up 

incrementally starting at point �pi ≡ �pi,0 . The first increment δ · �vi,1
��vi,1�

 is normal to the inner boundary. Each 

subsequent increment δ ·
�E(�pi,k)

∥

∥�E(�pi,k)
∥

∥

 is defined as the direction of the electric field scaled by δ (electric field line 

segment size), computed at the tip of the previous increment δ ·
�E(�pi,k−1)

∥

∥�E(�pi,k−1)
∥

∥

, considering charges on both 
boundaries in a user-defined window (green points ). This process might fail to connect point �pi to the outer 
boundary, resulting in ‘collapsed’ or ‘stray’ lines, which are identified and removed in our cyclorama method. (b) 
The local thickness is defined as the length di of field line i. Intermediate contours conth,c are defined on a total of 
C relative depth levels c

C−1
· 100% ( c = 0, 1, . . . ,C − 1 ). (c) Stiff field lines (high rigidity) do not properly follow 

the curvature of the outer boundary. (d) Lower rigidity results in more flexible field lines, pushing the 
intermediate contours away from the boundaries. (e) The process shown in a-d is performed on every mth 
section of the image stack. The remaining contours conth,c on sections secth ( h  = 0,m, 2m, . . . ) are generated by 
fitting vertical cubic splines. This figure was created with  Inkscape14.
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The electric field �E at point �p is defined as the sum of the contributions from points �pj in space, each charged 
with an electric charge qj:

where εo is the electric constant, j = 1 . . .N is the set of contributing charges, and || || denotes the Euclidean 
distance. Due to the computational costs involved to calculate the exact electric field at all possible positions in 
space, Eq. (1) was not implemented directly here, but the following computational approach has been developed 
to approximate the electric field lines:

1. First, the boundary contours are defined as sequences of equidistant points �pi and �p′i ( i = 0, 1, . . . , I − 1 ) 
for the inner and outer boundary, respectively, with the total number of points I being a (positive) integer given 
by the user. These points define the positions of the electrical charges that are used for the calculation of the field 

(1)�E
(

�p
)

=

N
∑

j=1

qj

4πεo

(

�p− �pj
)

∥

∥�p− �pj
∥

∥

3
,

Figure 3.  Linear mapping of 3D re-slicing surfaces. (a) The re-slicing surface edge at depth level c is defined 
by selecting the first point �si,h,c = �s0,h,c =

(

r0,h,c , 180
◦
)

 . (b) Initial re-slicing surfaces are represented as 
unstructured contours. (c) The points in the unstructured contours in b are mapped onto the structured grid 
in c. (d) The structured grid shown in c is used to probe the 3D image data and create the 3D cyclorama. (e) 
A section of a 2D cyclorama at 0% relative depth level ( c = 0 : inner boundary) of a healthy murine colon 
embedded in paraffin wax, which partially probes volumes from the background (paraffin wax) and the 
sample (tissue). Vertically curved patterns are visible, as revealed by the orange outline of the tissue. This is a 
consequence of local image deformations (stretching/contraction), which results in anisotropic pixel sizes. (a-d) 
Sketches a-d were created with  Inkscape14.
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lines. Each point on the contour can be identified by an index i that is used to select the contributing charges 
as discussed next (see Fig. 2). Note that for tubes the boundary (and internal) contours are closed, and hence 
the locations of the starting points �pi=0 and �p′i=0 are arbitrary. However, it is important for the generation of 
cycloramas (see section ‘Mapping: Generation of 3D cycloramas’) that the sequences of points on the internal 
and external boundary are paired, i.e., points with index i on the two opposing boundary contours are fairly 
close to each other. This will be ensured via appropriate selection of the starting points.

2. Each electric field line i is built up incrementally, by starting at the location of charge qi (point �pi ≡ �pi,0 
on the inner boundary contour) and computing the electric field at points �pi,k . Due to the term 

∥

∥�p− �pj
∥

∥ in 
the denominator of Eq. (1) singularities may arise when point �p is very close to the charged points �pj , as this 
would result in division by zero. To avoid this problem, the first calculation of the electric field is bypassed and 
replaced by progressing along the direction of the vector �vi,1 , which is perpendicular to the boundary contour at 
the location �pi,0 of charge qi , pointing inwards the annulus (see Fig. 2a). The vector �vi,1 is calculated as the vector 
perpendicular to the tangent vector �ui =

(

ui,x , ui,y
)

:= �pi+1,0 − �pi,0 as follows:

The first step for each field line i is calculated by progressing in a straight line along the direction of the vector 
�vi,1 for a user-defined length δ (‘electric field line segment size’ in number of pixels):

Note that Eq. (2) has two solutions (±), one points towards the annulus and the other points away from the 
annulus. The correct solution is chosen by selecting the resulting point �pi,1 that lies within the annulus. Since 
the inner and outer boundaries are closed lines, the annulus may be defined as the enclosed region. In ImageJ 
the contours are defined as regions of interest (ROIs) and the annulus is computed as their set difference (XOR 
function).

