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Exploring the sequence features 
determining amyloidosis in human 
antibody light chains
Puneet Rawat1, R. Prabakaran1, Sandeep Kumar2 & M. Michael Gromiha1,3*

The light chain (AL) amyloidosis is caused by the aggregation of light chain of antibodies into amyloid 
fibrils. There are plenty of computational resources available for the prediction of short aggregation-
prone regions within proteins. However, it is still a challenging task to predict the amyloidogenic 
nature of the whole protein using sequence/structure information. In the case of antibody light 
chains, common architecture and known binding sites can provide vital information for the prediction 
of amyloidogenicity at physiological conditions. Here, in this work, we have compared classical 
sequence-based, aggregation-related features (such as hydrophobicity, presence of gatekeeper 
residues, disorderness, β-propensity, etc.) calculated for the CDR, FR or VL regions of amyloidogenic 
and non-amyloidogenic antibody light chains and implemented the insights gained in a machine 
learning-based webserver called “VLAmY-Pred” (https://​web.​iitm.​ac.​in/​bioin​fo2/​vlamy-​pred/). The 
model shows prediction accuracy of 79.7% (sensitivity: 78.7% and specificity: 79.9%) with a ROC value 
of 0.88 on a dataset of 1828 variable region sequences of the antibody light chains. This model will be 
helpful towards improved prognosis for patients that may likely suffer from diseases caused by light 
chain amyloidosis, understanding origins of aggregation in antibody-based biotherapeutics, large-
scale in-silico analysis of antibody sequences generated by next generation sequencing, and finally 
towards rational engineering of aggregation resistant antibodies.

Abbreviations
APR	� Aggregation-prone regions
ROC	� Receiver operating characteristic
FR	� Framework regions
CDR	� Complementarity determining regions
VL	� Variable region of light chain
LOOCV	� Leave-one-out cross-validation

Antibodies are an essential part of human immune response to invading pathogens. However, they are also 
involved in many diseases, such as systemic light chain amyloidosis, autoimmune disorders and plasma cell 
disorders (PCD), including multiple myeloma (MM), light chain deposition disease (LCDD) and Waldenstrom’s 
macroglobulinemia (WM)1–4. The studies have shown that the antibody light chains (LC) that form amyloid fibrils 
display inherent sequence variability and it has been difficult to predict their aggregation propensity solely from 
the amino acid sequence5,6. Researchers have used sequence-based aggregation-scoring algorithms including 
GAP7, TANGO8, WALTZ9, PASTA10, Aggrescan11, FoldAmyloid12, ANuPP13 etc. to predict the solubility and 
identify the aggregation hotspots within amyloid-forming proteins. These algorithms have utilized sequence 
and structure-based properties such as patterns of hydrophobic and polar residues, β-strand propensity, charge, 
ability to form cross-β motif, aggregation propensity scales determined from experimental data, solvent-exposed 
hydrophobic patches on molecular surface and so on. Advantages and limitations of these algorithms have been 
reviewed elsewhere14. A common wisdom emerging from these studies is that the presence of an aggregation-
prone region (APR) may be a necessary but not sufficient condition for protein aggregation to occur. A number 
of other factors such as the location of APRs in protein structure, conformational stability of the native state, 
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solution conditions, and kinetics of aggregation process also play major roles15–21. The studies performed on 
aggregation in antibodies have revealed that APRs can be found everywhere in their structure, including the 
complementarity determining regions (CDRs) as well as fragment crystallizable (Fc) regions15,22–24. APRs present 
at sequence regions overlapping with the CDRs contribute significantly towards antigen recognition22. Molecular 
dynamics studies have demonstrated that CDR overlapping APRs are more likely to initiate aggregation than the 
other APRs in the fragment antigen-binding (Fab) regions of antibodies16,25.

