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Bayesian ridge regression shows 
the best fit for SSR markers 
in Psidium guajava among Bayesian 
models
Flavia Alves da Silva 1*, Alexandre Pio Viana 1, Caio Cezar Guedes Correa 1,  
Eileen Azevedo Santos 1, Julie Anne Vieira Salgado de Oliveira 1, 
José Daniel Gomes Andrade 1, Rodrigo Moreira Ribeiro 1 & Leonardo Siqueira Glória 2

Markers are an important tool in plant breeding, which can improve conventional phenotypic 
breeding, generating more accurate information outcoming better decision making. This study 
aimed to apply and compare the fit of different Bayesian models BRR, BayesA, BayesB, BayesB 
(setting the value from very low to π = 10−5 ), BayesC and Bayesian Lasso (LASSO) for predictions of 
the genomic genetic values of productivity and quality traits of a guava population. The models were 
fitted for traits fruit mass, pulp mass, soluble solids content, fruit number, and production per plant 
in the genomic prediction with SSR markers, obtained through the CTAB extraction method with 200 
primers. The Bayesian ridge regression model showed the best results for all traits and was chosen to 
predict the individual’s genomic values according to the cross-validation data. A good stabilization 
of the Markov and Monte Carlo chains was observed with the mean values close to the observed 
phenotypic means. Heritabilities showed good predictive accuracy. The model showed strong 
correlations between some traits, allowing indirect selection.

Tropical fruits have a great commercial value worldwide because, besides being widely consumed in the coun-
tries that produce them, they are highly appreciated and with a great added value around the  world1. One of 
these perennial fruits is the guava tree (Psidium guajava L.) which is gaining space on the market in parts, due 
to the increasingly efficient selection methods for improving the species. One of these methods is the selection 
of superior individuals embased by molecular markers, such as genomic selection. This method characterizes 
the ideal association between conventional breeding based on phenotypic observations and modern molecular 
techniques currently available. Its use has a great impact on breeding programs allowing better planning by 
obtain more accurate and precise  estimates2.

However, the breeder has available several statistical models to associate the marks with the phenotypes, 
which makes it a challenge to choose a suitable model for the response of the species and marks. Recently, among 
these models, Bayesian approaches have gained a lot of prominence with the advent of computational power. 
With a Bayesian approach, the effects of the markers can be estimated together to predict the genomic values 
for a quantitative trait without making the previous selection in the panel of  markers3. This Bayesian genomic 
selection has as main advantages the inclusion of a priori information in the model, besides generating more 
accurate credibility  intervals4.

The accuracy varies between models of genomic selection, according to their assumptions and treatments 
of the effects of the markers. For example, it was identified that Bayesian models (Bayesian LASSO—BL) and 
ridge regression models (BRR) showed superior performance for traits controlled by additive genetic  effects5.

Among the available Bayesian approaches, we can mention LASSO Bayesian—BL that combines both selec-
tion and trait contraction methods. Advantageous concerning the most common method that does not use trait 
selection. It has an exponential priori in the variance of the markers, resulting in a double exponential distribu-
tion. The double exponential distribution has a high mass density at zero, and heavier priori tails compared to a 

OPEN

1Laboratory of Plant Genetic Breeding (LMGV), Center for Agricultural Sciences and Technologies (CCTA), 
Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto Lamego 2000, Campos dos 
Goytacazes, Rio de Janeiro 28013-602, Brazil. 2Laboratory of Animal Science (LZO), Center for Agricultural 
Sciences and Technologies (CCTA), Universidade Estadual do Norte Fluminense Darcy Ribeiro (UENF), Av. Alberto 
Lamego 2000, Campos dos Goytacazes, Rio de Janeiro 28013-602, Brazil. *email: flavia_uems@hotmail.com

http://orcid.org/0000-0001-7818-707X
http://orcid.org/0000-0002-2475-4910
http://orcid.org/0000-0002-0579-0270
http://orcid.org/0000-0001-8336-9839
http://orcid.org/0000-0001-9930-6373
http://orcid.org/0000-0003-3152-6411
http://orcid.org/0000-0001-7152-3114
http://orcid.org/0000-0002-2756-5939
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-93120-z&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13639  | https://doi.org/10.1038/s41598-021-93120-z

www.nature.com/scientificreports/

Gaussian  distribution6,7. Bayesian ridge regression—BRR induces homogeneous shrinkage of all marker effects 
to zero and produces a Gaussian distribution of marker  effects8.

