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Deep‑learning framework 
and computer assisted 
fatty infiltration analysis 
for the supraspinatus muscle in MRI
Kyunghan Ro1,8, Joo Young Kim2,8, Heeseol Park3, Baek Hwan Cho4,7*, In Young Kim2, 
Seung Bo Shim5, In Young Choi6 & Jae Chul Yoo3*

Occupation ratio and fatty infiltration are important parameters for evaluating patients with rotator 
cuff tears. We analyzed the occupation ratio using a deep-learning framework and studied the 
fatty infiltration of the supraspinatus muscle using an automated region-based Otsu thresholding 
technique. To calculate the amount of fatty infiltration of the supraspinatus muscle using an 
automated region-based Otsu thresholding technique. The mean Dice similarity coefficient, accuracy, 
sensitivity, specificity, and relative area difference for the segmented lesion, measuring the similarity 
of clinician assessment and that of a deep neural network, were 0.97, 99.84, 96.89, 99.92, and 0.07, 
respectively, for the supraspinatus fossa and 0.94, 99.89, 93.34, 99.95, and 2.03, respectively, for the 
supraspinatus muscle. The fatty infiltration measure using the Otsu thresholding method significantly 
differed among the Goutallier grades (Grade 0; 0.06, Grade 1; 4.68, Grade 2; 20.10, Grade 3; 42.86, 
Grade 4; 55.79, p < 0.0001). The occupation ratio and fatty infiltration using Otsu thresholding 
demonstrated a moderate negative correlation (ρ = − 0.75, p < 0.0001). This study included 240 
randomly selected patients who underwent shoulder magnetic resonance imaging (MRI) from January 
2015 to December 2016.  We used a fully convolutional deep-learning algorithm to quantitatively 
detect the fossa and muscle regions by measuring the occupation ratio of the supraspinatus muscle. 
Fatty infiltration was objectively evaluated using the Otsu thresholding method. The proposed 
convolutional neural network exhibited fast and accurate segmentation of the supraspinatus muscle 
and fossa from shoulder MRI, allowing automatic calculation of the occupation ratio. Quantitative 
evaluation using a modified Otsu thresholding method can be used to calculate the proportion of fatty 
infiltration in the supraspinatus muscle. We expect that this will improve the efficiency and objectivity 
of diagnoses by quantifying the index used for shoulder MRI.

With the advancements in computer-aided diagnoses, aided by deep-learning frameworks and convolutional neu-
ral networks (CNNs), several methods have been made to analyze medical images using artificial intelligence1–3.

Atrophy and fatty infiltration of the supraspinatus muscle, as observed in magnetic resonance imaging (MRI), 
can reveal the severity of a rotator-cuff tear4. Atrophy of rotator-cuff muscles is one of the most important prog-
nostic factors for anatomical and functional results following surgical repair5. Furthermore, fatty infiltration 
of the supraspinatus muscle not only aggravates functional outcomes, but also increases the re-tear rate after 
repair6,7. However, accurate measurement of these indices often relies on clinicians. This is a time-consuming 
process, and there have been debates about their accuracy and reliability8.
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We hypothesize that segmentation of the supraspinatus muscle and fossa via deep learning will achieve excel-
lent results compared with human observations and measurements. However, the quantitative value of fatty 
infiltration of the supraspinatus muscle using computer-assisted analysis might not show significant differences 
between Goutallier grades 0 and 1 and grades 3 and 4. This study aimed to analyze the occupation ratio using a 
deep-learning framework and to calculate the amount of fatty infiltration of the supraspinatus muscle using an 
automated region-based Otsu thresholding technique.

