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Sediment and morphological 
changes along Yangtze 
River’s 500 km 
between Datong and Xuliujing 
before and after Three Gorges Dam 
commissioning
Qiancheng Xie1*, James Yang2,3 & T. Staffan Lundström1

The impoundment of the Three Gorges Dam on the Yangtze River begins in 2003 and a full pool level 
is first attained in 2010. This process leads to reciprocal adjustments in flow discharge, sediment 
transport and morphology downstream of the dam. Based on 26-year recorded hydrologic data 
1990–2015 and surveyed bathymetries 1998, 2010 and 2015, this study elucidates, before and after 
the commissioning of the dam, the alterations along the 500-km reach of the river. Two-dimensional 
numerical simulations are performed to predict future morphological changes by 2025. The analyses 
demonstrate that the impoundment modulates the seasonal flow discharges and traps an appreciable 
amount of sediment, resulting in enhanced erosion potential and coarsening of sediment. On a 
multi-year basis, the maximum discharge varies by a factor of 1.3 and the corresponding suspended 
load concentration and transport rate differ by a factor of 3.0 and 3.8, respectively. Combinations of 
surveyed and simulated bathymetries reveal its morphological responses to the changes. A general 
pattern of erosion is observed along the reach. In its upper 120 km, the process slows down towards 
2025. In the middle 200 km, the erosion shifts, following the gradual impounding, to slight deposition, 
which then shifts back to erosion around September 2018. In the final 180 km, erosion continues 
without any sign of de-escalation, which is presumedly ascribed to tidal actions. The reach has not yet 
achieved a hydro-morphological equilibrium; the riverbed down-cutting is supposed to continue for 
a while. The combination of the field and numerical investigations provides, with the elapse of time, 
insight into the morpho-dynamics in the 500 km river reach.

Over the past decades, many rivers have become increasingly fragmented due to the construction of hydropower 
dams and other wading projects, resulting in major environmental and ecological impacts on the rivers them-
selves and on the adjacent coastal areas1–3. In particular, river damming alters both the flow and the sediment 
conditions that together modify the conditions in the downstream river course. Consequent to the introduc-
tion of the dam in a river, a new long-term equilibrium in the river takes form with time, which incarnates the 
interplay between the nature and the human beings.

The Yangtze River, with a 1.8 × 106 km2 catchment area, originates in the Qinghai-Tibet Plateau (~ 5100 m 
above the sea level) and flows eastward into the East China Sea (Fig. 1). Globally, it ranks third in length 
(~ 6300 km), fourth in sediment flux (∼ 470 Mt/year) and fifth in flow discharge (∼ 900 km3/year). In the light of 
the climatical, geological and geomorphological changes, the river is traditionally divided into the upper, mid-
dle and lower reaches, the limits of which are at Yichang and Hukou city, respectively (marked by ① and ② in 
Fig. 1)4,5. The upper reach drains the mountainous areas with deep valleys, whereas the middle and lower reaches 
run through the low-lying plains featuring a wide alluvial water course and many lakes6.
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The Three Gorges Dam (TGD), located some 45 km upstream of Yichang city, is constructed between 1994 
and 2009. Its maximum structural height is 181.00 m; the crest length is 2335 m. The normal reservoir water 
level is + 175.00 m, at which the water-surface area is 1080 km2 and the active storage capacity is 39.3 km3. The 
dam affects the river reach that stretches some 660 km upstream5. The total installed turbine capacity amounts 
to 2240 MW. Table 1 summarizes the characteristic parameters of the dam. The main river closure (the first 
stage) is accomplished in November 1997. Along with the construction, the reservoir impoundment begins in 
June 2003 and the first turbine unit starts to generate electricity in July 2003. The water level in the reservoir 
varies then between + 136.00 and + 143.00 m until October 2006 (initial operation phase). Along with the on-
going dam heightening, the water level fluctuates seasonally between + 145.00 and + 156.00 m up to October 
2008 (transitional phase). Afterwards, the reservoir level is maintained at above + 173.00 m for approximately 
2 years (quasi-normal storage). October 2010 marks the start of the normal operation phase with reservoir levels 
around + 175.00 m7.

Considering the long construction period (∼ 16 years), the reservoir operations have undoubtedly affected 
the downstream discharges of both water flow and sediment. The downstream impacts have been disclosed in 
a number of investigations, comprising flood mitigation and control4,8–11, subaqueous delta recession12–14 and 

Figure 1.   The Yangtze River basin, with indication of the examined reach from the Datong city to the river 
mouth. Note: the Figure is created using QGIS 3.18 (www.​qgis.​org) and Adobe Illustrator CC 2018 22.0 (www.​
adobe.​com).

Table 1.   Major dam structural and operation parameters.

Item Parameter Value

Dam

Maximal structural height (m) 181.00

Crest elevation (m a.s.l.) + 185.00

Crest length (m) 2335

Impoundment stages (m)

Initial storage (from June 2003) + 135.00

Transitional storage (from Oct. 2006) + 156.00

Quasi-normal storage (from Oct. 2008) + 173.00

Normal storage (from Oct. 2010) + 175.00

Reservoir

Normal pool

Water-level elevation (m) + 175.00

Active storage capacity (km3) 39.3

Length (km) 663

Water-surface area (km2) 1084

Dead storage

Water-level elevation (m) + 145.00

Storage capacity (km3) 17.2

http://www.qgis.org
http://www.adobe.com
http://www.adobe.com
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decline of the riverine wetland and lake areas15,16. Several of these impacts are caused by the interplay between 
the water flow and the sedimentation.