3. As the magnitude of the electric field drops with the second power of the distance from the contributing 
charges (see Eq. (1)), we approximate the electric field at point �pi,k by only considering charges that are close to 
point �pi,k . The contributing charges are selected as the sequences of points on the two boundary contours within 
a user-defined ‘electric field search window’ around index i (see Fig. 2a):

where w is a user-defined integer that defines the window size. The modulo operator mod enables ‘closing’ the 
contours by selecting points at the two ends of the sequence j = i − w, . . . , i, . . . , i + w , w ∈ N , when i is too 
small (i < w) or too large (i > I − w) . The electric field line i is built upon the first computed point 
�pi,1 = �pi,0 + δ · �vi,1

��vi,1�
 as a sequence of straight electric field line segments of length δ (electric field line segment 

size):

where

and integer k = 2 . . .K is the index of the electric field line at point �pi,k , points �pj,0 are the locations of the con-
tributing charges q̂j on the inner boundary contour, points �p′j,0 are the locations of the contributing charges q̂′j on 
the outer boundary contour (green points in Fig. 2a), where q̂j and q̂′j are arbitrary positive and negative electric 
charges, respectively. This process is repeated until either the electric field line reaches the opposite boundary, or 
a user-defined maximum number of steps Kmax has been reached. Whether the field line has reached the outer 
boundary is checked by verifying if �pi,k lies within the annulus or on/beyond the outer boundary contour. Note 
that Eq. (4) defines a window of 2w + 1 points on the inner and outer boundary contours that slides with the 
index i of the respective field line. This selection includes neighbouring points confined within the boundary 
contours, which are not necessarily the closest points to �pi,k in terms of in-plane Euclidean distance, as required 
by Eq. (1). This might lead the algorithm to fail with ‘stray’ or ‘collapsed’ field lines due to inaccurate approxi-
mation of the electric field, as discussed next. To improve the estimation, one can increase w at the expense of 
computational time.

A beneficial bi-product of using electric fields for the definition of the internal contours is the control it 
provides over the curvature of the electric field lines. This may be tuned via appropriate selection of the relative 
amplitude of the charges on the boundaries of the tube, a parameter we may call ‘rigidity’ (see Fig. 2c-d). In 
practice, this is achieved by defining q̂j = 1 for all charges on the inner boundary and 
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∣
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∣

∣
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positive, real value) for the charges on the outer boundary. This essentially weights the contributions to the 
electric field defined in Eq. (6), provided by the charges on the outer boundary (q̂′j) vs. the contributions of the 
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charges on the inner boundary (q̂j) . Tuning the rigidity results in straighter or more curved electric field lines, 
thus providing flexibility to capture irregular tubular shapes that are heavily deformed (see Fig. 2d).

The computational approach to iteratively approximate the electric field lines described above reduces the 
computational cost to calculate the exact value of the electric field at all possible positions in space, as per Eq. (1). 
This approximation, involving a (i) discrete, user-defined electric field line segment size δ for progressing through 
the annulus, (ii) a user-defined electric field search window ( J = j mod I , j = i − w, . . . , i, . . . , i + w , w ∈ N ) 
encompassing a limited number of contributing charges, and (iii) manual tuning of the relative electric charge 
magnitudes or rigidity, might provide ‘stray’ or ‘collapsed’ electric field lines that do not reach the opposite 
boundary (see Fig. 2a). Such field lines are identified and removed as follows: Stray lines are defined/identified 
as exceedingly long lines, and they are rejected by introducing a maximum number of iterations for the com-
putation of each electric field line: K ≤ Kmax . Collapsed field lines are defined as lines that do not progress far 
from the initial point �pi,0 , and they are identified as the lines with variance Vi less than a user-defined minimum 
electric field line variance Vmin:

where

Each electric field line i is then represented by a cubic spline fitted through all points �pi,k ( k = 0 . . .K  ). 
Note that once the electric field lines are transformed form a collection of points �pi,k to cubic splines, the nota-
tion �pi,k is hence abandoned and the cubic splines are resampled as follows: Firstly, the local thickness di at �pi 
is defined as the length (in number of pixels) of the electric field line i. Internal contours are then created at 
a total of C (user-defined) depth levels at incremental percentages (0%-100%) of each individual electric field 
line’s length di (see Fig. 2b): Relative depth levels are defined as c