Results
Segmentation of the supraspinatus muscle and fossa.  The results from the two orthopedic surgeons 
were in excellent agreement for both the supraspinatus fossa (Dice similarity coefficient [DSC]: 0.88 ± 0.12) 
and muscle (DSC: 0.91 ± 0.08). The supraspinatus muscle and fossa were segmented using a desktop computer 
(Intel® Core™ i7-7700 CPU @ 3.60 GHz, 32.0 GB RAM, NVIDIA GeForce GTX 1080 Ti 11 Gbps) in 0.1483 s 
(148.3369 ms), whereas the segmentation using ITK-SNAP software required more than 5 min for each person. 
The performance of our proposed models to detect regions of interest compared with clinician findings in terms 
of DSC, accuracy, sensitivity, specificity, and relative area difference (RAD), are listed in Table 1. The DSC of the 
supraspinatus fossa was 0.97 ± 0.01 and 0.94 ± 0.05 for the supraspinatus muscle, which reflected excellent agree-
ment. The supraspinatus muscle and fossa showed high accuracy: 99.84 ± 0.08 and 99.89 ± 0.07, respectively. 
The sensitivity and specificity of the supraspinatus fossa were 96.89 ± 2.20 and 99.92 ± 0.06, respectively. The 
supraspinatus muscle also showed high sensitivity and specificity: 93.34 ± 7.85 and 99.95 ± 0.03, respectively. The 
RAD of the supraspinatus muscle was higher than that of the supraspinatus fossa: 0.07% ± 0.01 vs 2.03% ± 9.90.

Fatty infiltration by Otsu thresholding.  Fatty infiltration per Goutallier grade was evaluated for the 
total shoulder MRI. The interobserver agreement and mean intraobserver agreement of the Goutllier grade 
between clinicians were 0.78 (good) and 0.87 (excellent) of weighted kappa values, respectively. The intraclass 
correlation coefficient of the ground truth and prediction was 0.94, indicating excellent agreement. Among the 
240 shoulder magnetic resonance (MR) images, 55 had grade 0. Grades 1 and 2 were observed in 75 and 68 
images, respectively, which were higher than grades 3 and 4. Quantitative calculation of fatty infiltration via Otsu 
thresholding was performed. Grade 0 exhibited a value of 0.06 ± 0.14, which was the lowest among the Goutallier 
grade groups. The fatty infiltration of Goutallier grades 1 and 2 was 4.68 ± 7.21 and 20.10 ± 10.57, respectively. 
Grade 3 fatty infiltration was 42.86 ± 10.41, and grade 4 exhibited a value of 55.79 ± 10.87. All the differences in 
fatty infiltration among the Goutallier grade groups were statistically significant (p < 0.0001) (Table. 2).

Occupation ratio and fatty infiltration.  From the analysis of the correlation between the occupation 
ratio and fatty infiltration, the greater occupation ratio was strongly negatively correlated with fatty infiltration, 
and this correlation was statistically significant (r = − 0.750, p < 0.001) (Fig. 1). However, there were several outli-
ers in the trends in the study. Some cases showed relatively high occupation ratios with high fatty infiltrations, 
while others showed relatively low occupation ratios with low fatty infiltrations (Fig. 2).

Table 1.   Mean dice similarity coefficient, accuracy, sensitivity, specificity, and RAD for segmented areas, 
comparing clinicians with deep neural network. Data are shown as mean ± standard deviation (SD) unless 
otherwise indicated. DSC = Dice similarity coefficient, RAD = relative area difference.

Parameter Supraspinatus fossa Supraspinatus muscle

DSC 0.97 ± 0.01 0.94 ± 0.05

Accuracy 99.84 ± 0.08 99.89 ± 0.07

Sensitivity 96.89 ± 2.20 93.34 ± 7.85

Specificity 99.92 ± 0.06 99.95 ± 0.03

RAD (%) 0.07 ± 3.71 2.03 ± 9.90

Table 2.   Analysis of fatty infiltration by OTSU thresholding in each goutallier grade.