As one of the largest dams in the world, the impacts of the TGD on the downstream sedimentation have been 
an issue of constant concern after its completion7,10,12,17–20. Surveys and studies of suspended and bed loads start 
in 1950 and 1960, respectively. Collected at Yichang hydrological station located some 40 km downstream of the 
TGD, the field sediment data between 1960 and 1988 show that the sediment yield shifts noticeably from year 
to year, ranging between 361 and 754 Mt/year. The suspended load averages 523 Mt annually and the bed load 
only 7 Mt21. The dam evens out the inflow, traps most of the bed load and bypasses fine grain sediment inclusive 
of the suspended load. Yang et al.7 analyze the downstream sediment composition, ending up with the same 
conclusion that the bed load is insignificant in amount. Dai et al.18,19 examine the sediment budget to illustrate 
the sediment dynamics in the lower reaches. They conclude that, shortly after the dam commissioning, both the 
concentration and flux of the suspended load decline, on a decadal scale, towards a stable level.

As a result of the dam operations and constructions of river regulation works, the lower reaches have experi-
enced continuous channel adjustments14,22–25. By a reach-averaged approach, Xia et al.22 scrutinize the dynamic 
adjustments in the bank-full channel geometry of the middle reach after the dam commissioning. Zheng et al.23,25 
examine the changes in bed elevation and width of the lower reaches, demonstrating channel scouring in most 
locations. Their studies are based on field bathymetric data from 1998 and 2013, with focus on the impacts of 
anthropogenic drivers on subaqueous topographical changes. Sediment features and interjacent bathymetry 
changes are however not unveiled during this relatively long period. Previous studies aiming to predict the 
downstream channel equilibrium point to the opposite directions. Lai et al.26 show, for example, that a new long-
term hydro-morphological equilibrium is almost achieved in the lower reaches. In contrast, Yang et al.7,14 reveal 
that, in the coming decades, channel adjustments in form of erosion will continue in response to the sediment 
reduction, implying that further riverbed erosion is expected.

To shed light upon the sediment and morphological changes incident to the TGD operations, a historical 
review is first made by a close look at field records during 1990–2015. This includes a pre-construction period, the 
construction stage with partial commissioning and after the dam completion. The river reach examined covers 
the last 500 km from Shanghai and up the river. The estuary area is excluded in the study due to its complexity 
in nature (it is strongly affected by both tides and coastal sediment transport).

For the period of 26 years considered, field flow discharge and sediment data, monthly during 1990–2002 
and daily during 2003–2015, are acquired, covering the four project phases. This makes it possible to examine 
their temporal relationship, so that comparisons are made before and after the impoundment. The river-channel 
bathymetry is surveyed on three occasions in 1998, 2010 and 2015. With the three sets of bathymetric charts, 
the riverbed deformation is presented in terms of along- and cross-channel changes. More important to know 
is the future channel evolution. Two-dimensional numerical simulations of the 500 km reach are therefore also 
performed to predict the changes in a 10-year perspective. By combining the historical field data and modeling 
results, the study aims to assess the erosion and deposition patterns along the reach, so that the morphological 
trend it brings about is well understood. To foresee the near future sedimentation of the large alluvial river has 
significant implications for the society and the economy.

Study site
The study site covers the 500 km of the lower reaches of the river, starting at Datong city and terminating at the 
Xuliujing town (Changshu city), ~ 60 km upstream of the river mouth in Shanghai. Their locations are labelled 
as A and B in Fig. 1. Datong is situated 1245 km downstream of the dam site. Within the city, the most seaward 
comprehensive hydrological station of the river is located, denoted as Datong station. This station is the only 
source of flow discharge and sediment data for the lower river. Hence, almost all published studies dealing with 
the lower reaches, either local or reach scale, are based on the Datong data. Xuliujing is a gauging station close 
to the river mouth, which delimits the salty water intrusion into the river. Year 2005 marks the beginning of the 
automatic tidal current observations.

The reach is characterized by a typical meandering water course with a number of large bends and multi-
branches with central bars and islands. Figure 2 shows its bathymetry and also the locations of the two hydrologi-
cal stations (A and B). It runs through the alluvial plain, with the river bed material composed of medium-fine 
sand, with a medium size above 0.063 mm25. To prevent flooding and bank erosion, levees and various bank 
revetments are constructed along both sides of the reach. Measured at the normal water level, the average river 
width and depth are ~ 2400 m and ~ 12 m, respectively23. The reach is navigable by ocean-going vessels and it is 
a major transportation artery, connecting the interior of the land with the coast.

In addition to conveying the flow from its upstream, the river reach also drains ~ 6% of precipitation from the 
1.8 × 106 km2 river basin area, with an annual mean value of ~ 1200 mm. The region is one of the most densely 
populated and industrialized areas in China, contributing to ~ 24% of the national GDP.