Another model is BayesA, that uses an inverse-chi-square (× 2) in the variance of the markers, producing 
a scaled t distribution for the effects of the markers. Similar to BL and unlike BRR, it shrinks the markers with 
small effects to values close to zero, and the markers with greater effects are maintained. The final distribution of 
the marks shows a higher peak of mass density close to zero compared to the double exponential  distribution6,9. 
BayesB is similar and uses an inverse  x2 but uses shrinkage and selection methods of the trait. And when the 
priori parameter π = 0, it is like  BayesA10. BayesC also applies the shrinkage and selection methods of trait and 
generates a Gaussian distribution of the effects of the markers. BayesB and BayesC consist of close to zero density 
in the distribution when using low  priori11.

For the breeder, finding out which model best fits his object of study is of paramount importance for the plan-
ning of the breeding program. For guava, there is not yet a study looking for which model is best applied to the 
association of marks, although primers for simple-sequence repeats (SSR) have also been applied, as observed 
in Dinesh, et al.12.

This study aimed to apply and compare the fit of different Bayesian models BRR, BayesA, BayesB, BayesB 
(setting the value from very low to π = 10−5 ) and BayesC and Bayesian Lasso (LASSO) for predictions of the 
genomic genetic values of productivity and quality traits of a guava population.

Material and methods
Genetic material. The data used in this study were obtained in the experiment carried out from Guava 
Breeding Program at State University of Northern Rio de Janeiro, in accordance with the institutional guidelines 
for carrying out experiments. The experimental area was located at the Antônio Sarlo Technical and Agricultural 
School, in Campos dos Goytacazes, Rio de Janeiro, Brazil, situated at 21° 08′ 02″ S and 41° 40′ 47″ W, with a 
sub-humid and dry tropical climate, with an average temperature between 22 and 25 °C, and an average annual 
precipitation of 1200 mm. In the experimental field, a complete block design with two replications was used. 
Each plot contained one of the seventeen guava segregating families with twelve plants (full siblings).

The families were obtained by crossings between some accessions, that were established considering informa-
tion on genetic diversity obtained by Pessanha et al.13. Were selected the best plants from each family based on 
the work of Silva et al.14 to apply the markers, were:

UENF 1834 × UENF 1833 (12 plants); UENF 1831 × UENF 1830 (12 plants); UENF 1831 × UENF 1832 (1 
plant); UENF 1833 × UENF 1832 (11 plants); UENF 1834 × UENF 1839 (1 plant); UENF 1835 × UENF 1834 (16 
plants); UENF 1836 × UENF 1835 (15 plants); UENF 1833 × UENF 1836 (2 plants); UENF 1831 × UENF 1835 
(10 plants); UENF 1833 × UENF 1835 (5 plants); UENF 1834 × UENF 1837 (5 plants); UENF 1832 × UENF 1835 
(6 plants).

These plants were selected for their performance on seven years of harvests, and represent the plants who 
will proceed to the next stages of the breeding program. In each plant, some traits were measured (n = 5): fruit 
mass in g (FM), pulp mass in g (PM), soluble solids content in °Bx (SSC), number of fruits per plant (NF), and 
production per plant (PROD). In the same plants, were collected young leaves for DNA extraction.

DNA extraction and quantification. DNA extraction was carried out using the standard CTAB method 
with  modifications15. Then, the DNA was quantified by analysis on 1% agarose gel on TAE 1X buffer (Tris, 
Sodium Acetate, EDTA, pH 8.0), using the Lambda marker (λ) of 100 bp (100 ng μL−1) (Invitrogen, USA), by 
comparing the bands. For this procedure, the samples were stained using the mixture of Gel, RedTM, and Blue 
Juice (1:1), and the image was captured by the MiniBis Pro photocumentation system (Bio-Imaging Systems). 
Subsequently, the DNA samples were diluted to a working concentration of 10 ng μL−1.

Polymerase chain reaction (PCR). The PCR reactions were carried out in thermocyclers from Applied 
Biosystems/Veriti 96 well, in a 38 cycle program, obeying the following temperatures and time: 94 °C for one 
minute (initial denaturation), 94  °C for two minutes (cyclic denaturation), the specific temperature of each 
initiator, in °C, for one minute (annealing), 72 °C for three minutes (cyclic extension), 72 °C for 10 min (final 
extension), and 4 °C. The final volume was 13 μL of each sample, being: 2μL of DNA (10 ng/μL), 1.50 μL of 10X 
Buffer  (NH4SO4), 1.5 μL of  MgCl2 (25 mM), 1.5 μL of dNTPs (2 mM), 1 μL of primer (R + F) (5 μM) and 0.12 
μL of Taq-DNA polymerase (5 U/μL) (Invitrogen, Carlsbad, Califórnia, EUA). The amplification products were 
separated on 4% Metaphor agarose gel, stained with GelRedTM, and visualized through the MiniBis Pro photo-
documentation system (Bio-Imaging Systems).