Variable

Fatty infiltration

P-valueMean ± SD Lower limit Upper limit

Goutallier

Grade 0 0.06 ± 0.14 0.00 0.83

 < .0001

Grade 1 4.68 ± 7.21 0.00 29.20

Grade 2 20.10 ± 10.57 0.00 40.69

Grade 3 42.86 ± 10.41 28.46 62.97

Grade 4 55.79 ± 10.87 37.87 78.50
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Discussion
Rotator-cuff tears are the most frequent shoulder pathologies that cause pain and functional impairment9,10. 
Numerous authors have reported surgical methods and clinical outcomes of supraspinatus tendon repair7,11–13. 
Radiologic analysis of the rotator-cuff tendon has been used to predict the repairability of the supraspinatus 
tendon and likelihood of re-tear after arthroscopic repair6,14.

Atrophic changes and fatty infiltration of the rotator-cuff musculature are two of the more commonly accepted 
findings associated with large tears, and several methods for quantifying these changes have been described12,14,15. 

Figure 1.   Correlation between the fatty infiltration of supraspinatus muscle using Otsu thresholding and 
occupation ratio of supraspinatus muscle based on segmentation with the CNN.

Figure 2.   Outlier cases related to occupation ratio and fatty infiltration. Occupation ratio and fatty infiltration 
exhibited a strong negative correlation, which was statistically significant from the study. However, some cases 
reported relatively high occupation ratios and fatty infiltrations (A), while others reported relatively low values 
(B).
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The scapular Y-view of the MRI, the lateral-most T1 sagittal MR image in which the scapular spine and body are 
in contact, is the base image for obtaining reliable indicators of the supraspinatus muscle status (for example, 
occupation ratio, tangent sign, and fatty infiltration)14,16,17. In general, these indicators are manually evaluated in 
the clinic. The occupation ratio is generally measured by tracing along the line of the outer edge of the supraspi-
natus muscle and inner margins of the supraspinatus fossa using a program cursor under the Picture Archiving 
and Communication System. This process is difficult and time-consuming, especially in cases where the margin 
of the supraspinatus muscle is irregular and rough18. Furthermore, fatty infiltration, measured using the Goutal-
lier classification, has the limitation of being a subjective qualitative measurement. The relatively wide range of 
the five stages of the Goutallier classification has been cited as a potential reason for low reliability19, and some 
studies have shown only moderate or poor interobserver agreement19–22.

Recently, deep learning technology has been adopted to address many unsolved scientific and technical 
problems, and it has been applied in medical image analysis in recent studies23,24. In particular, CNNs have 
shown promise as high-capacity parametric models for image analysis by using a large number of parameters 
derived from training data1,25,26. Machine-learning-aided analysis can be trained with an enormous number of 
samples in a short time. An ideal system will have consistently accurate and precise diagnoses and would have 
the same diagnostic result given repeated input. The present study compared the abilities of humans and deep 
convolutional networks when detecting the region of segmentation of the supraspinatus muscle and supraspinatus 
fossa. As tears progress, muscles undergo retraction and fat infiltration related to atrophy27. In the context of cuff 
tears, the measurement of muscle atrophy, such as the occupation ratio of the supraspinatus muscle, has been 
considered an important prognostic indicator28,29. The CNN exhibited excellent agreement with the clinicians 
in both areas of segmentation. From the accurate segmentation, we can also easily obtain the occupation ratio, 
which is the proportion of the supraspinatus muscle from the supraspinatus fossa.