C−1
· 100% and absolute depth levels as c

C−1
· di 

( c = 0, 1, . . . ,C − 1 ) with c, C being positive integers. Explicitly, for C = 3 : 0
2
· 100% = 0% (inner boundary), 

1
2
· 100% = 50% , 2

2
· 100% = 100% (outer boundary). See Fig. 2b for an example of four (C = 4) different relative 

depth levels (0%, 33%, 67%, 100%). The number of relative depth levels C determines the number of equidistant, 
non-overlapping contours (including the internal boundary at 0% and the external boundary at 100% relative 
depth level), which can be chosen arbitrarily. Each contour conth,c is defined by fitting a cubic (in-plane) spline 
at height level h through all points on the electric field lines i that correspond to depth level c or absolute depth 
levels c

C−1
· di . As some of the electric field lines may have been discarded (stray or collapsed field lines) the 

resulting internal contours might consist of fewer points than the boundary contours. To obtain a uniform 
representation, each cubic spline representing one specific contour conth,c is resampled with a total of I samples.

As the approximation of the electric field lines is the most computationally intensive part of our method 
to generate 3D cycloramas, it is only applied on every mth slice or 2D section of the 3D image stack (positive 
integer m: interpolation interval) that depicts the deformed tube, resulting in contours conth,c on sections secth 
( h = 0,m, 2m, . . . and h ≤ H − 1 with H the total number of slices) at depth level c as shown in Fig. 2e. To 
generate the contours conth,c on the remaining sections secth ( h  = 0,m, 2m, . . . ), the contours of the selected 2D 
cross sections are then interpolated across all sections of the 3D image stack. In detail, vertical cubic splines are 
fitted on corresponding points, i.e., the ith spline is created by selecting the ith point on each contour for each 
depth level c (see Fig. 2e). Eventually conth,c is defined as the set of all points at cross section h and depth level 
c: conth,c = {�pi,h,c}.

Once contours have been defined at all depth levels c and for all 2D cross sections h, each 3D re-slicing or 
an onion-like surface at relative depth level c

C−1
· 100% is defined as the set of all 2D contours at depth level 

c. The basic components are then ready to generate internal 2D panoramic views of the deformed cylindrical 
sample and 3D cycloramas as explained in the next section. At this point, the problem of volumetric unrolling of 
deformed tubes has been reduced to the simpler and already solved problem of manifold embedding or mapping 
3D surfaces onto 2D equivalents, as discussed next.

Mapping: generation of 3D cycloramas. To generate 2D panoramic views at different relative depth 
levels c

C−1
· 100% of the deformed tube, the 3D re-slicing surfaces need to be mapped onto 2D equivalents 

(2D cycloramas). The problem has been widely studied in the literature, and several interesting approaches are 
discussed in section ‘Discussion’. Here, we adopt a simple and basic approach as a proof of concept. Mapping is 
performed on a contour-by-contour basis, where the boundary and internal contours need to be mapped onto 
rectangular grids. When stacked together, these 2D panoramic views become a 3D cyclorama, which displays 
the boundaries and particularly the internal structure of the sample at different depth levels (see Fig. 3).

Initially, the length of all 2D panoramic views or 2D cycloramas is fixed at reference length L, defined by the 

longest contour in the volume: L := max
h=0 ... H−1

(

max
c=0 ... C−1

Lh,c

)

 , with integer Lh,c being the length of contour 

conth,c of section secth at relative depth level c (see Figs. 2e and 3b) in number of pixels (see Fig. 3d). The longest 
contour thus defines the length L of the 3D cyclorama, while all other contours ( Lh,c ≤ L ) are dilated to match 
up with the longest contour. On this account, the resulting (non-uniform) pixel size of the 3D cyclorama will be 
equal (for the longest contour) or larger (all other contours) when compared to the pixel size of the original 
image data.
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We then open the closed contours into sequences, by resampling each of the contour splines so that contour 
conth,c is (densely) represented by a total of Lh,c points. Then, the first point �p0,h,c (point with index i = 0 ), is 
arbitrarily but consistently selected across all contours conth,c as follows (see Fig. 3a): We can express the points 
of each contour conth,c that are initially defined in Cartesian coordinates �pi,h,c =

(

pi,h,cx , pi,h,cy

)

 in polar 
coordinates:

with O =
(

ox , oy
)

 an arbitrary rotation axis inside the tube, ri,h,c the Euclidean distance from the rotation axis, 
and θi,h,c ∈ [0 . . . 2π) the azimuthal angle in radians. The first point �p0,h,c or �s0,h,c is chosen as the point among 
all points on contour conth,c with θi,h,c closest to π radians or 180 degrees (see Fig. 3a).

