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Comparison of machine learning 
methods to predict udder health 
status based on somatic cell counts 
in dairy cows
Tania Bobbo1*, Stefano Biffani2, Cristian Taccioli3, Mauro Penasa1 & Martino Cassandro1

Bovine mastitis is one of the most important economic and health issues in dairy farms. Data 
collection during routine recording procedures and access to large datasets have shed the light on 
the possibility to use trained machine learning algorithms to predict the udder health status of cows. 
In this study, we compared eight different machine learning methods (Linear Discriminant Analysis, 
Generalized Linear Model with logit link function, Naïve Bayes, Classification and Regression Trees, 
k-Nearest Neighbors, Support Vector Machines, Random Forest and Neural Network) to predict udder 
health status of cows based on somatic cell counts. Prediction accuracies of all methods were above 
75%. According to different metrics, Neural Network, Random Forest and linear methods had the best 
performance in predicting udder health classes at a given test-day (healthy or mastitic according to 
somatic cell count below or above a predefined threshold of 200,000 cells/mL) based on the cow’s milk 
traits recorded at previous test-day. Our findings suggest machine learning algorithms as a promising 
tool to improve decision making for farmers. Machine learning analysis would improve the surveillance 
methods and help farmers to identify in advance those cows that would possibly have high somatic 
cell count in the subsequent test-day.

Bovine mastitis, an inflammatory condition of the mammary gland most commonly caused by bacterial infec-
tion, is a significant health issue in dairy farms. It strongly affects cow welfare and longevity, leading to economic 
losses due to reduced milk production, poor milk quality and treatments  cost1,2. Different strategies are nowadays 
available to achieve and maintain a good udder health status of dairy cows, including the improvement of the herd 
hygienic conditions, the genetic selection of animals to enhance resistance to mastitis, and the improvement of 
mastitis detection  systems3. Bacteriological analysis and PCR assay are the best methods to identify intramam-
mary infections in  cows4. However, these methods cannot be applied to routine data collection at population level 
as they are expensive and time-consuming. Therefore, milk somatic cell count (SCC), which reflects the inflam-
matory status of the mammary gland, has been extensively used to monitor udder health and milk  quality5 and 
to genetically reduce the susceptibility of cows to  mastitis6. Nevertheless, the combined use of different indirect 
indicators of mastitis could be more successful to detect the disease. For this reason, novel indicators of mam-
mary gland inflammation have been explored, including alternative traits describing SCC variation throughout 
the  lactation7–9, cellular immune-associated  traits10, proteins measured in blood  serum11,12, and detailed analysis 
of the different cell types in milk, i.e., polymorphonuclear neutrophils, macrophages and lymphocytes, whose 
proportion varies in milk according to the inflammatory status of the  udder13. Thanks to the recent implementa-
tion of novel milk-testing technologies based on flow cytometry in different laboratories of the Italian Breeders 
Associations (Rome, Italy), differential somatic cell count (DSCC), i.e., the ratio of neutrophils and lymphocytes 
to total  SCC13, is monthly recorded with the aim of improving the identification of the mammary gland status 
of dairy cows. Indeed, the combined use of SCC and DSCC is more accurate to screen for mastitis than SCC 
 only14. In fact, it allows the identification of (1) healthy cows with low SCC and DSCC, (2) susceptible cows 
with low SCC but high DSCC (i.e., those where an immune response has begun and an increase in neutrophils 
is  present15), (3) mastitic cows with high SCC and DSCC, and (4) cows affected by chronic mastitis (those with 
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high SCC but low DSCC, as macrophages are the predominant cell  type16). Although a monthly mastitis risk ratio 
based on a combination of SCC and DSCC is currently provided to the farmers by the Italian Breeders Associa-
tion, additional efforts are needed not only to manage mastitis in the farm but also to prevent it. Therefore, the 
development of new reliable methods to predict mastitis occurrence is a priority. Routine data collection during 
monthly recording procedures and access to large datasets including information on herd, cows and milk compo-
sition suggest the possibility to use machine learning (ML) classification algorithms to predict the udder health 
status of cows. The ML methods allow identification of meaningful relationships between variables and exploit 
this information to train different prediction models and evaluate their predictive performance on unknown 
data. Different studies have applied ML to predict and diagnose mastitis, defined by the presence of high milk 
 SCC17–19 or mastitis  pathogens20–23. Some of these  studies17–19 have established SCC-independent models for 
mastitis prediction, testing different prediction models on milking traits (e.g., milk volume, fat, protein, lactose, 
electrical conductivity, milking time and peak flow) obtained by the use of automatic milking systems to predict 
subclinical mastitis (SCC ≥ 250,000 cells/mL). Nevertheless, in those studies both outcome (mastitic or healthy 
according to SCC value) and features (milk traits) were recorded at the same milking time. Predictions based 
on data collected at different time points were reported by Anglart et al.24, who explored different ML methods 
for predicting cow composite SCC by using quarter and cow milk data regularly recorded in cows milked with 
automatic milking system. However, data spanned a 2-mo period and were collected in only one dairy farm. 
Moreover, prediction of subclinical mastitis using information (i.e., animal information, milk production and 
composition) recorded on the previous test-day (TD) in the frame of the monthly recording procedure across 
several dairy herds have not been investigated yet. Such analysis would improve the surveillance methods and 
help farmers to identify in advance those cows that would possibly present high SCC level in the subsequent 
TD. Therefore, the aim of the present study was to compare the performance of ML algorithms in predicting the 
udder health status of cows (healthy or mastitic according to SCC below or above a predefined threshold) at TD 
n + 1 using cow and milk information collected at the previous TD n.