The assessment of fatty infiltration in the setting of rotator-cuff tears affects clinical decision-making, because 
the presence of fatty infiltration of 50% or more is a relative contraindication to rotator-cuff repair30. Thus, quali-
tative assessments of the supraspinatus muscle have been considered important for rotator-cuff tendon surgery 
and have been widely used in clinical studies on shoulder pathology6,11,12. In the present study, we proposed a 
modified Otsu thresholding technique to evaluate fatty infiltration in the supraspinatus muscle. Binarization 
algorithms include global fixed thresholding, locally adaptive thresholding, and hysteresis thresholding. The 
present study aims to detect optimal thresholds in a resgion of interest (ROI) where the visual structural char-
acteristics change. Otsu thresholding is a global fixed thresholding methodthat has excellent performance. It is 
widely known and has been used in several previous studies on medical image analysis31,32. The result produced 
a binary image of nonparametric and unsupervised threshold selection data on a gray-level histogram. Thus, it 
enables detection of the fat portion from muscle without having to adjust the brightness to calculate the exact 
proportion of fatty infiltration. A previous study attempted to use quantitative MRI measurements of the fat 
fraction in rotator-cuff tendons and compared these with the Goutallier scores33. Increasing fat fraction cor-
related well with a higher Goutallier scores, aside from grades 3 (27.5%) and 4 (26.2%), for which there was no 
difference. Therefore, the authors recommend that the application of the model to the highest or lowest range 
should be interpreted with caution. Additionally, the authors used manual outlining of rotator-cuff muscle areas 
on each MRI slice, which was time-consuming and may have introduced methodological bias. In the present 
study, fatty infiltration by modified Otsu increased with higher Goutallier grades, and the differences between 
each grade were statistically significant. Grade 3 of the Goutallier classification, defined as equal amounts of 
fat and muscle, showed a mean of 42.86% fatty infiltration. Grades 2 and 4 reported 20.10% and 55.79% fatty 
infiltration, respectively.

Because the occupation ratio and fatty infiltration are related to disease severity, there have been many related 
studies6,13,30. Furthermore, as the severity of the rotator-cuff tear increases, atrophy and fatty infiltration of the 
supraspinatus muscle have been found to be more serious on MR images4. In the present study, there was a strong 
negative correlation between the occupation ratio via CNN and fatty infiltration via Otsu thresholding, which was 
also documented in the literature11,12,27. However, some cases showed a disparity between the occupation ratio 
and fatty infiltration. Fatty infiltration of the rotator cuff tendon tear is known to be a multifactorial process with 
proposed etiologies including chronicity, traction neuropathy, loss of muscle tension resulting in architectural 
changes, and physiological changes4,33. Because the fat portion inside the supraspinatus muscle and outside the 
muscle has similar signal intensity, it is critical to properly annotate the outline of the supraspinatus muscle. 
Using the software in the present study, we selected the scapular Y-view and annotated the supraspinatus muscle 
to simultaneously trace serial images. This helped us detect the outline of the tendon/muscle and distinguish the 
neurovascular structure, which had a similar signal intensity as tendons.

This study makes several valuable contributions to the literature. The most important advantage is that the 
analysis process is objective and saves time. Numerous MR image analyses of muscle atrophy and fatty infiltra-
tion can be performed in a shorter time, free from human errors. Another advantage is external validity. Our 
analysis was performed using a freeware computer program that can analyze and calculate muscle atrophy and 
fatty infiltration of scapular Y-view MR images in less than a second. Although it is not known what effects 
the sample bias/features and noise may have on external comparisons, we expect that this could be handled by 
modifying the algorithm. Lastly, the high performance of CNN for detecting muscle from MR images reveals 
the possibility of its application to other musculoskeletal areas.

Our study had some limitations. First, the number of original images was relatively small compared with 
other deep-learning studies. Second, clinical factors were not considered. Because the present study was an image 
analysis study, the observers were blinded to the clinical data. Based on the reliability of our analysis, clinical 
data should be evaluated to determine whether the image analysis is correlated with actual disease severity and 
whether it offers anything of clinical importance, as in previous studies34,35. Lastly, we used the data from a 
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solitary MRI scanner. Although the process can have external validity, it is not known what sample bias/features 
and noise may have on external comparisons.

In summary, the proposed CNN showed fast and accurate segmentation of the supraspinatus muscle and fossa 
from shoulder MRI, which enabled us to automatically calculate the occupation ratio. Quantitative evaluation 
using the modified Otsu thresholding technique is a good method for calculating the proportion of fatty infiltra-
tion in the supraspinatus muscle. We expect that this can improve the efficiency and objectivity of diagnoses by 
quantifying the index used in shoulder MRI.