A major challenge with the prognosis and treatment of AL amyloidosis is high diversity of antibodies among 
individuals26. Although there are methods for high-throughput sequencing of antibody repertoires, it is not 
feasible to experimentally determine the amyloidogenicity for each antibody. Hence, it is necessary to develop 
computational algorithms for fast and accurate prediction of aggregating light chains. Computational algorithms 
currently available to the scientific community need improvement since they are not efficient enough to deter-
mine the solubility of the antibodies and show weak correlation with conformational stability in some cases24. 
David et al.27 have previously developed a method based on Bayesian classifier and decision trees to predict the 
light chain amyloidogenesis using sequence information. Liaw et al.28 proposed a method using Random Forests 
classifier with dipeptide composition, which discriminated amyloidogenic and non-amyloidogenic antibody 
light chains.

In this study, we have analyzed the amino acid sequences from variable domains (VL) of 348 amyloidogenic 
and 1480 non-amyloidogenic antibody light chains available in AL-Base29. These VL sequences belong to both κ 
and λ isotypes. The sequence conservation analysis using Shannon entropy and aggregation propensity analysis 
using conventional aggregation related features (charge, hydrophobicity and disorderness) revealed that light 
chain variable (VL) domains of kappa (κ) isotype have lower inherent aggregation propensity but greater sequence 
conservation among the amyloidogenic light chains in comparison with the non-amyloidogenic ones. On the 
other hand, the variable domains of lambda (λ) isotype have higher inherent aggregation propensity and similar 
levels of sequence conservation levels within the amyloidogenic and non-amyloidogenic light chain datasets. 
Furthermore, we have developed a machine learning model, “VLAmY-Pred”, to predict amyloidogenic and non-
amyloidogenic variable region (VL) sequences of the light chain. Our method showed a prediction accuracy of 
79.7%, with an area under the curve (AUC) value of 0.88 on the complete dataset. We benchmarked other APR 
prediction algorithms on the antibody dataset and analyzed the aggregation propensity, APR location, and 
gatekeeper residues.

Materials and methods
Dataset used in the study.  Bodi et al.29 have developed a database called “Amyloid light chain database” 
(AL-Base), which contains amino acid or translated mRNA sequences of variable region of light chain (VL) from 
patients suffering from light chain amyloidosis, multiple myeloma and other healthy Individuals. The database is 
classified into amyloid plasma cell disorder (AL-PCD), other plasma cell disorder (other-PCD) and non-plasma 
cell disorder (non-PCD) (http://​albase.​bumc.​bu.​edu/​aldb). The light chain sequences classified as other-PCD 
and non-PCD are considered non-amyloidogenic in the current analysis. However, it is important to note that 
non-PCD light chains may form amyloids if their concentrations increase to levels greater than the physiological 
level over a period of time. Increase in concentration is unlikely to affect amyloidogenicity of other-PCD light 
chains, as it is already present in high concentrations in the patient’s circulatory system.

We further processed the sequences in “AL-Base” database and excluded the sequences with missing or 
unmatched FRs and CDRs. Isotypes of the light sequences were verified via NCBI IgBLAST30. The final data-
set of sequences obtained from AL-Base is listed at VLAmY-Pred web server (https://​web.​iitm.​ac.​in/​bioin​fo2/​
vlamy-​pred/) under “Dataset used in the study” section. It contains 348 (19%) amyloidogenic and 1480 (81%) 
non-amyloidogenic VL sequences.

A test set (AL-Test) was prepared to develop a machine learning-based classification model by randomly 
taking 10% of the amyloidogenic and non-amyloidogenic sequences from the AL-Base dataset. In addition, 
the test dataset used by David et al.27 was used as a blind test set in our study. This blind test set contains 103 
amyloidogenic and 28 non-amyloidogenic light chain sequences. Moreover, VL domain sequences from 242 
clinical-stage antibody therapeutics (CSTs) and 14,037 antibody sequences collected by Raybould et al.31 from 
human antibody repertoires were also used to identify potential aggregation nucleating VL domains.