Results
Prediction models developed within eight different ML methods, namely Linear Discriminant Analysis (LDA), 
Generalized Linear Model (GLM) with logit link function, Naïve Bayes (NB), Classification and Regression 
Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines (SVM), Random Forest (RF) and Neural 
Network (NN) were trained and tested on 80% of the data (14,755 records) to identify the best udder health 
prediction method based on data previously recorded on cow (parity and stage of lactation) and milk (year of 
sampling, season of sampling, milk yield, fat, protein, casein, lactose, pH, urea,  log10SCC, DSCC, and average milk 
yield and  log10SCC of cows of the same contemporary group, defined as cows sampled in the same herd and day).

Recursive feature selection. Machine learning algorithms can run more efficiently if a reduction of inde-
pendent features is first performed, as some of these could be uninformative. In our study, recursive feature 
selection applied before training the algorithms revealed that the most parsimonious model with best perfor-
mance (higher accuracy) was the one that included all investigated features (Fig. 1). Therefore, all 15 features 
were relevant in predicting the outcome and were considered for subsequent analysis.

Method comparison and evaluation of performance in predicting udder health status on test-
ing set. Evaluation of performance of each ML method in predicting udder health status on testing set was 
based on accuracy and kappa values. Accuracies ranged from 76.3% (NB) to 80.5% (LDA, NN and GLM), 

Figure 1.  Illustration of the recursive feature elimination results incorporating 1 to 15 features. A random forest 
method was used to predict the udder health status of dairy cows according to somatic cell count below or above 
200,000 cells/mL. The number of features included within the model is reported on the x-axis and the accuracy 
of the model from tenfold cross validation repeated 100 times is on the y-axis.



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13642  | https://doi.org/10.1038/s41598-021-93056-4

www.nature.com/scientificreports/

whereas kappa values ranged from 36.2% in kNN to 50.2% in NN (Fig. 2). According to considered metrics, 
NN was the best method in predicting udder health classes (SCC ≤ 200,000 cells/mL or SCC > 200,000 cells/mL). 
Feature importance using NN on testing set for predicting udder health status suggested that  log10SCC was the 
most important feature (as expected), followed by stage of lactation, DSCC, protein and parity (Fig. 3). Urea was 
the least informative feature.

Method comparison and evaluation of performance in predicting udder health status on vali-
dation set. Method performance metrics on external validation set are summarized in Table 1. The LDA and 
RF methods showed the highest accuracy (79.7%) in predicting udder health classes, followed by GLM and NN 
(79.6%). The lowest accuracy (75.3%) was observed for the NB method. Sensitivity ranged from 61.6% (CART) 
to 38.1% (kNN). Among the other methods, sensitivity lower than 50% was reported only for SVM (47.9%). 
High specificity was observed for SVM (91.9%), GLM (91.3%) and LDA (90.9%). The best precision, or positive 
predictive value (PPV), was obtained for SVM (70.6%), GLM (70.6%) and LDA (70.3%), and the highest nega-
tive predictive value (NPV) was observed for CART (84.6%), NN (83.4%) and NB (83.1%). The CART method 
had also the greatest kappa value (49%) and F1 score (63.4%). The greatest values of Matthew’s Correlation Coef-
ficient (MCC) were observed for CART (0.490), NN (0.482) and RF (0.482).