Methods
This study was reviewed and approved by the Institutional Review Board (Institutional review board no.2019–05-
109–001) of the Samsung Medical Center, and the requirement for informed consent was waived. Data collection 
and all experiments were performed in accordance with the Declaration of Helsinki.

Patient selection.  We randomly selected 250 patients who visited the outpatient clinic for shoulder MRI 
at the Samsung Medical Center between January 2015 and December 2016. All personal information was 
anonymized, and clinical data, including diagnoses, were ignored. A random number table was used for extrac-
tion. Only shoulder MR images were downloaded to evaluate atrophy and fatty infiltration of the supraspinatus 
muscle. Patients with previous implants in the ipsilateral shoulder were excluded from the study. For the appli-
cation of the deep-learning algorithm, only 512 × 512-pixel MR images were used. Finally, the shoulder MRI 
data of 240 among the 250 patients were enrolled for analysis. MRI was performed with a 3.0-T imager (Gyro-
scan Intera Achieva; Philips Medical Systems, Best, the Netherlands) using a dedicated receive-only shoulder 
coil. Conventional two-dimensional MR images were obtained with fat-suppressed T1-weighted fast spin echo 
sequences in the axial and oblique coronal planes parallel to the long axis of the supraspinatus tendon, and the 
oblique sagittal plane perpendicular to the long axis of the supraspinatus tendon (repetition time/echo time, 
560–754/8–10 ms; section thickness, 3 mm; field of view, 16 cm; acquisition matrix number, 320 × 256; echo 
train length, 5).

Data collection and annotation.  Data were collected from the MRI slice as input, and the ground truth 
was extracted as the output. A sagittal oblique plane view with a scapular Y-shaped view image slice of the MRI 
was used as the input, and the ground truth was annotated with two regions of the supraspinatus fossa and 
muscle in the image slice.

To annotate the ground truth, we used ITK-SNAP, a freeware medical image labeling program36. The whole-
series images of the T1-weighted sagittal oblique plane view were loaded onto the ITK-SNAP. The scapular Y 
view was identified, and an outline of the supraspinatus fossa and muscle was detected. The supraspinatus fossa 
and supraspinatus muscles were highlighted using a brush tool (Fig. 3).

The supraspinatus fossa and supraspinatus muscle were annotated according to a previous study14. First, in 
the shoulder MRI with a T1-weighted sagittal oblique view, we chose the most lateral image (i.e., the Y-shaped 
view) with the scapular spine in contact with the scapular body. Annotation of the supraspinatus fossa area was 
performed along the inner-bone margin of the Y-shaped scapula, inferior border of the trapezius, and inner-bone 
margin of the distal clavicle. When annotating the muscle area, the area drawn along the outer margin of the 
supraspinatus muscle in the supraspinatus fossa area was annotated as a margin, and the neurovascular structure 
outside the muscle area was excluded. In cases where it was difficult to accurately determine the neurovascular 
structure with similar signal intensities adjacent to the muscle in a segmentation, serial, anterior, and posterior 
images based on the segmented image were analyzed together to confirm the positions of vessels and nerves.

Fatty infiltration, measured via Goutallier grading, was performed with annotations of the supraspinatus 
muscle. According to this method, grade 0 denotes normal muscle tissue; grade 1, fatty streaking; grade 2, more 
muscle tissue than fat; grade 3, equal fat and muscle tissue; and grade 4, more fat than muscle37. All annota-
tions and grading were performed by two orthopedic specialist surgeons at the shoulder and elbow clinic. Any 
disagreement between surgeons was discussed with a radiologist with expertise in musculoskeletal disease until 
a consensus was reached.