Mapping of the boundaries and internal contours onto 2D cycloramas (with a fixed length L) is performed by 
uniformly sampling each boundary and internal contour with the same number of points as the longest/reference 
contour (see Fig. 3c). In other words, all contours except for the longest/reference contour are resampled once 
again, so that contour conth,c is represented by a total of L points, effectively stretching each contour to fit the 
longest contour in the volume. This ‘linear’ mapping avoids collapsing of points and contraction. It results in a 
uniform pixel size along individual lines (horizontal or l-dimension in Fig. 3e) of the cyclorama image but not 
necessarily the same pixel size across all lines (vertical or h-dimension in Fig. 3e), since each contour is stretched 
individually. This effectively spreads the image deformation across the entire image, resulting in wavy but con-
tinuous cycloramas as shown in Fig. 3e. Note that any mapping approach tries to spread the inevitable image 
deformation throughout the image, typically by applying a mapping that is optimal in some respect. Alternative 
approaches are discussed in section ‘Discussion’. The mapping process we implemented defines which index i 
corresponds to each index l in the stretched contour as follows:

These indices are then used to redefine the contours by selecting the points �si,h,c that correspond to each point 
�pl,h,c = (l, h, c) in the 3D cyclorama (see Fig. 3b-d). The mapping between the 3D surface, defined by all points 
with fixed depth level ⌣c  , onto points on the 2D cyclorama plane is then defined as:

One (planar) 2D cyclorama per depth level ⌣c  is created by probing the 3D image data volume at all points 
�s
i,h,

⌣
c
 (see Fig. 3b-d). Note that all 2D cycloramas, which correspond to a specific relative depth level, are of equal 

size (equal length and height). This allows to create a stack of 2D cycloramas from 0% (internal boundary) to 
100% (external boundary) of the tube’s relative depth level (3D cyclorama), which is essentially an unrolled ver-
sion of the deformed tube. This digital unrolling (onto a 3D cyclorama) has been achieved by introducing image 
deformations in two directions: Radially, through the definition of the relative depth levels using the electric 
field lines, and along contours, by stretching the contours (see Fig. 3c).

Validation of the 3D cyclorama method
Here we test the utility of our method for the study of crypt budding in early-stage colorectal cancer (CRC). We 
employ a well-established murine model, and prepare cylindrical formalin-fixed paraffin-embedded (FFPE) colon 
samples with early-stage CRC. A sample preparation method is employed, where the original tubular shape of 
the colons is preserved. We then apply non-destructive 3D imaging using X-ray phase-contrast μCT, followed 
by digital unrolling using our 3D cyclorama method. This enables us to easily identify crypt budding in the 3D 
cycloramas and perform image segmentation of the budding crypts on the μCT data, where the original shape 
and orientation of the crypts is preserved. This approach allows for accurate quantification of the 3D shape of the 
crypts using μCT and subsequent functional studies using traditional paraffin sectioning and histology methods.

Validation methods. Animal model. An azoxymethane and dextran sodium sulphate (AOM/DSS) mu-
rine model was used to produce a colon sample with early stage CRC. The model uses AOM, which is a procar-
cinogen that inflicts DNA damage before it is excreted into the bile and taken up by the colonic  epithelium39, 
and DSS, which is a polysaccharide that inflicts epithelial damage in the colon and inflammatory  response40. The 
specific protocol applied here was adapted from Neufert et al.41 and Parang et al.42 as follows: A C57BL/6J male 
mouse that was 8 weeks old at the beginning of the experiment was treated with one intraperitoneal injection of 
10 mg/kg AOM solution on day 1. Next, starting on day 3, the mouse was treated with 2% weight/volume DSS 
solution in sterile water for 7 days, followed by 14 days of sterile water provided ad libitum, via a mouse water 
drinking bottle (inflammation and healing phases, respectively). One healthy (untreated) and one AOM/DSS-
treated mouse were culled via schedule 1 on day 24 and the distal colons were excised. In order to preserve the 
original shape of the colonic tissue, the lumen was filled with fixative before the two ends were sealed with su-
tures. The resulting sample looks like a ‘sausage’13. The samples were fixed in 10% neutral buffered formaldehyde 
for 2 days, before 10 mm-long tubular pieces were embedded in paraffin wax using a plastic drinking straw as a 
mould to create cylindrical paraffin wax blocks.

The animals were bred and maintained in the Biomedical Research Facility, University of Southampton, 
Southampton, UK, in accordance with the United Kingdom Animals (Scientific Procedures) Act 1986. This study 
has received ethical approval from the Animal Welfare and Ethical Review Body (AWERB) of the University of 
Southampton, Southampton, UK, and was operated under an existing Home Office animal (scientific) procedures 

(9)�si,h,c =
(

ri,h,c , θi,h,c
)

, i = 0 . . . Lh,c − 1,

(10)i ↔ l, i ∈
{

0 . . . Lh,c − 1
}

, l = 0 . . . L− 1.