Field investigations
Flow, sediment and bathymetry measurements.  At Datong station, the hydrological data of flow 
discharge and sediment cover the 1990–2015 period and are collected from the Yangtze Water Resources Com-
mission. At Xuliujing station, the water stage and discharge data for the 2005–2015 period are acquired from the 
Hydrology and Water Resources Survey Bureau of the Yangtze River Estuary. For the study site, i.e. from Datong 
to Xuliujing, the Yangtze Waterway Bureau maps the river bathymetry on three occasions of concerted opera-
tions in 1998, 2010 and 2015, respectively.

For point measurements of flow velocity and suspended load, the procedure is to first position plumb lines 
along a cross-section (normally 10–30 lines). More lines are placed if the river width is larger. Along each plumb 
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line, measurements of flow velocity and sediment sampling are made at six equidistant positions at hi = 0, 0.2, 
0.4, 0.6, 0.8 and 1.0 of flow depth H0 (i = 1–6) (counted from the water surface). The suspended load is collected 
with point-integrative water samplers. All the data are recorded at one-hour intervals.

Attached to a customized motorboat with GPS positioning, RDI Workhorse Acoustic Doppler Current Pro-
filers (ADCP) are used to measure flow depth and velocity. At a predetermined transect, the boat goes approxi-
mately perpendicular to the direction of the river flow, at a constant cruising speed, ∼ 1.0 m/s. The ADCPs operate 
in the bottom tracking mode and at the 600/1200-kHz frequency. The four beams are at 20° from each other. 
The velocity measuring error is ± 5 cm/s; pressure sensors of the YJD-1 type measure water depths, with ± 1 cm 
accuracy. The relative error of discharge measurements is by estimate below ± 5%. The river bathymetry used in 
the study is surveyed with HY1600 bathymetric profilers, having a vertical mapping error of ± 1 cm (if H0 ≤ 20 m) 
and ± 0.1H0 cm (if H0 > 20 m). In addition to cross-sectional flow area and water-level elevation, the measured 
and derived parameters include flow velocity V (m/s), flow discharge Q (m3/s), suspended load concentration 
S (kg/m3), sediment transport rate Qs (kg/s) and grain-size distribution, all of which are cross-sectionally aver-
aged variables.

To map the flow and sediment in such a large river, challenges do exist, especially during flood seasons, which 
is ascribed to navigation of the boat to follow the pre-determined transections and maintenance of constant cruis-
ing speed. In combination with the river width, high flow velocity and local vortexes are also factors involved. 
Despite this, measurements are usually repeated 2–4 times to guarantee accuracy. With the elapse of time, the 
measurement equipment and methods are also upgraded continuously; many manual undertakings are replaced 
by automatic procedures at the two stations.

Flow and sediment variations.  The TGD modulates both the flow and sediment in the lower reaches, 
which has a bearing on sedimentation and morphology. Both S and Qs are proxies that are closely associated 
with the resulting erosion and deposition pattern in the river. Another measure is the grain-size distribution or 
sediment sorting that can be influenced by the TGD. To understand the morpho-dynamics of the reach, a good 
knowledge of flow and sediment variations is a prerequisite.

Relationship between runoff and sediment flux.  Based on the 1990–2015 data series at Datong station, the flow 
and sediment changes are analyzed. The Q, S and Qs data are monthly during 1990–2002 and daily during 2003–
2015. As significant amounts of bed load are trapped in the reservoir, relatively clear water is released to the 
downstream river. On an annual basis, Fig. 3 compares the annual correlation between T (m3) and Ts (t) before 
and after the beginning of the reservoir impoundment in June 2003, in which T = annual runoff and Ts = annual 
sediment flux ( ̄T and Ts  refer to their multi-year averages).

The results show that the changes in T are not significant except for the wet year 1998 and the dry year 
2011. However, a decline is seen after the June 2003 impoundment. For the period 1990–2003, T̄ amounts to 
9.50 × 1012 m3; for 2003–2015, it reduces to 8.45 × 1012 m3, a drop by ∼ 11%. Ts  corresponds to 3.30 × 108 and 
1.36 × 108 t, respectively. Obviously, the latter is only ∼ 40% of the former. This implies that, following the suc-
cessive impoundment, Ts exhibits a drastic declining trend.

As the last hydrological station, Xuliujing monitors water stages and other flow parameters, but not the sedi-
ment, of the river. Sediment measurements are only carried out in some isolated research projects. Yang et al.27 
compare, between Datong and Xuliujing, the S changes for the 1998–2002 and 2003–2009 periods, which shows 
good similarity in sediment flux fluctuations with time. In other words, at Xuliujing, its change in sediment 

Figure 2.   Bathymetry of the examined reach between two hydrological stations (based on field data in 2010).
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budget behaves in a synchronized manner with that at Datong, both demonstrating significant lower levels after 
June 2003.