Two-hundred SSR primers were  tested16. After screening, a set of 44 polymorphic primers was selected for 
the amplification reactions on the 96 plants previously sectioned.

Statistical analysis. The genomic predictions was made using the following models: Bayesian Ridge regres-
sion (BRR—Bayesian Ridge regression), BayesA, BayesB, BayesB (setting the very low value of π , 10−5 ), BayesC 
and Bayesian Lasso (Bayesian Lasso—BL, assuming the marginal distribution as double exponential prior to the 
effects of markers). The general model for genomic predictions can be described in the matrix form as:

where: y is the vector of the observations for each characteristic, µ is a vector of average, b is the vector of blocks 
effects, assumed to be fixed, g is the vector of family effects, assumed to be fixed, m is the vector with the effects 
of the markers, assumed to be random, whose assumptions depend on the model used (described below), W is 

(1)y = µ+ Xb+Wg + Zm+ e



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13639  | https://doi.org/10.1038/s41598-021-93120-z

www.nature.com/scientificreports/

the incidence matrix of the genotypes (coded as 0, 1, and 2 representing the allelic variations AA, Aa, and aa) of 
each plant and each marker and e is the vector of the residues.

The models tested for the W matrix assumptions were described in our provious  work17, in summary:
Bayesian ridge regression (BRR)—is a Bayesian method in which it is assumed that all regression coefficients 

have common variance. Thus, for an additive model, all markers with the same allele frequency explain the same 
proportion of the additive variances, and have the same shrinkage  effect18. For BRR it was assumed that:

Bayes A—assumes that the markers with the same Minor allele frequency (MAF) to contribute differently to 
genetic variance, since the variances of the effect of the marks are  heterogeneous19, Bayes A assumes:

Bayes B—can be seen as a complement to Bayes A, since in addition to adjusting the markers with hetero-
geneous variances, Bayes B also assumes that some marks are not in LD with no gene, so they must have their 
effect zeroed, this mechanism of selection of marks is formulated through a mixture of  distributions19, being the 
presuppositions of Bayes B given by:

In the case of Bayes B2, π is not a parameter, but is fixed in such a way that the probability of a marker having 
zeroed effect is 10e − 5.

Bayesian Lasso (BL)—similarly to the philosophy of previous Bayesian methods, BL is assumed to have het-
erogeneous variances for the effect of marks, and BL also predicts that several marks are not in LD with no gene, 
however the selection of BL marks is indirectly through the marginal distribution of the marks effect, which is 
the double exponential (DE)20, a distribution more leptokurtic than the marginal prior distribution used in Bayes 
A and B that is a t  Student18. The BL that will be adjusted in this study assumes:

According  to6,20:

Bayes Cπ—Habier et al. (2011) proposed the Bayes Cπ methodology, which is more parsimonious because it 
presents a common variance component between the effects of marks, so this method tends to present greater 
Bayesian learning, moreover, similar to Bayes B, Bayes Cπ also promotes the selection of marks that would not 
be in LD with any gene. The Bayes Cπ used in this study assumes:

The models were compared based on the Deviance Information Criterion (DIC) proposed by Spiegelhalter 
et al.21. The DIC can be described as follows DIC = D(θ́ )+ 2pD , in which the first term is a Bayesian model 
adjustment measure ( D(θ́ )) , which is defined as the a posteriori mean of deviance and the second component 
( pD ) measures the complexity of the model through the effective number of parameters. Posterior probabilities 
of the models were calculated using the approximation presented by Wilberg and  Bence22 to facilitate the inter-
pretation of DIC values in terms of the superiority of one model over the other, in which it is given by:
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where: p(Mt ∨ l) is the a posteriori probability of model t  , �t is the difference between the DIC of model t  and 
the model with the lowest DIC.