(11)�s
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⌣
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project licence. The regulatory protocols were performed according to the animal research reporting of in vivo 
experiments (ARRIVE)  guidelines43. The animals were kept at constant temperature of 22 ± 2 °C with food and 
filtered water available ad libitum, and were sacrificed under the Schedule 1 procedure.

X‑ray CT imaging. Both samples were imaged using synchrotron light-based X-ray CT at beamline I13-2 of 
the Diamond Light Source, Didcot, UK, at an energy of 25 keV, exposure time of 85 ms per X-ray projection for 
2501 projections, an (isotropic) voxel size of 2.2 μm and an X-ray propagation distance (sample-to-detector dis-
tance) of 230 mm. Phase retrieval was performed using the Paganin  algorithm44, prior to standard filtered back 
projection (FBP)15 for CT reconstruction using an in-house implementation (Savu version 2.2)45. From each of 
the resulting CT stacks (see Fig. 4a), a subset of 301 reconstructed CT slices (height of 0.66 mm) were extracted, 
each 1841 × 1841  pixels2 or 4.1 × 4.1  mm2 in size.

Image processing and visualisation. In order to digitally unroll the samples using our 3D cyclorama method 
the boundaries of their tubular volume were manually defined as follows: For the healthy sample all tissue lay-
ers were selected via manual definition of the boundary contours at the boundaries between the tissue and the 
paraffin wax (see Fig. 4a-b). For the sample of the AOM/DSS-treated mouse the mucosal layer was selected via 
manual definition of the boundary contours, in order to isolate the crypts. Both samples were unrolled with 
I = 200 point-long contours, electric field search windows of 31 points ( w = 15 ), electric field line segment sizes 
of δ = 2 pixels, minimum electric field line variance Vmin = 50 , rigidity equal to 1, interpolation interval m = 20 
and rotation axis origin O = (1080, 780) . For the healthy sample a total of C = 30 depth levels and a maximum 
number of steps Kmax = 75 were selected. The resulting 3D cyclorama’s length was L = 2582 pixels, the height 
H = 301 pixels, and the depth C = 30 slices. For the AOM/DSS-treated sample a total of C = 50 depth levels for 
increased spatial resolution in the c-direction and a maximum number of steps Kmax = 50 were selected (see 
Fig. 2d). The resulting 3D cyclorama had a length of L = 2530 pixels, height H = 301 pixels, and depth C = 50 
slices. The unrolling process, including the processing and writing the results to hard disk, took less than five 
minutes for each sample (laptop computer with Intel Core i5-6300U @ 2.5 GHz, 2 cores, 4 logical processors, 
and 16 GB of RAM).

We firstly identified crypt budding on the 3D cyclorama, and subsequently performed image segmentation 
and quantification on the original 3D CT stack, and not on the reformed 3D cyclorama, as follows: After unroll-
ing, sequential slices of the 3D cyclorama depict cross sections of the crypts at different depths of the colonic 
tissue. We traced individual crypts through the colonic tissue layers at different depths, i.e., through individual 

Figure 4:.  3D cycloramas for the study of murine colons. (a-c) A healthy murine colon embedded in paraffin 
wax. (a) A SR CT section of the intact colon. (b) Virtual electric field lines and the resulting contours ( C = 5 
instead of the total C = 30 depth levels are shown here for visual clarity). (c) CT grey values are shown at 50% 
relative depth level, while boundary surfaces are shown transparent. (d-f) Unrolled CT stack of a murine colon 
with early stage colorectal cancer. The 3D cyclorama has a total of C = 50 slices or depth levels, where sequential 
slices at relative depth levels of 86%, 90% and 92% correspond to slices 42/49, 44/49 and 45/49, respectively. 
Crypt budding is revealed when a single colonic cross section, shown here in red, divides from one to several 
branches when moving from one slice to the next at a different colonic tissue depth, i.e., moving from e to f. 
Yellow crosses show points created inside individual budding crypts on each cyclorama slice. (c) Image c was 
created using  Mayavi46.
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layers of the 3D cyclorama. We then identified non-budding crypts as those with a single cross section that did 
not divide on any of the cyclorama layers representing different colonic tissue depths. Budding crypts were 
identified by pinpointing those locations where a single colonic cross section divided from one to multiple cross 
sections. We then manually created a point (‘Point tool’ in Fiji) inside each of the crypts on each cyclorama layer. 
Hence, each crypt was represented by a set of points in 3D defined on the individual cyclorama layers (Fig. 4d-f).