Classification errors (false positive, false negative and total), based on method accuracy, are depicted in Fig. 4. 
The false negative error was higher for kNN (25.2%) than other methods, whereas the lowest error was reported 
for CART (15.7%). The highest false positive error was estimated for NB (44.3%) and CART (32.9%), and the low-
est for SVM (19.9%). Considering the total error, the worst performances were reported for NB (24.6%) and kNN 
(24.5%), whereas the lowest error was observed for LDA (20.2%), GLM (20.3%), RF (20.3%) and NN (20.4%).

The Neural network showed the highest area under the curve (AUC, 82.9%), followed by LDA (82.8%) and 
GLM (82.7%); these methods had the best receiver operating characteristic (ROC) curves (Fig. 5). A lower AUC 
with a value of 75.0% was reported for kNN.

Discussion
Machine learning algorithms offer new approaches for the analysis of large amount of data collected in dairy 
farming thanks to the use of herd management  systems25 and milk testing performed in the frame of national 
recording procedures. Machine learning methods are indeed a promising tool to improve decision support sys-
tems for farmers and have already been applied in different areas of dairy research such as behaviour, feeding, 
management, physiology and  reproduction25. Such advanced analyses allow to predict outcomes of economic 
relevance. In addition, the advantage of ML approaches over traditional statistical methods is the data-driven 
evaluation of the relationship between features and outcome, without bias introduced by the researcher’s hypoth-
esis (e.g., assumption of linearity)26. The possibility to predict SCC increase using existing data (e.g., herd and 

Figure 2.  Comparison of the performance (accuracy and kappa value) of eight machine learning methods 
[Linear Discriminant Analysis (LDA), Neural Network (NN), Generalized Linear Model (GLM) with logit link 
function, Support Vector Machines (SVM), Random Forest (RF), Classification and Regression Trees (CART), 
k-Nearest Neighbors (kNN) and Naïve Bayes (NB)], run on the testing set, in prediction of udder health status 
of dairy cows according to somatic cell count below or above 200,000 cells/mL from cow’s and milk data 
recorded at the previous test-day record.
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cow’s data, as well as milk production and composition) provides an effective tool to improve the prevention of 
mastitis. In the present study we predicted the udder health status of cows using information collected at the 
previous TD across different herds, applying a repeated tenfold stratified cross-validation (CV), which is a robust 
method to prevent model  overfitting27. In addition, similar performance of investigated methods on both testing 
and validation sets indicated the absence of overfitting. These results suggested the possibility to apply findings 
of this study also to other dairy  herds22.

Figure 3.  Plot of the feature importance across 100 replicates showing the features’ ranking for the prediction 
of udder health status of dairy cows according to somatic cell count below or above 200,000 cells/mL. Evaluated 
features, using neural network as predictive methods, are: log-transformed somatic cell count  (log10SCC), 
stage of lactation (DIM), differential somatic cell count (DSCC), protein, parity order, casein,  log10SCC of cows 
sampled in the same herd and day  (log10SCC_HTD), lactose, fat, season of sampling, milk yield (MY), year of 
sampling, pH, MY of cows sampled in the same herd and day (MY_HTD) and urea.

Table 1.  Methods performance metrics [accuracy and 95% confidence interval (CI), sensitivity (Se), 
specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), kappa, F1 score and 
Matthew’s Correlation Coefficient (MCC)] on external validation set. Prediction models were developed 
within different methods: Linear Discriminant Analysis (LDA), Generalized Linear Model (GLM) with logit 
link function, Naïve Bayes (NB), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), 
Support Vector Machines (SVM), Random Forest (RF) and Neural Network (NN).