A cross-validation method was used to access the model with best fit.For each model in each trait, the data 
were splitted into two subsets. The first one was composed by randomly 75% and was used to estimate the marker 
effects. The second one, the validation partition was 25%, had their phenotypes predicted by the marker effects 
estimated in the training set. The process was repeated 8 times (folds), each time estimating the correlation 
between predicted and observed phenotypic data and predicted accuracy (ratio between fold correlation and 
square root of heritability)23.

We also estimate the additive genetic variance using the marker variance σ 2
a =

∑
2pqvar(marker) , and herit-

ability based on estimates of additive genetic variances and residual variances H2 = σ 2
a /(σ

2
a + σ 2

e ) , complemen-
tarily, we estimate the genetic correlations based on the genetic values predicted for the evaluated characteristics.

A complete description of the calculation of heritability and the specifications of the probability distribu-
tions of the general model effects above, for the use of Bayesian methods, can be found in Pérez and de Los 
 Campos19. All Bayesian analyzes were performed in the BGLR  package19 of the R  software24, with the BGLR 
function adjusted for 1E6 iterations with the first 2E5 cycles discarded as burn-in and thin assuming the value 
4. Plants (individuals) were ranked using the model that shows the best fit, according to genomic genetic value, 
given by ŷj =

∑
i Zim̂i.

Results
Six Bayesian models were applied to detect the effect of the markers along with phenotypic data from a guava 
population. In the modeling process, cross-validation with eight folds was used to obtain some adjust param-
eters of the models in all folds (Table 1). Among the models used, the Bayesian Ridge Regression model—BRR 
presented the lowest mean value considering a comparative adjustment value (< DIC—Deviance Information 
Criterion) according to the parameters used in the trait soluble solids content (°BRIX).

The DIC is particularly useful in problems of Bayesian selection models, where the posterior distributions 
of the models were obtained by the Markov Chain Monte Carlo simulation (MCMC). DIC is an asymptotic 
approach as the sample size becomes large, like the AIC. It is only valid when the posterior distribution is approxi-
mately normal multivariate. Thus, the chain convergences and the posterior distribution (normal distribution) 
were verified for all traits in the BRR model (Fig. 1).

A good stabilization of the Markov and Monte Carlo chains was observed with the mean values correspond-
ing to observed phenotypic means. The posterior density curves of the chains showed normal distribution in all 
traits. Therefore, it is possible to use DIC values to select the models safely.

Deviations (∆) of information criteria were also obtained for each trait concerning the lowest value, assumed 
as the model that presented the best fit to the data. From these parameters, auxiliaries were also obtained in the 
classification of models as values of posterior adjustment probability of the model (Wprob) and the evidence 
ratio (ER) for the models. All adjust parameters of the BRR model were superior to the other Bayesian models 
used for the SSC trait.

Besides the adjustment values, for the model choice, we consider the model’s ability to predict the pheno-
typic values of a sub-sample with random individuals, in each fold of the cross-validation. The mean values of 
the predicted correlation and the observed phenotypes (r), together with a probability value of r, had no linear 
correlation (Table 1).

For the SSC trait, the BRR model also showed the highest r value with the lowest probability, being a consistent 
correlation between the subsamples. The other models performed very similarly, except for the BayesL model, 
where a discrepant DIC value was observed, and the BayesB2 model, which despite showing a good fit with a 
similar DIC, presented a low predictive capacity with r = 0.35 concerning BRR with r = 0.65.

A similar result in the model’s adjustment and prediction criteria was observed for the other traits, such as 
the number of fruits per plant (NF). In NF, adjusted values of the very similar models close to 980.19 (DIC) 
were observed, with the BRR model chosen by the best predictive capacity with r = 0.82 for 0.65 for FM, 0.64 
for PM, and 0.84 for PROD.

With the model adjustment criteria very close between the models used and great differences between the 
predictive power of each model within the traits, it was possible to observe that choosing a value of π for the 
BayesB model caused an overfit of the model. It was observed that the predictive power of the BayesB model, in 
most cases, presented the worst results (r).

It is worth mentioning that the Bayesian models take considerable time to be executed. Even with the advance-
ment of computational power, the resolution of more complex models requires a longer processing period. This 
is widely known information, but little measured, which must be considered when choosing the model. In this 
study, the time invested in solving the Bayesian models was measured by repeating each chain ten times in a 
loop (Table 2).