Sequence conservation of variable region (VL) of the light chain.  We carried out multiple sequence 
alignment (MSA) and generated consensus sequences for kappa (κ) and lambda (λ) isotypes using MAFFT32. 
The Shannon entropy and consensus sequences were calculated for the aligned sequences using Bio3D package 
in statistical language R33, and occupancy of residues at a particular position was taken from the Jalview34.

Assessment of aggregation related features.  The hydrophobicity, presence of gatekeeper residues (D, 
E, R, K and P) and disorderness features were assessed for the CDRs and FRs in VL domains. The hydrophobic-
ity scale (Hnc, normalized consensus hydrophobicity) was taken from the literature35, and residue-wise protein 
disorderness was calculated from IUPred2A server36. The average values were calculated for each region of VL 
sequences using Eq. (1).

where Favg is the average value of the feature for the VL-region/FR region/CDR region, Fi is feature value for the 
ith residue present in the respective region and N is the length of the region.

(1)Favg =

∑N
i=1

Fi

N
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Development of machine learning‑based classification model.  A machine learning model was 
developed to classify amyloidogenic and non-amyloidogenic antibodies. The classification model was trained on 
313 amyloidogenic and 1332 non-amyloidogenic sequences of AL-Base dataset (10% sequences were set aside 
for the AL-Test set as described above in “Dataset used in the study”).

Collection of features.  The features used in the development of classification model include 70 single amino 
acid features from AAIndex database37 and literature38 (Supplementary Table S1). These single amino acid fea-
tures were averaged for the variable region (VL-region), complementarity determining regions (CDRs) and 
framework regions (FRs) using Eq. (1). The CDR and FR information for each light chain variable domain was 
taken from the “AL-Base” server and follows IMGT numbering scheme. The other features used in the model 
development include 11 features calculated from online servers related to solvent accessibility, secondary struc-
ture propensity and aggregation propensity11,39; 9 sequence composition features (charge, polar, non-polar and 
aromatic residues); and features used by PAGE (symmetric charge, aromaticity and β-sheet propensity)40 (Sup-
plementary Table S2).

Attribute selection and classification.  Several feature selection and classification methods were employed in 
Weka41 to efficiently classify the AL-Base dataset. The final model used a decision tree algorithm called “PART” 
for the classification of aggregating and non-aggregating light chain variable region sequences. “PART” algo-
rithm uses the “separate-and-conquer” method, and builds a partial decision tree using “C4.5” algorithm in each 
iteration to choose the best decision tree. The threshold for the classifier was manually optimized to 0.15 using 
“ThresholdSelector” in Weka to maintain the trade-off between sensitivity and specificity, which occurred due 
to class imbalance. The unpruned parameter was kept “True” for the “PART” algorithm and all other parameters 
were kept default.

Performance evaluation.  The performance of the classification model was measured mainly using area under 
the receiver operating characteristic (ROC) curve values due to class biasness (348 amyloidogenic VL domain 
sequences versus 1480 non-amyloidogenic ones). ROC curve is a plot between true positive rate and false posi-
tive rate and estimates the trade-off between sensitivity and specificity at different thresholds. Hence, class imbal-
ance does not affect the area under the ROC curve values. The robustness of the model is evaluated using leave-
one-out cross-validation, where n-1 data used for the training and tested on the remaining one, recursively. We 
estimated the following performance measures after optimizing the threshold for the final model:

where TP, TN, FP and FN are number of true positives, true negatives, false positives and false negatives, respec-
tively. Here, amyloidogenic light chain dataset is considered positive class, and non-amyloidogenic light chain 
dataset is considered negative class.