Method Accuracy 95% CI Se Sp PPV NPV kappa F1 score MCC

LDA 0.797 0.784–0.810 0.524 0.909 0.703 0.823 0.468 0.600 0.478

GLM 0.796 0.783–0.809 0.511 0.913 0.706 0.820 0.461 0.593 0.472

NB 0.753 0.739–0.767 0.593 0.819 0.573 0.831 0.407 0.583 0.408

CART 0.793 0.780–0.806 0.616 0.865 0.652 0.846 0.490 0.634 0.490

kNN 0.754 0.740–0.768 0.381 0.907 0.626 0.781 0.325 0.474 0.342

SVM 0.791 0.777–0.804 0.479 0.919 0.706 0.812 0.439 0.571 0.454

RF 0.797 0.783–0.810 0.553 0.897 0.687 0.830 0.477 0.613 0.482

NN 0.796 0.782–0.808 0.567 0.889 0.677 0.834 0.479 0.617 0.482
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Performance of ML methods on testing and validation sets was evaluated by means of different metrics, such 
as accuracy, true and false positive rates, precision, F-score, and AUC value. Although it has become a common 
practice to provide several evaluation metrics, different measures assume a different use  case28. Accuracy, which 
represents the number of correct predictions made by the model over the total number of predictions, is one of 
the most used metrics, however it is not sufficient alone to evaluate model performance. Indeed, depending on 
the specific case, the cost of false positive and of false negative might not be the same. Thus, model evaluation 
should be based also on other metrics, e.g. recall or sensitivity (if we want to minimize false negatives) and preci-
sion or PPV (if we want to minimize false positives). To get the model with best performance optimizing both 
false positive and false negative proportion, F1 score should be considered, as it represents the harmonic mean of 
both precision and recall. The AUC is another widely used metric for evaluation of classification problems, and 
it has the big advantage of being independent from outcome rate, as well as MCC. According to several of these 
metrics, NN, RF and linear models (LDA and GLM) were the methods with the best performance in predicting 
udder health status both in the testing and in the validation set. Among all, KNN had the worst performance, 
possibly due to its susceptibility to the presence of  noise29. In detail, the best four methods had the lowest total 
error percentage for predictions on validation set, with NN and RF having among the lowest false negative error, 
and linear methods among the lowest false positive error. The CART method showed a good total error percent-
age comparable to that of NN, RF, LDA and GLM; however, together with NB, it had the lowest false negative, 
but the greatest false positive error. In addition, CART showed also a relatively poor performance based on AUC 
value. Lowering false negatives (i.e., erroneously classifying cows as healthy on the subsequent TD) balancing also 
the false positives would represent the best approach for our specific case. Thus, NN, RF and the linear methods 
seem to be the best methods in predicting udder health status. Nevertheless, although some methods had better 
performance than others, prediction accuracies of all methods were above 75%, meaning that on a herd with 100 
cows we can correctly predict at least 75 cows. The good prediction ability of different NN methods applied on 
milk data has been previously reported in the  literature30,31. Using instead a RF algorithm, Hyde et al.22 correctly 
replicated mastitis diagnosis at herd level with high degree of accuracy when compared with a veterinary clini-
cian, highlighting the potential for such algorithms to reproduce the complex clinical diagnosis.

In our study, we applied a classification approach to predict subclinical mastitis. Predictions of udder health 
related outcomes based on SCC cut-offs were reported also by other  authors30–32. In a previous  study19, ML 
methods were applied to predict mastitis (SCC ≥ 250,000 cells/mL) using milking traits recorded at the same 
milking time by automatic systems. In addition, overall weights of milking traits in predicting subclinical mastitis 
based on investigated algorithms revealed that electrical conductivity and lactose percentage were the features 
with greater importance. In our study, the most important trait for prediction of udder health status based on 
NN was  log10SCC, followed by stage of lactation, DSCC, protein and parity. Somatic cell count measured at the 
previous TD was expected to be the most important feature. Stage of lactation and parity are well-known factors 
affecting SCC  variation33, whereas changes in protein profile of milk with high SCC due to proteolysis of casein, 
decreased synthesis of whey proteins, and leakage through the blood–milk barrier are well documented in the 
 literature34. A positive correlation between SCC and DSCC was reported in a previous  study35, as well as the 
combined use of DSCC and SCC to better screen for udder health  status14.