Next, we used ITK-SNAP (v2.8.0-beta) for isolation of the crypts in 3D. ITK SNAP [266] (www. itksn ap. org), 
an open-source image processing application to segment 3D structures in image stacks, provides semi-automatic 
segmentation using active contour methods. It requires a set of seed volumes that are expanded over the 3D image 
by applying a region growing algorithm, which maintains a curve or active contour. The contour evolves under 
the influence of a region completion force that tends to expand the curve, and a smoothing factor that tends to 
make the curve less rugged. On each iteration step, ITK-SNAP reads the image grey values around the curve 
and decides how the curve needs to evolve in order to segment the crypts. We created the seed volumes for ITK-
SNAP as a binary mask with a zero value for the background, and cubes of 5 × 5 × 5  pixels3 (or 11 × 11 × 11 μm3) 
with a value equal to one, centred on each of the points (inside the crypts) on the cyclorama. We subsequently 
mapped this cyclorama mask back onto the CT stack using the inverse of the computed mapping between the CT 
stack and the 3D cyclorama, resulting in a (binary) CT mask. The bit-depth of the CT stacks was reduced from 
16 to 8 bit with grey-value clipping thresholds at 21,000 a.u. and 37,000 a.u. (derived using the ‘Auto-threshold 
tool’ in Fiji, with the default algorithm: ‘isodata’47). The back-mapped seed volumes resulting from the inverse 
mapping appear as red cubes in the 3D view, and as red overlaid areas on the orthogonal views of Fig. 5a. This 
3D binary CT mask had the same dimensions as the CT stack of the colonic segment (1844 × 1844 × 301  pixels3 
or 4.1 × 4.1 × 0.7  mm3), and was provided to ITK-SNAP as an initial image segmentation. We then initialised 
the region growing algorithm with these seed volumes and ran it for 200 iteration steps with a low-pass filter 
threshold of 117 a.u., a region completion force equal to 1, and a smoothing factor of 0.2. Upon completion, the 
region growing algorithm provided a 3D segmented stack composed of slices such as that shown in Fig. 5b, a 
3D volumetric reconstruction of which is shown in Fig. 5c.

Validation results: murine colon unrolling. The process of identifying budding crypts in the unrolled 
murine colons is shown in Fig. 4. An example of the electric field lines and contours (only C = 5 depth levels are 
shown here for visual clarity) resulting after the application of virtual electrical charges on the colonic bounda-
ries is shown in Fig. 4b. Figure 4c provides a photorealistic 3D rendering that illustrates the sample’s boundaries 
and the re-slicing surface at 50% relative depth level, yielding the probed CT greyscale values. Figure 4d-f show 
segments of the 2D cycloramas at incremental relative depths (80%, 82%, 84%), which, being locally perpen-
dicular to the colonic crypts, depict the colonic crypts as round profiles. For the untreated sample, the healthy 
crypts do not split, and hence, their cross sections are consistent throughout all cyclorama slices (see Supple-
mentary Video 1). The AOM/DSS-treated mouse, however, exhibits crypt budding, which is readily visible in 
the 3D cyclorama by identifying the tissue depth where a single crypt cross section splits to more than one (see 
Supplementary Video 2).

Note that not only the original shape of the crypts has been preserved in the cyclorama, but also their relative 
location and orientation in space. This is only possible because our method avoids physical cutting, thus tissue 
distortions typical for conventional (2D) thin section-based  histology48 are not an issue. Moreover, each of the 
2D cycloramas representing internal tissue layers at a specific tissue depth can be further analysed, for instance 
to count the number of crypts and their number density. In other words, our 3D cyclorama method advances 
time-consuming traditional (2D) thin-section histology via the use of re-slicing onion-like surfaces that follow 
the 3D shape of the colon, while obtaining non-planar slices across the entire tissue block. This internal re-slicing 
is impossible in standard (2D) thin-section histology due to the nature of the involved (planar) physical section-
ing. This capability provided by our method is the key enabling feature for in situ study of crypt budding in 3D.

When it comes to computational models of crypt budding, they have been confined to the study of the healthy 
case of crypt fission. This is partly because validation of mathematical models of the crypt is particularly difficult, 
either due to the lack of experimental data or the difficulty to measure certain model  parameters49,50. Nota-
bly, recent studies of crypt budding relate the spatial concentration of proteins (including the APC, β-catenin, 
E-cadherin and survivin) and cell proliferation and differentiation (including stem and mucus-secreting cells) 
with the crypt budding  process51–53. By employing non-destructive CT imaging of intact FFPE colon samples, 
our method facilitates a correlative approach where concurrent structural information (via CT) and functional 
information (via serial histology sections) is now possible, whereby for the first time in situ, 3D, structural and 
functional characterisation of crypt budding during the early stages of CRC can be performed.