Web server development.  A webserver entitled “VLAmY-Pred” (prediction of amyloidogenic antibody light 
chain variable domains) has been developed for the classification of amyloidogenic and non-amyloidogenic 
VL-region sequences. The FRs and CDRs in the VL-region are annotated by ANARCI42 tool in the webserver 
using IMGT numbering43. The webserver takes the VL-region of the antibody as an input and predicts the amy-
loidogenic/non-amyloidogenic nature of the sequence. The webserver also generates aggregation profile for 
each input using an in-house aggregation propensity prediction server called “ANuPP”13. The VLAmY-Pred web 
server is freely available and can be accessed at https://​web.​iitm.​ac.​in/​bioin​fo2/​vlamy-​pred/.

Comparison with APR prediction algorithms.  The TANGO8 and WALTZ9 aggregation-prone region (APR) 
prediction algorithms were used to analyze and compare the aggregation propensity values of the VL domain 
sequences, position of aggregation-prone regions (APR) in the VL sequence, aggregation propensity of the APRs, 
presence of gatekeeper residues (D, E, R, K and P) in ± 3 residues flanks of the APRs in amyloidogenic and non-
amyloidogenic light chain dataset.

Results and discussion
Sequence conservation in light chain variable domains (VL).  The dataset containing the lambda (λ) 
light chain sequences has a significantly greater proportion of amyloidogenic sequences compared to those of 
the kappa (κ) isotype (Supplementary Fig. S1). The sequence conservation of the light chains was analyzed for 
the whole dataset as well as for kappa (κ) and lambda (λ) isotypes using Shannon entropy (Fig. 1, Supplementary 
Table S3). The lower value of Shannon entropy means greater conservation and vice versa. As expected, overall 
FRs were relatively more conserved compared to CDRs in AL-Base dataset. The amyloidogenic light chains in 
the kappa (κ) dataset show higher sequence conservation, even in CDRs, when compared with the non-amyloi-

(2)Accuracy =
TP + TN

TP + TN + FP + FN

(3)Sensitivity =
TP

TP + FN

(4)Specificity =
TN

TN + FP
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dogenic ones. However, lambda (λ) isotype had almost similar sequence conservation levels in amyloidogenic 
and non-amyloidogenic light chains (Supplementary Table S3). The higher sequence conservation in amyloido-
genic kappa light chain may be linked to low inherent aggregation propensity in kappa chain (as discussed in 
detail in “Comparison of kappa (κ) and lambda (λ) classes”).

Analysis of conventional aggregation related features.  The core aggregation-related features such 
as hydrophobicity, presence of gatekeeper residues and disorderness were analyzed for FRs and CDRs in the 
variable region of light chain for their role in amyloidogenicity.

Hydrophobicity of the CDR region.  The process of aggregation in proteins generally initiates at the solvent 
exposed hydrophobic surface patches44. CDRs of the antibodies are exposed to the surface and constitute the 
paratope, which is involved in antigen binding. The average hydrophobicity (Hnc)35 of the CDR regions in the 
amyloidogenic light chains was found to be greater than the hydrophobicity of the CDR regions in the non-
amyloidogenic light chains (Fig. 2a). The low p-values for all the CDRs (except for CDR2) from the t-test shows 
difference in average hydrophobicity for amyloidogenic and non-amyloidogenic light chains was statistically 
significant (Supplementary Table S4). The hydrophobicity of the CDR2 had high p-value (p-value = 0.16) since 
most of them were just three residues long (Fig. 1).

Gatekeeper residues in the FR region.  The presence of gatekeeper residues (D, E, R, K and P) near the aggre-
gation-prone regions greatly hinders the aggregation capability of the proteins45. Several previous analysis has 
shown that the APR regions often overlaps with the CDR regions of the antibodies15,22–24. Hence, we checked 
the presence of the charged and beta strand breaking residues residues in the FR regions, which flanks the CDR 
regions (Fig. 2b). The analysis revealed that the percentage of gatekeeper residues in the FR is greater in the non-
amyloidogenic antibodies than amyloidogenic antibodies and these differences are statistically significant (Sup-
plementary Table S4). FR3 regions are the only exception, with almost a similar percentage (~ 24%) of gatekeeper 
residues in amyloidogenic and non-amyloidogenic light chains.