Predictions obtained using different ML methods on data collected at different time points were reported 
by Anglart et al.24, who predicted cow composite SCC by using quarter and cow milk data regularly recorded 
in cows milked in an automatic milking system in a 8-week trial. The authors evaluated three ML methods 
(generalized additive model, RF, and multilayer perceptron), developing models with different variables setups, 
and found generalized additive model and multilayer perceptron to be promising for udder health predic-
tion. Also, Ankinakatte et al.36 reported generalized additive model to be a good predictive method to detect 

Figure 4.  Comparison of the performance [false negative error (FN.ERR), false positive error (FP.ERR) and 
total error (TOT.ERR)] of eight machine learning methods [Classification and Regression Trees (CART), 
Generalized Linear Model (GLM) with logit link function, k-Nearest Neighbors (kNN), Linear Discriminant 
Analysis (LDA), Naïve Bayes (NB), Neural Network (NN), Random Forest (RF) and Support Vector Machines 
(SVM)] run on the validation set, in prediction of udder health status of dairy cows according to somatic cell 
count below or above 200,000 cells/mL from cow’s and milk data recorded at the previous test-day record.
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oncoming clinical mastitis with automated recorded data, together with NN. Results of the present study further 
highlight the good predictive ability of linear and NN methods. Nevertheless, an interesting aspect has arisen 
from our analyses, by performing some tests using non-transformed and log-transformed SCC traits (SCC and 
SCC_HTD). Our findings suggested that performances of most of the analyzed methods were not affected by 
variable transformation (supporting the hypothesis that no transformation should be required in ML analyses), 
whereas performances of linear methods (GLM and LDA) improved using log-transformed SCC traits. Indeed, 
the accuracy increased by about 2%, the AUC by 4%, the MCC by 8% and the F1 score by 10%. For this reason, 
we reported results obtained with log-transformed SCC traits and highlighted the data transformation effect 
on linear ML methods performances. This aspect should be considered when choosing the ML methods to be 
applied to a specific analysis.

Anglart et al.24 also suggested to include information on cows’ previous composite SCC in model training 
to lower the prediction error. Although we recognize that predictions between monthly TD sampling would 
represent an asset for mastitis monitoring, such application is feasible only if automatic milking systems are used 
by the farmers, which is not the case of the current situation in Italy.

Figure 5.  Comparing Receiver Operating Characteristic (ROC) curves of eight machine learning methods 
[Linear Discriminant Analysis (LDA), Generalized Linear Model (GLM) with logit link function, Naïve Bayes 
(NB), Classification and Regression Trees (CART), k-Nearest Neighbors (kNN), Support Vector Machines 
(SVM), Random Forest (RF) and Neural Network (NN)] run on the validation set, in prediction of udder health 
status of dairy cows according to somatic cell count below or above 200,000 cells/mL from cow’s and milk data 
recorded at the previous test-day record. In each plot, area under the curve (AUC) and 95% confidence interval 
were reported.
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The low to moderate sensitivity (38–62%) and relatively high specificity (> 82%) of all ML methods evaluated 
in the present study suggested their high power to correctly identify healthy cows (still a valuable result in order 
to narrow the group of animals that could possibly develop the disease) and the scarce ability to distinguish 
subclinical mastitis. Considering NN, 290 false positive out of 1071 true positive records and 464 false negative 
out of 2616 true negative records were obtained. However, false positives were classified as mastitic although 
healthy at the subsequent TD with an average probability of 0.67 (in a 0–1 scale, where values above 0.50 define 
the prediction as “mastitic” and values below 0.50 as “healthy”; data not shown). Thus, probability estimates rather 
than only a binary outcome should be taken into account to define the uncertainty of a prediction. In detail, a 
probability of 0.51 of being mastitic is less reliable than a probability of 0.99 and a farmer should be aware of 
such differences within each class (healthy or mastitic). In addition, 254 out of 290 records had SCC greater than 
200,000 cells/mL in the previous TD, driving the prediction to define the animals as mastitic. These cows possibly 
spontaneously recovered from a mastitic event. Nevertheless, high SCC level in the previous TD suggests alone 
that special attention should be placed to these animals, independently from ML future predictions. Similarly, 
for NN method, 384 out of 464 records that were classified as healthy but should have been considered mastitic 
had SCC at the previous TD lower than 200,000 cells/mL. These cows could have undergone a mastitic event in 
the time between two TD; thus, reduction in the time period between TD recording would likely improve pre-
diction accuracy. Nevertheless, 149 out of 384 false negatives had, at the previous TD, SCC below 200,000 cells/
mL but DSCC above 70%, a threshold that is currently used to distinguish the udder health status. Indeed, cows 
with low SCC and high DSCC are considered as susceptible to  mastitis14. Therefore, our results provide further 
evidence on the important information provided by DSCC, in combination with SCC.