Let Q̄ (m3/s), S̄ (kg/m3) and Qs  (kg/s) denote multi-year averaged values of Q (m3/s), S (kg/m3) and Qs (kg/s). 
To look into the monthly variations in flow and sediment, Table 2 presents the averaged results of the same month 
during the whole examined period (1990–2015). During the years, Q̄ and S̄ amount to 28,331 m3/s and 0.274 kg/
m3, respectively; Qs  is equal to 9669 kg/s. Obviously, the monthly distribution of each variable is uneven over the 
period. To exemplify, the fraction flow rate from June to September is ∼ 51% and merely ∼ 18% from December 
to March. The corresponding value of sediment flux is ∼ 71% and ∼ 5.6%, respectively. Also, note that Qs  has its 
maximum in July with 28,495 kg/s and its minimum in January with only 1097 kg/s, i.e. the ratio of maximum 
to minimum is > 26.

To further categorize the temporal variations, the 1990–2015 period is broken up into four phases:
phase I: January 1990–December 1994, pre-construction period;
phase II: January 1995–May 2003, construction stage and before reservoir impoundment;
phase III: June 2003–September 2010, start of progressive impoundment and continued construction to 

August 2009;
phase IV: October 2010–December 2015, full pool operation. The reservoir attains, for the first time, its full 

pool level in October 2010.
Figure 4 presents, for each of the four phases, the monthly variations in Q̄ , S̄ and Qs  . Apparently for phases I 

and II, each parameter has an uneven monthly distribution and its peak occurs mostly during the July and August 
months, corresponding usually to the flood season of a year. Qs  follows, by and large, the change in Q̄ and is 

Figure 3.   Correlation between annual runoff and annual sediment flux at Datong station during 1990–2015.

Table 2.   Multi-year averages of flow and sediment of the same month during 1990–2015 at Datong station.

Month Q̄(m3/s) S̄(kg/m3) Qs(kg/s)

Jan 13,060 0.084 1097

Feb 13,781 0.081 1116

March 18,790 0.129 2424

Apr 24,245 0.156 3782

May 31,940 0.208 6644

June 40,731 0.318 12,952

July 50,975 0.559 28,495

Aug 44,217 0.523 23,125

Sept 38,156 0.488 18,620

Oct 28,281 0.407 11,510

Nov 20,635 0.216 4457

Dec 15,164 0.119 1805

Average 28,331 0.274 9669
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Figure 4.   Monthly variations in Q̄ , S̄ and Qs for each of the four phases (1990–2015) at Datong station. (a) Q̄ ; 
(b) S̄ and (c) Qs.
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slightly modified by S̄ . The reservoir impoundment (phases III and IV) damps the flood along the lower reaches 
and leads to a lower Q̄ , especially after the summer flood season. The peaks of S̄ and Qs  also drop dramatically 
and become smeared out. In phase III, following the Q̄ variations, S̄ and Qs  have their peaks during August and 
September. Xu et al.28 analyze, during 2003‒2006, the monthly variations in Qs  , demonstrating that most of the 
sediment is trapped primarily during the high flood months. The timing of the Qs peak shifts from July to August 
or September. In phase IV of the normal operation, the changes in Q̄ , S̄ and Qs  are similar to those in phase I or 
II, with peaks in July. It is apparent that the dam plays an effective role in the sediment interception. From phase 
I to IV, Q̄ varies by a factor of 1.3, while S̄ and Qs  differ by a factor of 3.0 and 3.8, respectively.

Table 3 summarizes the phase-averaged Q̄ , S̄ and Ts  values for the four phases. During the phases, Q̄ exhib-
its some fluctuations in magnitude. A study of the river flow discharge records ranging from 1950’s to 1990’s 
reveals that the differences among the years are natural variations. The reservoir impoundment plays certainly 
a significant role in flood regulations. Figure 5 shows that the decrease in S̄ is, on the whole, sustained over the 
years. As appears, both S̄ and Ts  decline dramatically on a yearly or multi-year basis, especially in phases II and 
III, which is suggestive of the pronounced impacts of the dam on suspended load interception. The role of the 
flow discharge variations seems to be secondary.

Sediment sorting.  The impoundment of the dam traps the coarse material from its upstream and the fine-
grained sediment is released from the reservoir to its downstream19. The latter is mainly in the form of sus-
pended and wash loads, which do not easily deposit in the river course29. The suspended sediment sorting or 
grain-size distribution is also an indicator of changes before and after the commissioning.

Figure 6 compares, at Datong station, the changes in particle diameter D (mm), expressed in terms of maxi-
mum size Dmax (mm), mean size D̄ (mm) and medium size D50 (mm). The diagram is based on the collected 
monthly data during the 2000‒2015 period, covering phases III and IV and even part of phase II. Before year 
2000, the grain-size data is fragmental and therefore excluded. According to the Yangtze sediment bulletin, 
the sediment sorting analysis changes, as of 2010, from the traditional pipette and sieving method to the laser 
method. The difference between them is small for the analysis of sand fractions; the latter is a more accurate 
technique, especially for the sorting of fine-grained sediment30–32.