Narrow-sense heritability values were estimated for the traits observed in guava with the model that showed 
the best performance (Table 3). The extremes of the values were for the soluble solids content (TSS = 0.32) with 
the highest observed heritability value, and the number of fruits per plant (NF = 0.07) had the lowest heritability 
value. In general, heritability values were low but accompanied by deviation and accuracy measures; they can 
provide more accurate estimates for the advancement of generations in the breeding program. The values of 
the heritability deviation measure were low. This indicates more precise values for heritability, as opposed to 
estimates of heritability obtained punctually, as is commonly done. Error estimates of heritability were obtained 
with the estimate of heritability in each iteration of cross-validation, thus being estimated in several subsets that 
represent the population.
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In predictive accuracy, high values were observed, which is a good indication that the estimated heritability 
represents the population very well. In particular, the predictive accuracy value for the PM trait, estimated at 
0.9708. However, when observing the predictive accuracy of heritability of PROD, the trait of main interest, 
a value close to 0.51, was obtained, which is low. Very similar results were observed for fruit mass and pulp 
mass. The heritability values were 0.1581 and 0.1478 from FM and PM, respectively. The standard deviation of 
heritability was also close and low. Only the predictive accuracy was better in PM than FM, indicating that the 
volume inside the fruits depends less on the size of the fruit, being more random or influenced by another factor 
not observed in this experiment.

With the matrix of the individuals’ marks and the weight that each marker received in the Bayesian ridge 
regression model, the individuals’ genetic values of the traits were estimated, and the genetic correlation matrix 
between the traits was obtained (Fig. 2). A high linear correlation was observed between PM and FM (0.9393) 
and between NF and PROD (0.9641). A correlation was also observed between soluble solids content and two 
traits of the fruit, with a value of 0.3060 between SSC and FM, and 0.3705 between SSC and PM. It was also 
observed that SSC showed a negative correlation with PROD and NF, but there were no significant correlations.

Table 1.  Adjustment quality of six Bayesian models: BL, BRR, BayesA, BayesC, BayesB, and BayesB with 
π = 1e − 5 (BayesB2) to associate SSR markers and phenotypic data in P. guajava in the traits of soluble solids 
content, fruit mass, pulp mass, number of fruits per plant and production per plant. The bias values were 
obtained by eight-fold cross-validation (88% of the data for training and 12% for validation), in the same 
sample sets for each model. DIC = deviance information criterion; Del (delta) = difference between the highest 
and the lowest DIC value; Wprob = posterior probability model; ER = evidence ratio; Error = error attributed to 
Wprob; r = correlation between predicted by the model and reserved validation data; p value = significance of 
the correlation.