Disorderness of the VL‑region.  Recently, several studies have correlated protein disorderness with protein 
aggregation and diseases. It has been proposed that the formation of amyloid requires the destabilization of amy-
loidogenic globular protein for the structural rearrangement to form fibrils46–48. The FRs, CDRs and VL-region 
showed that amyloidogenic light chains have higher disorderness propensity compared to non-amyloidogenic 
light chains (FR4 being the only exception, Fig. 2c). All the predicted disorderness values for amyloidogenic and 
non-amyloidogenic light chain datasets were statistically significant (Supplementary Table S4).

Comparison of kappa (κ) and lambda (λ) classes.  The features such as hydrophobicity, presence of 
gatekeeper residues and disorderness are classical aggregation related features which have been calculated for 
biologically relevant region of the light chain variable domain of antibodies. The two features, hydrophobicity 
of the CDRs and the gatekeeper residues in the FRs, were able to classify the light chain dataset into amyloi-

Figure 1.   Residue wise Shannon entropy and occupancy plotted for consensus sequences from amyloidogenic 
(red) and non-amyloidogenic light chains (blue) of complete dataset, kappa (κ) isotype and lambda (λ) 
isotype. The bar graph shows the Shannon entropy (left axis) and the line graph (right axis) shows the percent 
occupancy. The CDR regions in the consensus sequence (x-axis) are colored in yellow. Low occupancy values 
denote more gaps in the multiple sequence alignment.
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dogenic and non-amyloidogenic with 69.6% accuracy (Supplementary Fig. S2). We analyzed the above three 
aggregation-related features for the kappa (κ) and lambda (λ) dataset and observed that the lambda (λ) dataset 
has greater aggregation capability than the kappa (κ) dataset (Fig. 3). However, as discussed in “Sequence con-
servation in light chain variable domains (VL)”, the amyloidogenic light chain dataset of kappa (κ) has higher 
sequence conservation, which suggests that kappa (κ) potentially requires more sequence conservation to exhibit 
amyloidogenicity due to low inherent aggregation capability. On the other hand, the lambda (λ) dataset has a 
higher inherent aggregation capability. Therefore, they might not be showing any sequence conservation (Sup-
plementary Table S3). Our dataset also shows a similar tendency since ~ 75% of the amyloidogenic light chain 
sequences belong to the lambda (λ) dataset.

Development of classification model and feature analysis.  A machine learning model was devel-
oped further to classify the amyloidogenic and non-amyloidogenic VL-region of antibodies using the sequence-
based features. The model has a prediction accuracy of 81.9% (sensitivity: 82.4% and specificity: 81.8%) with 
ROC value of 0.9 on the training dataset (Table 1). A set of 7 features were selected in the final model, which 
include three features already discussed in “Analysis of conventional aggregation related features” (hydrophobic-

Figure 2.   The aggregation related features (a) consensus hydrophobicity of the CDRs, (b) percentage of 
gatekeeper residues in FRs and (c) disorderness score (from IUPred2A server) calculated for different segments 
of VL-region of amyloidogenic (grey) and non-amyloidogenic (white) antibodies.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13785  | https://doi.org/10.1038/s41598-021-93019-9

www.nature.com/scientificreports/

ity of the CDRs, percentage gatekeeper residues in the FRs and disorderness of the VL-region) and four new fea-
tures, namely, β-propensity of the VL-region40, incidence of non-polar residue (A, G, I, L, M, P, V) in VL-region, 
charge transfer capability of CDRs (AAIndex Id: CHAM830107)49 and transfer free energy to surface for FRs 
(AAIndex Id: BULH740101)50. The highest inter-property correlation was obtained between disorderness and 
transfer free energy to surface (r = 0.67; Supplementary Fig. S3).