Discussion
Today, application areas of μCT and SR CT are broad, including archaeology, biology, chemistry, environ-
mental science, forensics, material science and  physics15,54. To physically unroll samples is often impossible 
or  destructive26. On this account, non-destructive 3D imaging, such as confocal laser scanning microscopy, 
magnetic resonance imaging or X-ray CT, and subsequent digital unrolling is an alternative method to study the 
sample’s 3D structure. A method for digital unrolling of deformed tubes would be beneficial for a broad spectrum 
of scientific and industrial applications.

In the field of archaeology, deciphering of ancient  scrolls26–29 or studying the wrapping material of mummi-
fied  cats55 are prime examples where digital unrolling is beneficial and has been used in the past. Inscriptions on 
metallic scrolls (lead, silver, gold or alloys), though, extend over a certain depth within the  metal56. As a result, 
existing approaches to unroll these samples are only applicable to relatively thin samples with close-to-uniform 
thickness. Hence, such cases could benefit from a volumetric unrolling approach, such as our cyclorama method, 

http://www.itksnap.org
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to extract the full 3D nature of the inscribed literals. Similarly, in industry, procedures for non-destructive testing 
of turbine blades or aircraft wings, which are examined for fatigue life faults and internal microcracks during 
manufacture and/or  maintenance54,57,58, could also be facilitated by our 3D cyclorama method. Unrolling or flat-
tening manufactured parts with challenging geometries could speed up the examination for 3D crack propagation 
and manufacturing defect distribution via effective visualisation of the sample’s volume.

Our 3D cyclorama method can facilitate visualising the internal structure of deformed cylindrical tubes of 
non-uniform thickness, yet the projected volumes should be interpreted with care. The 3D cyclorama is deformed 
both along contours and in radial direction, thus the scale is not preserved, resulting in anisotropic and non-
uniform pixel/voxel sizes. This uneven scale implies that distances should not be measured on cycloramas. 
Nevertheless, the sample topology is always preserved, i.e., neighbouring features in the original volume will 
remain neighbours in the projected space (i.e., cycloramas) and vice versa. This originates in the construction of 

Figure 5.  Budding crypt identification and 3D segmentation. (a) The viewport of ITK-SNAP is composed of 
four views (Top, Right, Front and 3D). The panels Top, Right and Front show orthogonal cross sections of the 
SR CT stack. The panels Right and Front show cross sections across the yellow and orange lines on the panel 
named Top, respectively. The panel named 3D shows the CT mask with the volumes of the back-mapped seed 
points (resulting from the inverse mapping between the 3D cyclorama and the CT data). The 3D seed volumes 
shown in the panel 3D, which are overlaid on the CT stack in the panels named Top, Right, and Front, are used 
to initialise the segmentation and expand it throughout the crypt lumens using region growing. The panels 
named Top, Right, and Front only show a zoomed-in view of the respective orthogonal cross sections. The 
white rectangles within the yellow panes on the bottom left corners of the Top, Right, and Front panels show 
which part of the cross sections is displayed in the panel. (b) Each slice of the image stack produced by the 
segmentation procedure is a binary image, with pixels corresponding to the crypt lumens having the value of 
one (white) and zero (black) elsewhere. (c) A 3D rendering of the binary image stack reveals the budding crypts 
and their position in space within the tissue.
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the re-slicing surfaces and the mapping, whereby we create the re-slicing surfaces based on (virtual) electric field 
lines that never overlap. We further make use of a mapping approach that offers two benefits. First, contours are 
mapped independently of each other, allowing implementation of the algorithm in a multi-threaded fashion to 
improve computational performance. Secondly, it creates cycloramas identical in size and shape, readily solving 
the subsequent registration problem, i.e., the problem of aligning 2D cycloramas from different depths of the 
tube, so that features extending over several layers match up and are represented as continuous entities within 
the 3D cyclorama. This unavoidably introduces image deformations across the entire image, resulting in wavy 
but continuous cycloramas as shown in Fig. 3e.

It is worth to investigate the possibility of employing alternative mapping strategies not addressed yet. Notably, 
as our approach treats each contour individually for the benefit of multithreading, this confines our abilities to 
impose certain properties on the 2D cycloramas that result from the mapping, such as minimal image deforma-
tion, maximal smoothness, etc. Approaches within the context of manifold embedding could be used to impose 
such desired properties for the mapping of the 3D re-slicing surfaces. Such methods are studied in the field of 
differential  geometry59, where manifolds (topological spaces that are locally Euclidean) can be embedded in 
lower-dimensional equivalents.