The results show that the variations in neither D50 nor D̄ are significant. However, both sizes exhibit a weakly 
increasing trend. It is noted that Dmax = ∼ 0.50 mm during 2000–2003 in phase II (before the impoundment); 
Dmax = ∼ 0.60 mm in phase III; and Dmax = ∼ 0.80 mm in phase IV. The changes, especially in Dmax, demonstrates, 
over the years, an elevated level of particle sizes; the suspended load becomes obviously coarsened, albeit mar-
ginally. As aforementioned, after the commissioning, both S and Qs decline appreciably and become lower than 
the natural sediment carrying capacity of the flow. As a result, the flow and the riverbed of the sandy material 

Table 3.   Phase-averaged flow and sediment in each of the four phases (1990–2015) at Datong station.

Phase Q̄ (m3/s) S̄ (kg/m3) Ts  (108 t)

I 28,657 0.302 2.729

II 30,654 0.249 2.407

III 26,115 0.144 1.186

IV 26,928 0.119 1.011

Figure 5.   Yearly variations in S̄ during the four phases (1990–2015) at Datong station.
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are in competition. The bed scouring leads thus to progressive entrainment of particles into the flow and the 
sediment sorting changes.

To reveal annual variations of particle gradation, Fig. 7 shows the cumulative curves for seven representative 
years before and after year 2003 that marks the beginning of the impoundment (1997, 2000 and 2003 in phase 
II, 2006 and 2009 in phase III and 2012 and 2015 in phase IV). D is, irrespective of the phases, in a range of 
0.001–0.90 mm. In phase II, the D ≤ 0.01 mm sediment accounts for ~ 60% of the total fraction, while in phases III 
and IV it corresponds to 50% and 40%, respectively. The results are in agreement with the data presented in Fig. 6 
and imply that the suspended load undergoes a coarsening process, which is indicative of the bed erosion. Yang 
et al.7 reveal that the riverbed sediment coarsens appreciably in the first several 100 km downstream of the TGD.

Other aspects of flow and sediment.  The dam affects the river flow in three ways, i.e. base water storage, seasonal 
regulation and evaporation. The dam operation modulates the seasonal flow variations by damping the flood in 
wet seasons and compensating the discharge in dry seasons. Seasonal flow regulations have only an effect on 
short-term flow discharges rather than on the annual runoff8,10,11. The evaporation is also an issue of concern 
for water balance downstream, especially on a long-term basis. With the progressive impoundment in phase III, 
the storage volume and the water-surface area increase. When the reservoir reaches its normal stage, + 175.00 m 
(phase IV), the active storage capacity is 39.3 × 109  m3 and the corresponding surface area is 1.084 × 109  m2 
(Table  1). The reservoir evaporation amounts to an annual average of 0.3 × 109  m3, 0.76% of the active stor-

Figure 6.   Variations in D before and after the start of the impoundment at Datong station (2000–2015).

Figure 7.   Representative cumulative gradation curves before and after the start of the reservoir impoundment.
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age volume. Over the first decade of impoundment (2003–2012), the combination of the impoundment and 
evaporation gives rise to a reduction in the downstream flow by ~ 42.0 × 109 m310. Measured at Datong station, 
the annual decline in the inflow to the study side is ~ 3.82% of the annual runoff ( Tw  ) during phase IV, which is 
compared to ~ 3.40% during phase I.

Owing to the development of several dams and extensive soil conservation measures in the upper river 
basin, the annual sediment flux into the TGD reservoir has declined in a noticeable manner. The dam also plays 
a significant role in reduction of sediment in its downstream reaches7,23,33. In phases III and IV, the dam traps, 
on an average, 182 Mt sediment annually, accounting for 80% of the total budget into the reservoir. Estimated at 
Datong station, this leads to a decline in sediment flux by 65% or 113 Mt per year. Notwithstanding this, some 
differences exist between wet and dry years. In a wet year as 2010, the figure is ~ 95%, while in dry years as 2006 
and 2011, the decline in sediment flux is only 30%10,20. All the changes have consequently a bearing on the sedi-
ment transport and morphology of the reach concerned.

Morphological changes after commissioning.  Along with the impoundment, the variations in the 
flow and sediment also lead to morphological changes along the reach. With measured bathymetries in Octo-
ber 1998, October 2010 and September 2015 as a base, the morpho-dynamic responses are compared and the 
changes are revealed before and after the commissioning. The 1998 bathymetry is 5 years before the impound-
ment, the 2010 one is at the end of the progressive impoundment, and the 2015 one is after 5 years of normal 
operation. Sedimentation patterns are now evaluated in terms of both cross-sectional and longitudinal profiles.

Cross‑channel changes.  The past decades see cross-channel changes as a result of engineering works (i.e., ripar-
ian protection, levees and various bank revetments). Previous studies show that the modifications also give rise 
to adjustments in the bed morphology22,34. Let B (m) denote, at a given location, the channel width measured at 
the mean sea level (0.0 m m.s.l.). The results are presented in Fig. 8.