Figure 3.   The aggregation-related features (a) average hydrophobicity of the CDRs, (b) percentage of 
gatekeeper residues in FRs and (c) disorderness score (from IUPred2A server) calculated for kappa (grey) and 
lambda (white) isotypes.
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Contrary to the common notion, it was observed that the amyloidogenic light chain dataset does not favor 
higher β-propensity (Supplementary Fig. S4). The plausible reason could be that antibodies are mainly composed 
of β-sheets and loops already, and amyloid formation requires structural rearrangement, which can be achieved 
by destabilizing these inherent β-sheets in the antibody. The charge transfer capability denotes the higher pres-
ence of residues (D, E, N, Q) with charge transfer accepting group (–COOH or –CONH2) in the CDR regions 
for the amyloidogenic light chain dataset. These residues also have lower probability of being present in the 
β-sheet49. The presence of the charge accepting group at the exposed CDR region might help interaction with 
CDRs of another antibody. The non-polar residue composition of the VL-region is slightly greater in the non-
amyloidogenic light chain dataset (p-value: < 0.0001, Supplementary Fig. S4), which supports the above statement 
that polarity might help in interaction among antibody sequences to initiate aggregation. Bull et al.50 evaluated 
the transfer free energy of amino acids to surface experimentally to develop a hydrophobicity scale. Higher values 
of “average transfer free energy to surface” of the FR region show that these regions have a higher tendency to be 
exposed, which is required for the structural rearrangement during amyloid formation (Supplementary Fig. S4). 
It also supports the observation of beta propensity and charge transfer capability features.

Performance of the model.  The robustness of the model is evaluated using leave-one-out cross-validation 
(LOOCV), 10-fold cross-validation (10-fold CV), resampling and test sets (Table 1). The model has achieved 
significant accuracy values for LOOCV (80%) and 10-fold CV (72.7%). In resampling approach, we randomly 
resampled the dataset of 1828 sequences 5000 times without replacement. In each iteration, 90% of the randomly 
sampled data from both amyloidogenic and non-amyloidogenic light chain datasets were used in the model 
development, and the performance of the model was tested on the remaining 10% data. An average accuracy 
of 71.7% with sensitivity and specificity of 77.2% and 70.4% was obtained for the tested data, respectively. The 
performance of the resampling is equivalent to the performance of the test set and 10-fold cross-validation 
(Table 1).

The ROC curves were also plotted for the training dataset (AUC: 0.9) and LOOCV (AUC: 0.83) (Fig. 4). The 
importance of the features is calculated by measuring the model performance after removing the respective 
feature or using a single feature in the model (Supplementary Table S5). Percentage of gatekeeper residues in 
the FR regions (ROC: 0.86) and charge transfer capability of CDRs (ROC: 0.86) are the most important features 
since they reduce the area under the ROC curve significantly upon removing the respective features from the 
model. The performance of the model was evaluated on AL-Base test dataset (AL-Test) containing 183 sequences 
(35 amyloidogenic and 148 non-amyloidogenic), out of which 71% or 130 (23 amyloidogenic and 107 non-
amyloidogenic) sequences were predicted correctly (Table 1).

Comparison with other methods.  The two aggregation-prone region prediction algorithms, TANGO8 
and WALTZ9, were used to classify amyloidogenic and non-amyloidogenic light chain variable regions of anti-
bodies. We have analyzed the aggregation propensity, presence of aggregation-prone regions and presence of 
gatekeeper residues in detail for VL-regions (See supplementary information under the section, “Performance of 
aggregation-prone region prediction algorithm”). Briefly, the analysis showed that WALTZ predicted almost 3.4 
times more APRs than TANGO algorithm. There was no significant difference in aggregation propensities and 
positions of APRs in amyloidogenic and non-amyloidogenic light chain datasets (Supplementary Fig. S5–S7, 
Supplementary Table S6). However, the presence of gatekeeper residues flanking the APRs showed that the amy-
loidogenic light chain dataset contains more APRs without gatekeeper residues in the ± 3 residue flanks (Sup-
plementary Table S7). A significant number of APRs were also observed in the FR3 region, as reported by previ-
ous studies51. This region is located close to CDR regions and sometimes contributes to antigen binding52. FR3 
region also contains a higher percentage of gatekeeper residues in both amyloidogenic and non-amyloidogenic 
light chain datasets, potentially to suppress these aggregation-prone regions (See Supplementary information 