In our case, the dimensionality of the re-slicing surface needs to be reduced from 3D to 2D. This mapping 
or embedding can be done in different ways, including the isometric  mapping60 for minimal image deforma-
tion, or the moving least squares  mapping61 for maximal smoothness, depending on the desired properties of 
the target space. For instance, isometric  mapping60 computes the embedding that optimally preserves geodesic 
distances between the points on the manifold. This algorithm would preserve the shapes of features on the re-
slicing surface, effectively minimising image deformation of feature shapes on the mapped space. However, it 
would not ensure consistency among the shape of all 2D equivalents since it does not necessarily yield rectan-
gular images. This means that each 3D re-slicing surface would be mapped onto a 2D equivalent with different 
dimensions and shape. Hence, a subsequent step of registration among the 2D equivalents would be necessary 
to match up features in sequential 2D surfaces to combine them into a 3D stack depicting the unrolled volume. 
Our approach solves this problem by imposing identical shape and size for 2D cycloramas that are stacked to 
produce a 3D cyclorama, at the expense of the image deformation types discussed in section ‘Mapping: Genera-
tion of 3D cycloramas’.

The moving least squares  approach61 computes a mapping that yields a mapped surface with maximal smooth-
ness. This method requires the user to provide a small set of control point pairs (a point on the source surface 
and its mapped position) and creates a smooth surface that respects the given set. This method would be suitable 
to create rectangular 2D surfaces of identical size and shape. It is an elegant and mathematically sound method 
that is worth investigating and integrating with our approach of reforming the deformed tube into onion-like 
re-slicing surfaces using notions from electrostatics: The requirement of a set of input control point pairs in 
the formulation of the moving least squares approach could be conveniently integrated with the 3D cyclorama 
method given our definition of re-slicing surfaces as a set of contours made up of sequences of points. Control 
point pairs could be created by matching up points �si,h,c from the re-slicing surface (Fig. 3b) with points �pi,h,c on 
the 3D cyclorama grid (Fig. 3d). Selecting a small set of control point pairs would provide enough flexibility for 
image deformation in both directions h and l (see Fig. 3d-e) in addition to the radial image deformation (direc-
tion c) already introduced through the definition of the relative depth levels (see Fig. 3b-d). This flexibility of 
image deformation in all directions would result in a smooth 3D image deformation field.

Although our current implementation for 3D cycloramas was developed to unroll deformed tubes, the math-
ematical framework can, in principle, be applied to digital volume flattening/straightening of thick sheets and 
scrolls of non-uniform thickness as well. To achieve this, the two boundary contours would need to be open 
(non-convex), following the shape of the sheet/scroll. Adaptation of our method to unroll scrolls of non-uniform 
thickness would advance the solution of digital unrolling of ancient papyri and amulets with written or inscribed 
 text26–29, from a 2D approach to a fully 3D volume unrolling, revealing information hidden in deeper layers of 
a scroll.

Conclusion
We developed a method (3D cyclorama) to non-rigidly unroll deformed tubes of non-uniform thickness. Virtual 
electrical charges were applied on the tube’s boundaries, and by deriving the resulting (virtual) electric field lines, 
we could generate internal onion-like 3D surfaces that followed the shape of the deformed tube. This approach of 
using notions from electrostatics to restructure a volume as internal re-slicing surfaces is our main contribution 
to the problem of volume unrolling. We showcased the utility of our 3D cyclorama method (validation) through 
application of digital unrolling of intact colons for the study of crypt budding, and two case studies in Supple-
mentary S.2 and S.3 (segmentation of microvilli in the human placenta and digital flattening of a 3D-printed 
adhesive film, respectively), which present how our 3D cyclorama method can be applied to volumes imaged by 
dissimilar 3D imaging techniques.

Applications of our method, however, go further beyond the case studies we presented here. It can be useful 
for the analysis of digital volumes created by any 3D imaging technique, such as clinical CT, confocal laser scan-
ning microscopy, electron tomography, light sheet microscopy, magnetic resonance imaging, X-ray CT, etc., with 
applications spanning a large range of fields, from archaeology with unrolling of ancient scrolls and mummified 
cats to biomedical research, where abnormal crypts are studied to better understand CRC.

Data availability
The data and software supporting this work are openly available from the University of Southampton institutional 
research repository at https:// doi. org/ 10. 5258/ SOTON/ D1407. The 3D cyclorama software developed through 

https://doi.org/10.5258/SOTON/D1407
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this work has been adapted as a Fiji plugin. The latest version of the plugin is made available through the Fiji 
update sites. For more information please visit https:// imagej. github. io/ plugi ns/ 3d- cyclo rama.

Received: 12 April 2021; Accepted: 15 June 2021
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