DIC ∆ Wprob ER r p value

Soluble solids content

BRR 1348.95 0.00E + 00 5.68E − 01 1.00E + 00 0.65 1.76E − 11

BayesA 1352.36 3.41E + 00 1.03E − 01 5.50E + 00 0.65 1.82E − 11

BayesL 1455.71 1.07E + 02 3.73E − 24 1.52E + 23 0.65 3.34E − 11

BayesC 1352.66 3.71E + 00 8.90E − 02 6.38E + 00 0.65 2.50E − 11

BayesB 1353.17 4.22E + 00 6.87E − 02 8.26E + 00 0.65 3.29E − 11

BayesB2 1351.35 2.40E + 00 1.71E − 01 3.31E + 00 0.35 3.00E − 10

Fruit mass

BRR 4330.52 7.03E − 01 2.58E − 01 1.42E + 00 0.65 5.53E − 12

BayesA 4332.11 2.29E + 00 1.16E − 01 3.15E + 00 0.65 8.88E − 12

BayesL 4377.44 4.76E + 01 1.67E − 11 2.20E + 10 0.64 1.20E − 11

BayesC 4331.05 1.23E + 00 1.98E − 01 1.85E + 00 0.65 7.59E − 12

BayesB 4333.38 3.57E + 00 6.16E − 02 5.95E + 00 0.65 1.04E − 11

BayesB2 4329.82 0.00E + 00 3.66E − 01 1.00E + 00 0.52 2.46E − 12

Pulp mass

BRR 4179.22 8.37E − 01 2.64E − 01 1.52E + 00 0.64 3.04E − 11

BayesA 4181.10 2.71E + 00 1.03E − 01 3.89E + 00 0.64 5.58E − 11

BayesL 4224.53 4.61E + 01 3.83E − 11 1.05E + 10 0.62 7.56E − 11

BayesC 4180.16 1.78E + 00 1.65E − 01 2.43E + 00 0.63 4.36E − 11

BayesB 4181.99 3.61E + 00 6.60E − 02 6.08E + 00 0.63 6.04E − 11

BayesB2 4178.39 0.00E + 00 4.01E − 01 1.00E + 00 0.50 1.28E − 11

Number of fruits

BRR 980.19 6.57E − 01 1.71E − 01 1.39E + 00 0.82 4.36E − 13

BayesA 981.18 9.87E − 01 1.45E − 01 1.64E + 00 0.79 8.92E − 13

BayesL 980.75 5.58E − 01 1.79E − 01 1.32E + 00 0.76 4.31E − 13

BayesC 981.36 1.17E + 00 1.32E − 01 1.79E + 00 0.80 2.88E − 13

BayesB 980.15 0.00E + 00 2.37E − 01 1.00E + 00 0.79 2.39E − 13

BayesB2 981.31 1.12E + 00 1.35E − 01 1.75E + 00 0.73 8.51E − 13

Production per plant

BRR 1825.73 8.71E − 01 1.99E − 01 1.55E + 00 0.84 2.02E − 13

BayesA 1826.51 1.64E + 00 1.36E − 01 2.27E + 00 0.82 5.34E − 13

BayesL 1828.81 3.95E + 00 4.28E − 02 7.20E + 00 0.77 4.08E − 13

BayesC 1825.92 1.06E + 00 1.81E − 01 1.70E + 00 0.82 1.47E − 13

BayesB 1826.55 1.69E + 00 1.33E − 01 2.33E + 00 0.81 3.53E − 13

BayesB2 1824.86 0.00E + 00 3.08E − 01 1.00E + 00 0.74 1.10E − 12
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Figure 1.  Markov and Monte Carlo chains with mean values (red line) and distribution curve for five traits 
observed in guava, generated to relate SSR marks to phenotypic observations.
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The individuals contained in Table 4 were selected because they present positive values in all traits. However, 
it is possible to use a selection index if the objective is to select new individuals to compose a new population 
within a breeding program. Families 8, 10, and 17 were the families that contained more individuals in order-
ing the genetic values considering the production per plant. Thus, these families have low variability among 
themselves, but with a high productive capacity, being recommended for selection and continuity in trials of 
Value for Cultivation and Use.

Table 2.  Estimates of time averages for solving different Bayesian models with  106 iterations, burn-in of  104, 
and chain sampling equal to 3. *A 2.7 GHz Intel I7-7500U processor core was used. The calculations were 
performed with the BGLR  package19 (version 1.0.8) in R  language24 (version 3.5.1).

Model Processing time*

Bayesian Ridge Regression—BRR 15.3 h (+ − 0.15)

BayesA 15.35 h (+ − 0.10)

BayesB 15.32 h (+ − 0.13)

BayesB π = 10
−5 15.3 h (+ − 0.10)

BayesC 15.5 h (+ − 0.2)

Lasso Bayesian 14.95 h (+ − 0.5)

Table 3.  Predict accuracy and standard deviation of heritability for soluble solids content (TSS), fruit mass 
(FM), pulp mass (PM), number of fruits per plant (NF) and production per plant (PROD) observed in guava 
(Psidium guajava), estimated using a model with SSR markers and Bayesian ridge regression—BRR.

H2 Standard deviation Predict accuracy

SSC 0.3261 0.0706 0.6302

FM 0.1581 0.0215 0.8779

PM 0.1478 0.0310 0.9708

NF 0.0732 0.0146 0.6939

PROD 0.1058 0.0154 0.5095

Figure 2.  Genetic correlation between the soluble solids content (TSS), fruit mass (FM), pulp mass (PM), 
number of fruits per plant (NF), and production per plant (PROD) observed in guava (Psidium guajava), 
estimated using a model with SSR markers and Bayesian ridge regression—BRR.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13639  | https://doi.org/10.1038/s41598-021-93120-z

www.nature.com/scientificreports/

Discussion
From a Bayesian approach, the effects of markers can be estimated together to predict the genomic values for a 
quantitative trait without performing the marker selection. This approach is called genomic selection. Several 
penalized and of estimation methods of Bayesian contraction are available, for example, Bayesian counterparts 
of Ridge Regression (Ridge Regression—RR)25, Least Absolute Shrinkage and Selection Operator (Least Abso-
lute Shrinkage and Selection Operator—LASSO)26, as well as models such as BayesA and BayesB and their 
 extensions9. These models are frequently tested for different crops of interest; however, for guava, this informa-
tion is still scarce. In this study, the performance of six Bayesian models for adjusting SSR markers in guava is 
discussed and estimated parameters of interest to the breeder in a breeding program.