Deep learning for segmentation using a CNN.  We used a CNN, where the detailed schematic struc-
ture comprised 15 convolution layers and five pooling layers based on the VGG19 network38. Three fully convo-
lutional layers were added for semantic segmentation (Fig. 4). The feature maps of the 3rd and 4th pooling layers 
were used to obtain the output via the deconvolution and up-sample processes at the end of the network. The 
prediction was defined as the output image after deep learning using the ground truth.

Data augmentation.  Data augmentation is necessary to mitigate the lack of data common in developing 
algorithms for medical imaging using deep learning; this study used flip and brightness controls39. The flip algo-
rithm flips the MRI slices left and right, and at this stage, the amount of data is doubled. With these techniques, 
we obtained additional training data and resolved the imbalance problems associated with the number of right 
and left shoulders. Augmentation using brightness was applied based on histogram analysis40. The brightness of 
the entire data was analyzed and classified into five stages, and the data were augmented by applying the histo-
gram matching technique of the input image to the average of the histogram distribution within each brightness 
stage41. At this stage, the amount of data increased by a factor of five. After augmentation, two augmentations 
were superimposed to increase the amount of data ten times.

The augmentation method described above was applied only to the training course. In the k-fold cross-
validation process, the validation set was initially separated and fixed as the original image, and learning was 
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performed by applying augmentation when learning the remaining training sets, excluding the validation set. 
Therefore, the training and validation images were completely different images of the patients.

k‑fold cross‑validation.  Ten-fold cross-validation, which was used in a previous study, was performed to 
evaluate the performance of the developed algorithm42. Because the total number of images used for training 
in the network was 240 and the k value was set to 10, 24 images were used as the validation set and 216 images 
as the training set. The validation set images were randomly selected 10 times but were not duplicated, and the 

Figure 3.   Annotation using ITK-SNAP software: (A) loading the MR image of oblique sagittal view on the 
ITK-SNAP; (B) detection of the scapular Y-view and identification of the margin of supraspinatus fossa and 
supraspinatus muscle. The arrowhead indicates the vessel around the supraspinatus muscle; (C) annotation of 
the supraspinatus fossa and supraspinatus muscle using the brush tool of ITK-SNAP.
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remaining images were used for training each time. Models using 10 different validation sets were trained, and 
the parameters of each model were distinct. Then, the performance average of the 10 models was used as the 
result. These results were used to derive the area division images to analyze the area results. To ensure reliability, 
augmentation was performed only on the training dataset after the entire dataset was divided into k segments to 
prevent similar inputs between the training and test sets.

Adaptive Otsu thresholding.  After segmentation of the supraspinatus muscle, fatty infiltration of the 
muscle substance was evaluated using Otsu thresholding, which is characterized by its nonparametric and unsu-
pervised nature of threshold selection on a gray-level histogram43. The output of the Otsu thresholding tech-
nique is a binary image. Thus, it has been applied to several medical image studies to detect outlines of organs 
and lesions and distinguish them from the background2,44,45. If the intensity distribution in the image is clear, 
a more accurate classification is possible. Therefore, Otsu thresholding is expected to easily detect a threshold 
value at the pixel intensity, which maximizes the differences between the foreground (bright) and background 
(dark) pixels15.

Muscle and fatty infiltration within the detected muscle area were significantly distinguished in the ROI using 
Otsu thresholding. Additionally, the threshold for detecting only the muscle region was determined, even in the 
absence of fatty infiltration in the muscle (Fig. 5). However, in patients with high severity, the tissue is not uni-
form because of internal degeneration; therefore, even if it was the same fat tissue, the performance was not good 
because the boundary of the tissue was not clear; for example, the intensity was expressed in several stages. To 
address this, we attempted to adjust the image using histogram equalization and better performance was obtained 
for patients with high severity after equalization (Fig. 6A). However, if the low-intensity area of the input image 
is large, simply using histogram equalization reduces the dynamic range and causes a data wash-out problem46 
(Fig. 6B). This problem occurs in patients with low severity, that is, those with low fatty infiltration. Therefore, 
to improve and to stabilize the performance according to severity, the application of histogram equalization was 
determined through a statistical analysis of the intensity in the muscle region. Because the intensity distribution 
in the ROI changes with fatty infiltration, the standard deviation of intensity increases with severity. Based on the 
Goutallier grade diagnosed in advance by the clinician, the standard deviation of image brightness in the ROI 
was 28.47, on average, for grade 2, and the upper limit was approximately 35.95. The average score for grade 3 
was 35.18. When the standard deviation of the ROI was 35 or more, histogram equalization was applied within 
the muscle region before applying the Otsu threshold. The precise values were determined empirically, thus 
allowing improvement of detection results for fatty infiltration regions in the images of all subjects, regardless 
of the severity. The final product of Otsu thresholding in this study showed white pixels representing the fatty 
parts and black pixels representing the muscle parts, following the supraspinatus muscle segmentation (Fig. 7).