Despite the large number of published studies on ML methods applied to animal science, a reliable practical 
implementation of most tested algorithms for management decision has not occurred yet. This may be due to 
the availability of poor training  data25. To improve prediction accuracies, data retrieved from many different 
herds and recorded for longer time periods should be considered, and large integrated high-quality datasets have 
to be created. Another possibility would be the development of more herd-specific algorithms, focusing on the 
specific needs of individual farmers.

Our results underlined the difficulty in defining the best methods to be used in ML analysis, as some methods 
might be affected by data structure and distribution. Nevertheless, findings of this study represent a valuable 
prelude to develop ML models that will provide to the farmers a prediction of whether their cows will possibly 
have high SCC level at the subsequent TD using already available information.

Methods
Data collection and editing. Cows in the current study belonged to commercial herds and were not sub-
jected to any invasive procedures. Milk samples were previously collected during routine milk recording proce-
dures by the personnel of “the Breeders Association of Veneto Region” (Padova, Italy) and thus data for the study, 
collected from January 2018 to January 2020, were retrieved from this Association. The dataset included infor-
mation on herd, cows (ID, breed, stage of lactation and parity), date of sample collection, daily milk production 
(kg/d), milk composition [fat, protein, casein and lactose percentages, pH and urea (mg/100 mL)] determined 
through Milkoscan FT6000 (Foss, Hillerød, Denmark), SCC (cells/mL) and DSCC (%) determined using the 
Fossomatic 7 DC (Foss, Hillerød, Denmark). At the time of sampling, the laboratory of the Breeders Association 
of Veneto Region was equipped with 3 infrared instruments to determine somatic cells, 2 Fossomatic 6 (Foss, 
Hillerød, Denmark), which provided only SCC, and 1 Fossomatic 7 DC, which provided information on SCC 
and DSCC. Thus, approximately one third of all the milk samples collected in Veneto Region in the framework of 
the routine milk testing procedures and processed by the laboratory could be randomly analyzed using the Fos-
somatic 7 DC. Only milk samples that were analyzed using the Fossomatic 7 DC, that included the new DSCC 
trait, were used for subsequent statistical analysis, whereas the other records were excluded from the dataset. In 
addition, the original dataset was edited to select Holstein Friesian cows between 5 and 480 days in milk (DIM) 
and with a minimum of 2 TD records within lactation; other breeds were excluded from the analysis due to few 
observations available. Among milk traits, outliers beyond 4 standard deviations, possibly resulting from errors 
in milk sample collection, measurement or data entry procedures, were excluded from the subsequent statisti-
cal analysis. Furthermore, to avoid data fragmentation over time, only lactations with an interval between 2 
consecutive TD < 6 weeks were considered, i.e. if more than 42 days occurred between two consecutive TD, such 
data were not considered for subsequent analysis. Records with missing values were discarded. Contemporary 
groups were defined as cows sampled in the same herd and day (herd-test-date, HTD). Average milk produc-
tion (MY_HTD) and SCC (SCC_HTD) of contemporary groups were also determined. According to Valletta 
et al.37, there is a substantial difference between making inferences and predictions. In detail, statistical models 
focused on inference start with an assumption about data distribution (i.e., the normality assumption of the 
distribution of the dependent variable and the residuals). Machine learning models focus on predictions and do 
not assume a functional distribution of the data. For this reason, we initially decided to run the analysis with no 
data transformation. However, we also log-transformed SCC-related traits, which do not have normal distribu-
tion. Following these preliminary tests, the two SCC-related traits (SCC and SCC_HTD) were log-transformed 
to achieve normality, whereas no transformation was required for DSCC. A total of 15 features within each TD 
record were considered: parity (1, 2, 3 and ≥ 4), stage of lactation (11 classes of 30 d each and the last being an 
open class > 305 DIM), year of sampling (2018 and 2019), season of sampling (winter: December, January, Feb-
ruary; spring: March, April, May; summer: June, July, August; autumn: September, October, November), milk 
yield (MY), fat, protein, casein, lactose, pH, urea,  log10SCC, DSCC, MY_HTD and  log10SCC_HTD. For each TD 
record n, udder health status at TD n + 1 (Outcome) was classified using a predefined SCC threshold of 200,000 
cells/mL38; in detail, health status was coded as 0 for SCC ≤ 200,000 cells/mL and 1 for SCC > 200,000 cells/mL. 
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After editing, the final dataset included 18,442 records of 14,064 cows in 791 herds. Selected farms had an aver-
age herd size of 135 milking cows, ranging from 4 to 1,546. Most of them presented traditional milking parlor, 
whereas only few herds were equipped with automatic milking systems. These 791 farms had an average cow’s 
milk production of 30.7 kg/day, and the average fat and protein content was 4.03% and 3.45%, respectively. The 
much lower mean herd size of the subset analyzed (~ 18 cows) was due to the restrictive data editing previously 
described. Each record included information of 2 subsequent TD: outcome at TD n + 1 and independent features 
of TD n. The prevalence of subclinical mastitis (SCC > 200,000 cells/mL) was 29.0%.