Although there are differences between the methods, in a priori assumptions about the effects of the markers, 
it was observed that adjustment parameters of the models were similar. No evident difference was detected for 
any of the traits, mainly for DIC. Thus, the models were chosen, considering not only the adjustment parameters 
but also their predictive capacity and how they behave concerning the markers to generate the regressive model.

BayesL produces a stronger shrinkage of regression coefficients close to zero and less shrinkage for those with 
large absolute values, leading to a scarcer model. By other hand, BRR reduces strongely regression coefficients 
that have large absolute  values27. Thus, it was observed that BayesL presented a median performance, possibly 
because the number of significant marks, with great effects on the model was too scarce to explain the quantita-
tive traits evaluated. Intuitively the reverse occurred with the BRR model, which considered the effects of marks 
more, generating a model with more marks to explain traits controlled by several genes. This means that the 
distribution of the marks was, on average, slightly less than peaks for the effects research grid in the BRR model.

Studies that seek the best models for different species are important to direct breeding programs. For example, 
for another perennial plant (Passiflora edulis), it was observed that the BayesC model was the best model for 
several traits evaluated in this  species17. This model assumes a common variance for all effects of markers but also 
assumes that some markers do not  affect28. Thus, genes with the same allelic frequency probably explain the same 
portion of genetic variation, suggesting that several genes with few effects control the traits, as the quantitative 
traits observed in this study. In the results, it was possible to observe that this model also presented a satisfactory 
performance for traits in guava, being able to be chosen as an alternative model.

Similar results between Bayesian methods such as BayesA and BayesB and other derivatives of these were 
also  observed28, as obtained in this work. This similar result was already expected since the models have few 
variations between them. For example, BayesB and BayesA are more tolerant of the assumption of common 
variance between the effects of the markers. A priori assumed in these models for the effect of a jth marker is a 
joint distribution with a probability π for the beta for the mark equal to zero.

When the BayesB model was proposed, π was suggested with a value close to 0.959. However, with a few 
marks, it is possible to choose lower values for π, where BayesB with π reduced to zero is equivalent to the BayesA 
model. As possible, overfitting of the BayesB model was observed when we used a value of π = 1e − 5; it was forced 
that the marks had a high probability of influencing the trait of interest. Thus, a model was obtained in which 
the betas referring to the brands fitted very well to explain the sub-sample in each fold of the cross-validation, 
but failed to predict the validation sample as observed for most traits (Table 1).

If only the model’s adjustment parameters such as the DIC, which are widely used, had been used, perhaps it 
would not be observed that the predictive power of the BayesB model had the worst performance. This highlights 
the importance of cross-validation. Cross-validation was used to assess how the results of one statistical model 
resemble another set of data. For example, how an adjusted model will predict data that was not used to adjust 
the model. Predicting the performance of genotypes with phenotypes yet to be observed (for example, newly 
developed lines or lines that have been evaluated in a few environments) is essential in plant breeding. There-
fore, cross-validation appears to be a natural way to assess model performance from the breeder’s  perspective29.

Simulation studies have shown that genomic selection using markers alone can adjust the model to an accu-
racy of up to 85%9. The accuracy of 85% is the correlation between the true genetic values and the predicted values 
of individuals in the next generation. True genetic values are known only in simulation studies. In the analysis 

Table 4.  List of selected individuals who presented positive genetic values in the traits soluble solids content 
(TSS), fruit mass (FM), pulp mass (PM), number of fruits per plant (NF), and production per plant (PROD). 
The individuals were classified in descending order considering the PROD.

Individual TSS FM PM NF PROD

B1F15P12 0.76 10.68 8.45 24.57 4507.96

B2F8P4 0.19 6.54 4.12 13.11 3115.68

B2F1P4 0.64 4.99 12.08 14.53 2958.55

B1F15P10 2.51 18.14 16.13 1.25 2848.35

B1F2P8 1.21 33.01 29.67 13.28 2268.82

B2F2P10 0.86 12.18 12.33 16.93 2206.82

B2F3P11 0.89 19.74 19.79 9.29 1421.55

B1F8P1 1.04 18.97 15.93 7.67 1264.91

B2F12P9 0.96 6.90 5.19 9.00 1245.41

B2F17P2 0.27 7.61 4.86 6.15 622.86
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of real data, the predictability of a model must be extracted from a cross-validation study. The predictability 
obtained from cross-validation and the quality of the model’s fit do not necessarily agree with each other. Start-
ing with a small number of markers, both can increase as the number of markers increases. Further increasing 
the number of markers may continue to increase the quality of the model’s fit, but predictability may  drop30.