Evaluation metrics.  We evaluated the performance of our models in terms of the overlap between the 
ground truth human measures and segmentation results from our models. The DSC, defined as the ratio of the 
overlap to the mean area of two segmentations, was used as the main evaluation metric:

DSC was evaluated to compare the similarities using an index ranging between 0 (no segmentation over-
lap) and 1 (perfect segmentation overlap)47. Although the absolute value of DSC is difficult to interpret, some 
previous studies proposed that > 0.70 indicates excellent agreement between measurement pairs42,48. Accuracy, 
sensitivity, and specificity were used to evaluate the ability of the models to detect the regions. The RAD was 

(1)DSC =
2 ∗ Areaoverlapped

Areaground truth + Areaprediction

Figure 4.   Schematic structure of the fully convolutional network used for algorithm development.
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calculated to determine the extent to which the size of the segmented area was underestimated or overestimated 
from the ground truth49:

Based on the annotated ground truth, we also calculated the occupation ratio as the area of the supraspinatus 
muscle over the area of the supraspinatus fossa, which is one of the methods used to evaluate muscle atrophy14.

From the annotated ground truth, fat and non-fat components were classified using the Otsu threshold-
ing process. The proportion of fatty pixels inside the muscle area was calculated as a quantitative measure of 
fatty infiltration, usually between 0, indicating no fat in the supraspinatus muscle, and 1, indicating 100% fatty 
infiltration.

Statistical analysis.  The intra-observer and inter-observer reliabilities of each measurement were deter-
mined by calculating the weighted κ index values or intraclass correlation coefficient. Comparison of fatty infil-
tration using Otsu thresholding on each Goutallier grade was performed using one-way analysis of variance, 
followed by Bonferroni post hoc analysis. Correlation analysis using the Pearson correlation coefficient helped 
to identify the relationship between occupation ratio and fatty infiltration. Statistical analysis was performed 
using R statistical software Version 3.4.0 (the metaphor package: a Meta-Analysis Package for R; R Foundation 
for Statistical Computing, Vienna, Austria) and the Statistical Package for the Social Sciences (SPSS) software 
package (version 20.0; SPSS, Chicago, IL, USA). The level of significance was set at p < 0.05.

(2)RAD =
|Areaground truth|− |Areaprediction|

|Areaground truth|
× 100

Figure 5.   Analysis result of image without fatty infiltration in the muscle region. (A) Original image. (B) ROI 
used for histogram analysis. (C) Histogram graph in ROI. The red dotted line is a threshold value (intensity 
level = 93) automatically determined by Otsu thresholding. The maximum value of the intensity detected in the 
ROI is 71;therefore, the counts value exceeding 71 intensity level is 0.
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Figure 6.   Comparison of the muscle region extracted by applying Otsu thresholding to the original image 
(row 1) and after image adjustment (row 2). (A) An example of a case where image adjustment improves the 
performance of Otsu thresholding because the severity of the Goutallier grade is high. (B) Example of when 
it is better not to adjust the image because the severity of the Goutallier grade is low and there is little fatty 
infiltration in the muscle area.
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