Data processing. Within eight different ML methods (LDA, GLM, NB, CART, kNN, SVM, RF and NN), 
prediction models were developed to identify the best udder health prediction method based on cow and milk 
data of the previous TD. The dataset of 18,442 records was randomly split into two subsets: 80% of the data 
(14,755 records) were used to train and test the models, whereas the remaining 20% of the data were excluded 
from model construction and held back as an external validation set. Recursive feature selection using a tenfold 
CV repeated 100 times with RF method was applied to automatically select a subset of the most predictive fea-
tures to identify the most parsimonious model with best performance.

To train and test the relationship between outcome (0/1 based on SCC levels at TD n + 1) and features (cow 
and milk data of TD n), a stratified tenfold CV repeated 100 times was employed. Stratification allowed to take 
into account the imbalanced output classes and to preserve the percentage of samples for each target  class27. The 
original train/test dataset (n = 14,755) was randomly divided into 10 subsets of equal size. Prediction models 
were trained on 9 of these subsets and the last subset was used as test set to evaluate methods performance in 
predicting the outcome. Each tenfold CV was repeated 100 time. A total of 1,000 iterations were performed 
and 100 mean accuracy value of the tenfold CV were then averaged to obtain the final accuracy of each method 
reported in the tables. Standardization of data (center and scale) was performed within CV. Tuning details of each 
model are reported in Supplementary file 1. Data analysis was performed using Caret v.6.0–8639 and Tidyverse 
v. 1.3.140 packages of R software v.4.0.5 (https:// cran.r- proje ct. org/ bin/ windo ws/ base/)41.

Method comparison and evaluation of performance on validation set. Accuracy of each predic-
tion model on testing set was used as first comparison metric among algorithms. The accuracy of a test repre-
sents the proportion of correct predictions (true positive and true negative) among all examined cases. Feature 
importance using the best prediction model (the one with the greatest accuracy) on testing set was assessed. Pre-
dictive skills (predicted outcome 0/1, as well as predicted probability from 0 to 100% of being classified as 0 or 1) 
of all investigated models on external validation set were then estimated. Results were analysed via a confusion 
matrix and several performance statistics [e.g., accuracy, sensitivity, specificity, positive predictive value (PPV) 
and negative predictive value (NPV)] on validation set were reported for each method.

False positive, false negative and total error rates across methods were also compared. Cohen’s Kappa value, 
which is a measure of the classifier’s performance as compared to its performance simply driven by chance, and 
F1 score, which is a weighted mean of sensitivity and PPV, were reported. Receiver operating characteristic 
curve analysis was performed using pROC package v. 1.17.0.142 in R and the AUC value was used for methods 
performance comparison. In addition, as a measure of the classification’s quality, MCC for each method was 
calculated according to the following formula:

where TP is true positive, TN is true negative, FP is false positive and FN is false negative.

Data availability
The dataset analysed in the current study is available from the corresponding author on reasonable request.
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