The heritability coefficient influences the prediction of genomic genetic values, predictive capacity, and asso-
ciation analysis across the genome. With greater heritability of phenotype, there are improvements in the iden-
tification of individuals to be used as parents in the next generations, also favoring the identification of regions 
associated with a characteristic of  interest17.

The heritability of the TSS characteristic was the highest observed, and the value corroborates within the 
range with a study that evaluated a large population of guava trees in  India12. The authors also detect a correla-
tion between this trait and fruit mass, allowing an indirect selection. It is also suggested that there may be a 
possible non-additive effect on the genes controlling this characteristic, as they observed a phenotypic variance 
greater than the genotypic variance. Our model showed low predict accuracy for heritability despite the higher 
value. Also, approximately 40% of the subsample of validation, the model presented a biased prediction, also 
corroborating the idea of gene action with non-additive effects from this characteristic.

For the other traits, the heritability values were low, as expected. The values generally reported for traits such 
as fruit mass, pulp mass, number of fruits, and production are generally close to 0.6031. Our estimates are possibly 
lower because they are estimates from a model that considers the effect of marks, and the usual estimates are 
obtained from phenotypic data that have many more sources of variation, often not considered. Despite being 
low, heritability showed good predict accuracy in cross-validation, reaching 0.97 for the pulp mass.

Pulp mass is strongly correlated with the fruit mass, which from the point of view of plant physiology was 
already expected. FM and PM are traits obtained in similar ways, where one measures the mass of the whole 
fruit, and in the other, the placenta containing the seeds is removed, a part that does not matter in the processing 
of the fruit. Both traits showed similar heritability values of 0.14 and 0.15, which were superior to the traits of 
interest regarding production (NF and PROD). Generally, collinearity is observed between these two traits, and 
this collinearity is particularly interesting for studies of correlations between traits in guava, which may involve 
modeling structural equations such as path analysis, which seek traits that can be selected indirectly.

As the heritability is very similar in the two traits, and the genetic correlation between them is also high, a 
program can direct the selection of individuals with higher pulp mass with the indirectly selecting based on fruit 
mass. In the selection stages, there is a big difference in time and resource spent between just measuring the mass 
of a set of fruits versus opening a fruit removing the placenta, and measuring the mass of the pulp.

In the traits number of fruits and production, heritability was very low, together with estimates of predict 
accuracy. Since these are also quantitative traits, usually controlled by many genes, low heritability was expected. 
However, despite predicting the validation subsample with more than 50%, probably our model was not able to 
capture all the effects for these traits since the model has an unsatisfactory performance.

It is worth mentioning that these traits evaluated are highly influenced by the environment, and especially by 
 management32. For example, a common crop handling in guava trees is the pruning and a subsequent thinning 
of new shoots that arise after pruning. This serves to control both the plant height to facilitate harvesting and the 
number and size of fruits. Thus, the inflorescences that originated the fruits appear in buds in the axils of the new 
shoots. If many shoots are maintained after pruning, the number of fruits tends to increase, but the fruit mass is 
less due to the greater distribution of the available resources of the parent plant. This leads us to look for a correla-
tion between the number of fruits and production with, for example, the mass of the fruit, which was not found 
here, or at least it is a non-linear correlation since the correlations between NF and FM are close to zero (Fig. 2).

Different genetic values were observed among the selected individuals; a possible explanation for this fact 
is that the population has high genetic variability. This implies in the differences between the genetic values 
of individuals, making them more pronounced, making it easier for the methods to classify individuals with 
greater accuracy.

Conclusion
The Bayesian ridge regression model showed the best results and was chosen to predict the genetic values of 
individuals in the traits soluble solids, fruit mass, pulp mass, number of fruits, and production per plant. Her-
itability values showed good predict accuracy. Genetic correlations were obtained to verify the relationship 
between traits, and the model showed strong correlations between some traits, allowing the indirect selection.

Data availability
The full phenotypic information, breeding values, scripts and chains generated used in this study, have been 
submitted at the Open Science Framework and was awarded the public doi identifier: https:// doi. org/ 10. 17605/ 
OSF. IO/ T8X7U.
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