The field data show that the 500 km river reach narrows, on an average, by 0.375 km during the period. The 
shrinkage corresponds to 9.5% from 1998 to 2015, which is, in general, attributable to such factors as channel bar 
growth, reclamation of shoreline, and construction of dikes and revetments23. Except for in some sections, the 
adjustments in width are minor along the upper 420 km. The engineering measures limit the width development 
in many places. Local widening is mainly due to natural bank erosion processes. Studies made by Xia et al.22 and 
Zhang et al.24 demonstrate that the river course upstream of Datong also exhibits insignificant development in 
width. The major change in B occurs in the final 80 km section close to the river mouth, along which the average 
width changes from 7.462 km in 1998, to 6.544 km in 2010 and to 6.035 km in 2015. This means that the river 
width is reduced by 1.427 km from 1998 to 2015. Even along this section, the changes are not uniform; some 
locations are eroded more than others. As compared to the remaining 420 km, the more noticeable reduction is 
mainly due to enhanced down-cutting, which also augments the flow velocity and reduces flow passage area. That 
narrowed channels lead to erosional deepening is also observed in many alluvial rivers throughout the world35,36.

Longitudinal bed changes.  Based on the measured bathymetries, the changes in river bed elevation along the 
reach are assessed. The channel or flow passage volume is a proxy for the changes. To illustrate this, the reach 
is divided into three segments, delimitated by CS1 and CS2 (Fig. 2). The former is at Wuhu city, 120 km down-
stream of Datong; the latter is at Zhenjiang city, 180 km upstream of Xuliujing. From 1998 to 2015, the channel 
volume of each segment is tabulated for comparison (Table  4), corresponding to the space below the mean 
sea level and above the river bed. With the elapse of time, a larger channel volume of the resulting bathym-
etry denotes erosional down-cutting, while a smaller one connotes sediment deposition. The volume changes 

Figure 8.   Cross-channel changes along the reach based on the surveys in 1998, 2010 and 2015.
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also exhibit an erosion–deposition–erosion pattern. Notice that erosion also takes place upstream of Datong 
station22,37.

To further quantify the bed changes, longitudinal profiles from the three bathymetries are plotted in Fig. 9, in 
which Zb (m m.s.l.) denotes the averaged bed elevation, equal to the ratio of channel volume to B × L, and L (km) 
is the streamwise distance along the river centerline (L = 0 at Datong). Along the 500 km, the reach-averaged Zb 
value changes from − 7.18 m in 1998, to − 7.83 m in 2010 and to − 7.96 m in 2015. It shows that the river course 
undergoes, on the whole, a gradual decline in bed elevation with the elapse of time. However, governed by the 
river geometry inclusive of bed slope and other factors, deposition also occurs.

For each segment, the Zb values are also included in Fig. 9. Zb changes from − 6.16, − 7.20 to − 7.59 m along 
the upper segment (Datong–CS1), from − 7.57, − 7.84 to − 7.47 m along the middle one (CS1–CS2), and from 
− 7.44, − 8.28 to − 8.85 m along the lower one (CS2–Xuliujing). Before year 2010, erosional down-cutting occurs 
obviously along all three segments, which is in agreement with the previous studies by Zheng et al.23. Along with 
the normal operation from 2010, the middle segment shifts, however, from downward scouring to deposition, 
albeit minor; the erosion continues in the upper and lower segments. The 1998‒2010 period covers phase III 
and part of phase II. For the middle segment, there are no in-between field data that support if the gradual 
impoundment slows the erosion and leads to deposition at an earlier time.

For the river course between the TGD and Datong, Yang et al.14 reveal that, at a number of locations, there 
is excessive erosion in response to the declining sediment supply. Similarly, Xia et al.22 conclude that the dam 
operation is the extrinsic cause for the erosion development in the 360-km Jingjiang reach, whose upper end is 
about 102 km from the dam. The analyses presented here show that erosion extends gradually from Datong to 
the lower river. The results match the conclusions derived by Zheng et al.23,25, in which comparisons are between 
the bathymetric data from 1998 and 2013. The only drawback of their study is that the interjacent changes during 
this relatively long period are not unveiled.

In the middle segment, the sediment transported from upstream settles down. Sampled bed materials also 
show that a layer of 1–3 cm thick mud covers the sandy bed on the top25, implying the deposition is likely to be 
associated with seasonal floods. The tidal effects that are known to be considerable for the Yangtze River vanish 
further upstream and thus play a minor role in the sediment deposition.

The Xuliujing station is located some 60 km from the river mouth. In the lower segment, the erosion is 
profoundly affected by the tidal excursions up the river. Attachment of the seaward ebb tides to the river runoff 

Table 4.   Channel volume changes during 1998–2015.

Segment

Channel volume (108 m3)

Difference (c)–(a) (108 m3)(a) 1998 (b) 2010 (c) 2015

Upper: Datong–CS1 (120 km) 15.00 16.80 17.31 2.31

Middle: CS1–CS2 (200 km) 34.60 35.15 32.54 − 2.06

Lower: CS2–Xuliujing (180 km) 70.01 70.54 71.26 1.25

Figure 9.   Longitudinal bedform changes of the reach based on the surveys in 1998, 2010 and 2015.



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13662  | https://doi.org/10.1038/s41598-021-93004-2

www.nature.com/scientificreports/

aggravates the erosion, while the suppression of the runoff by the landward flood tides often leads to deposition. 
The former plays however a dominant role. In this context, a similar phenomenon is also observed in the lower 
Mississippi River38.