Table 1.   Performance of the classification model for distinguishing between amyloidogenic and non-
amyloidogenic variable domain light chain of antibodies. The standard deviation is mentioned for resampling 
and Novel germline prediction next to the performance measure. The final model was developed on complete 
AL-Base dataset (1828 sequences). The percent accuracy for CST dataset and human antibody repertoire 
represent the percentage of sequences predicted as non-amyloid.

Performance Accuracy Sensitivity Specificity ROC

Self-consistency 81.9 82.4 81.8 0.9

Leave one out CV 80 75.1 81.2 0.83

10-fold CV 72.7 78 71.4 0.82

Resampling 71.7 ± 6.9 77.2 ± 9.9 70.4 ± 9.9 0.82 ± 0.04

Test set (AL-Test) 71 65.7 72.3 0.74

Test set (David et al.)27 73.2 77.3 57.7 0.66

Novel germline prediction28 65.2 ± 11.5 62.2 ± 33.6 45.4 ± 29.4 0.65 ± 0.16

Final model 79.7 78.7 79.9 0.88

CST dataset 75.6 – – –

Human antibody repertoire 94.1 – – –
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under the section, “Analysis of FR3 region”). However, analysis of flanking residues around the APRs present 
in FR3 region showed that the amyloidogenic light chain dataset had more APRs without gatekeeper in the ± 3 
residue flank.

The direct comparison of the TANGO and WALTZ is not appropriate with our method since APR prediction 
algorithms are developed for predicting the APR stretches in the protein sequences, which does not necessarily 
conclude that protein is amyloidogenic. A machine learning-based web server, “RFAmyloid”, is also considered 
in the analysis, which is developed for the prediction of amyloidogenic proteins53. VLAmY-Pred has better 
overall performance than the above-discussed methods and presents a better trade-off between sensitivity and 
specificity (Table 2).

The performance of VLAmY-Pred was also evaluated on the test dataset used by previously developed 
sequence-based light chain amyloidogenesis prediction models. A model developed by David et al. has shown the 
test set accuracy of 61.2% using Bayesian classifier on 103 amyloidogenic and 28 non-amyloidogenic sequences27. 
VLAmY-Pred showed the prediction accuracy of 73.2% (sensitivity: 77.3% and specificity: 57.7%) on the same 
dataset (97 amyloidogenic and 26 non-amyloidogenic sequences, after removing sequences not annotated as VL 
by ANARCI software) (Table 1).

Liaw et al.28 validated the performance of their model “AbAmyloid” on novel germline, where they trained the 
model on 11 germlines and tested the performance on the remaining one germline (novel germline). AbAmyloid 
obtained an average performance of 72.2% on 12 germlines. We also evaluated each germline individually as a 
test set and obtained an average prediction performance of 65.2% (Table 1). Although, there was a high variation 
in the performance measures due to the inconsistent ratio of sequences (i) among all germlines and (ii) among 
amyloidogenic and non-amyloidogenic sequences within germline.

Monoclonal antibody candidates with a potential therapeutic application(s) are rigorously tested for solu-
bility, non-specific protein–protein interactions, thermal unfolding and aggregation before moving to clinical 
trials. Hence, we have tested a set of 242 clinical-stage antibody therapeutics (CSTs) collected from literature31. 
VLAmY-Pred predicted 75.6% of the light chain variable region of the monoclonal antibodies as non-amyloido-
genic (Table 1). The human antibodies have naturally evolved to be less amyloidogenic in physiological condi-
tions. Hence, 14,037 light chains from the human antibody sequences obtained via NGS31 (75.9% kappa isotype 
and 24.1% lambda isotype) were also tested with our model. VLAmY-Pred predicted 13,208 (94.1%) light chain 
sequences as non-amyloidogenic (Table 1).