In the study area, the topographic changes are affected by the declining sediment budget from upstream. Local 
human activities are also impact factors25. In the recent years, wading projects including bridges and docks have 
been developed, narrowing the river course and resulting in local erosion. River regulation measures inclusive 
of construction of embankments limit the width, restrict the river meandering and aggravate the erosion phe-
nomenon. Regular in-channel dredging also contributes to the river bed degradation39. Actually, lots of water-
way projects (also sand mining and others) are conducted during this period. With the purpose to facilitate the 
inland navigation in the lower segment, dredging is continually carried out during 2012–2018. Along the central 
part of the river, the bed elevation is lowered by 2 m; the water depth changes from 10.5 to 12.5 m downstream 
of Nanjing city. During 2010–2015, the total dredged volume amounts to 4.36 × 107 m340,41. In the context, the 
human activities play a significant role.

Prediction for near‑future changes
With the bathymetrical data from 2010 and 2015, the foregoing analysis reveals, for approximately 5 years’ normal 
operation (phase IV), the temporal flow and sediment relationship and morphological changes along the reach. 
However, one question, probably a consequential one in the context, remains unanswered. It is unclear whether 
or not the river-bed changes have reached a hydro-morphological equilibrium under the impacts of the TGD, 
i.e. whether the bed morphology will further evolve with time after 2015 and at what pace the change will occur. 
Practical challenges such as laboratory space, construction costs and flexibility to realize flow conditions limit 
the possibility to carry out physical hydraulic model tests on such a scale. In view of this, two-dimensional (2D) 
numerical simulations are performed to help shed light on the near future sediment and morphological changes 
in the large alluvial river.

Model setup.  The Delft3D program package is a widely used software for solutions of river flow and sedi-
mentation issues42. It is adopted here to predict near-future morphological changes. The governing equations 
are the Navier-Stokes equations (for flow continuity and momentum) and formulas for sediment transport and 
bed-form deformation. With the sediment trapping in the reservoir, the bed-load flux is insignificantly small 
and the suspended load accounts for the morphological adjustments of the reach. Its transport is expressed by 
an advection-diffusion (mass-balance) equation. The bed-form change is determined via the bed stability coef-
ficient and bed resistance. The model is solved with the finite-difference method. For a detailed description of its 
mathematical formulations (current version 4.04), see the Delft3D website (https://​oss.​delta​res.​nl/​web/​delft​3d) 
and other published results such as Baar et al.43 and Rinaldi et al.44.

The computational domain runs from Datong to Xuliujing, the same as in the field studies (Fig. 1). Due to 
the appreciable changes in river cross-section including bends, diffluences and confluences a 2D model is set-up. 
This means that the flow in the vertical direction is treated depth-averaged. Several meshes of varied cell sizes are 
evaluated so as to ensure grid independent solutions, which are checked through steady-state flow calculations. 
The along- and cross-channel grid sizes are equal to 30–50 and 40–70 m, respectively (Fig. 10). Small cells are 
assigned to locations with large flow gradients. The domain is covered by a total of 360,000 cells.

The simulation period stretches over a 15-year period from October 2010 to September 2025. The modeling 
uses the river bathymetry data from 2010 as initial conditions (Fig. 2). The boundary conditions are defined 
in terms of both flow and sediment, which are based on the in-situ measurements. The upstream boundary at 
Datong is specified with the daily-averaged flow discharge and suspended load concentration; the downstream 
one at Xuliujing is prescribed with the corresponding water-level changes with time. The model runs first to 
2015 for model calibration and validation—the numerical results are compared with the recorded water levels 
at the two stations and the mapped bathymetry. Using the morphological accelerate technique in the software, 
the 2010–2015 changes are tripled and the simulation extends by 10 years to 2025.

Sedimentation trends.  In the light of the 2010 and 2015 bathymetries and the 5-year daily flow and sedi-
ment data during October 2010–September 2015, predictions are made to look into the potential morphological 
changes in the near future. The riverbanks confined by levees and revetments are kept at the same width in the 
modelling; only downcutting is allowed. Figure 11 plots and compares the longitudinal bed profiles on three 
occasions in 2015, 2020 and 2025, the latter two of which are the predicted profiles. Along the 500-km reach, the 
reach-averaged changes are from − 7.96 m in 2015, to − 8.21 m in 2020 and to − 8.40 m in 2025. This means that 
the river course is expected to deepen further, by 0.44 m during the 10-year period.

The segment-averaged Zb values are also indicated in Fig. 11. It changes correspondingly from − 7.59, − 7.96 
to − 8.09 m in the upper segment, from − 7.47, − 7.35 to − 7.31 m in the middle one, and from − 8.55, − 9.36 to 
− 9.78 m in the lower one. This implies that, along with the normal reservoir operation, erosion continues in the 
upper and lower segments; the middle segment incurs gradual deposition. This is suggestive of the fact that the 
trend that that the reach exhibits during 2010–2015 will remain for at least another 10 years. Figure 12 summa-
rizes the Zb values of each segment as a function of time. The erosion in the upper segment and the deposition 
in the middle one do not show any sign of escalation, but slow down instead. The erosion in the lower segment 
bears however some analogy to the previous years, with an almost linear downward trend.