Figure 4.   The receiver operating characteristic (ROC) curve plotted for the classification model using training 
dataset (blue) and leave-one-out cross-validation (red).

Table 2.   Performance of aggregation-prone region prediction algorithms (TANGO and WALTZ), RFAmyloid 
and VLAmY-Pred on AL-Base dataset (1828 sequences). The presence of APRs in the variable region of light 
chain is considered amyloidogenic for TANGO and WALTZ. The VLAmY-Pred results are based on Leave one 
out cross-validation.

TANGO WALTZ RFAmyloid VLAmY-Pred

Accuracy (%) 48.4 22.2 19 80

Sensitivity (%) 34.5 96 100 75.1

Specificity (%) 51.7 4.8 0 81.2
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Potential applications.  Amyloid light chain (AL) amyloidosis affects a wide range of organs, including 
kidney, peripheral nervous system, heart, lungs, skin, etc., and leads to the destruction of tissues54. However, the 
mechanism of amyloid formation and underlying properties are not very well understood. There are chemo-
therapy and stem cell therapies available to prolong the survival of AL amyloidosis patients. However, these 
therapies, to a great extent, depend on the early detection of AL amyloidosis. The diagnosis methods currently 
available are blood and urine test using amyloid-specific dyes such as Congo Red and Thioflavin-T. We have 
developed VLAmY-Pred, an antibody-specific amyloidogenicity prediction algorithm that has a potential in-
silico application as a prognosis tool for AL amyloidosis.

This machine learning model can also be used in in-silico screening of the potential amyloidogenic light 
chains to assist the development of therapeutic monoclonal antibodies. Monoclonal antibodies are excellent 
therapeutics for treating cancers, autoimmune diseases and other metabolic disorders due to their high binding 
specificity and affinity55. However, their aggregation during purification and delivery has been a major hurdle 
in their development.

Conclusion
Antibodies forming aggregates are involved in many diseases and they are also a major challenge in the devel-
opment of therapeutic antibodies. Multiple studies have tried to decipher the mechanism, relevant properties 
causing aggregation. Here, we have analyzed the sequence features of the amyloidogenic and non-amyloidogenic 
light chain variable regions of antibodies. The lambda (λ) isotype inherently showed higher aggregation propen-
sity in terms of classical aggregation-related features. The key observation in the aggregation capability analysis 
due to common architecture of antibodies includes (i) the hydrophobicity of the CDR region (probable exposed 
aggregation-prone regions) in amyloidogenic light chains is higher, (ii) the percentage of gatekeeper residues 
is higher in FR region (flanks of the CDR regions) of non-amyloidogenic light chains. (iii) The disorderness in 
variable region (VL) is higher for amyloidogenic light chains. The sequence conservation analysis showed that 
the amyloidogenic light chain dataset in kappa (κ) had relatively higher sequence conservation, potentially, 
to maintain the amyloidogenicity. TANGO and WALTZ prediction results on the antibody dataset were very 
ambiguous. However, they showed that most of the APRs were present in CDR1-FR2, FR2-CDR2 and FR3 
regions. A higher percentage of gatekeeper residues evolutionally suppressed the elevated presence of the APRs 
in the FR3 region. However, almost half of the predicted APRs in the amyloidogenic light chain dataset were 
not flanked by any gatekeeper residues in the FR3 region. The insights gained from the analysis were further 
used in the development of a machine learning model, “VLAmY-Pred” that can classify the amyloidogenic and 
non-amyloidogenic light chain sequences.
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