Being large in width and erodible in an alluvial plain, the river reach is characterized by meanders, braids 
and an appreciable number of bars and islands. The general pattern of e.g. erosion is also accompanied by local 
deposition and vice versa. Figure 13 compares, in form of isolines, the differentiated elevations between the 2015 
and 2025 bathymetries, calculated by subtracting the latter from the former. A positive number thus denotes 

https://oss.deltares.nl/web/delft3d
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erosion and a negative one deposition. (x, y) refers to a local coordinate system, pointing positively seaward and 
northward, respectively (Fig. 2). In the upper and lower segments, the average bed elevation falls by 0.50 m and 
0.93 m. The scour occurs in the main channel; local erosion depth amounts, at maximum, to 1.60 m at quite a 
number of locations.

The 200 km middle segment is, on the whole, exposed to gradual deposition. On an average, the bed level 
uplifts by 0.16 m. In some shore areas, local siltation can be up to 1.25 m thick. The simulations show that the 

Figure 10.   Numerical grid with local enlargements.

Figure 11.   Longitudinal bedform changes of the reach in 2015, 2020 and 2025.
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Figure 12.   Segment-averaged longitudinal bedform changes during 2010–2025.

Figure 13.   Comparison of bedforms between 2015 and 2025. (a) Upper segment (Datong–CS1); (b) middle 
segment (CS1–CS2) and (c) lower segment (CS2–Xuliuing).
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sediment deposition continues to mid-September 2018 and then switches to slight erosion, which takes place 
first at the upper segment end. In the simulations, the choice of Manning’s roughness coefficient has a bearing 
on the results, for which sensitivity analyses are made. Within its reasonable range, the shift from deposition to 
erosion could be one month earlier or later. Nevertheless, no field bathymetry data later than 2015 are available 
to verify this. The reservoir reaches its full pool level first in October 2010. This suggests that the sedimenta-
tion pattern here shifts after approximately 8 years’ full impoundment. By 2025, the erosion has extended some 
90 km down the segment. Except for some local severe scours, the erosion depth varies between 0.20 and 0.70 m.

The results demonstrate that, along with the full impoundment, the river reach is still in a state of adjustment. 
This is contradictory to the hypothesis that scouring further downstream initiated by the TGD is prevented and a 
new hydro-morphological equilibrium is reached26. Surian and Rinaldi35 state that impoundment of a dam often 
gives rise to a substantial reduction in sediment budget to its downstream reaches. The river course downstream 
then yields to a gradual adaptation to the changes, often with consequential bed erosion. It is a slow process and 
the time scale may be in the order of decades or even longer.

In the lower segment, the trend of continued erosion is integrated with the tidal waves that propagate up 
and down the river. The segment inclusive of the Xuliujing station is significantly affected45. The maximal tidal 
range h (m) amounts to 3.2 m at the end of the examined reach. The interplay with the seaward runoff generates 
a bi-directional flow. Being a proxy of the tidal effects, let Ltr (m) denote the distance from Xuliujing to tidal 
reversal (TR) location. Zhang et al.46 show that Ltr is mainly governed by Q and h. Based on the simulations, 
The Ltr/h data collapse to a single curve and exhibit a logarithmic change with Q (Fig. 14). Depending on Q and 
h, Ltr varies between 50 and 350 km. The data are in line with the results from other studies45,47. That erosion 
continues in the lower segment is attributed to the interplay between the tides and the river runoff, with the 
former being dominant.

The simulated bedforms do not include the impacts of dredging. Along with the rapid social and economic 
development, the river has become more trafficked than ever. In-channel dredging, which is made at regular 
intervals to facilitate the navigation, also contributes to the local bed degradation39. As shown in Fig. 3, the Ts 
and S have decreased dramatically in connection with the impoundment. Studies made by Yang et al.7,14 reveal 
that, in the forthcoming decades, an additional decrease in the sediment budget is expected at the dam, which is 
owing to the dam constructions and effective soil conservation controls in the upper river basin. Over the past 
decades, large hydropower projects have been developed in the upper reaches of the river14. For example, the 
dam reservoirs at Xiangjiaba and Xiluodu start impounding in October 2012 and May 2013, respectively. They 
regulate the river flows and intercept the sediment, resulting in abatement in sediment inflow to the Three Gorges 
reservoir. In view of the declining sediment supply in combination with erodible riverbed, bed downcutting in 
the 500 km reach is a plausible scenario.

Conclusions
The Three Gorges represents one of the largest hydropower projects in the world. Exclusive of the preparations, 
the dam construction begins in 1995 and covers a period of 16 years. It takes about 7 years to attain full impound-
ment in October 2010. The reservoir operations modulate the sediment transport and have a bearing on the 
morphology downstream. In the light of field investigations, numerical simulations and a blend of data sources 
from related publications, the study deals, before and after the commissioning, with the sedimentation changes 
along the 500 km of the lower river. Based on the 26-year field data, the study assesses the temporal flow and 
sediment relationship during 1990–2015, and elucidates the changes, both cross-sectional and longitudinal, in 
morphology. The numerical simulations aim to predict the channel evolution in the near future.

The dam impoundment regulates the seasonal flow discharges and traps the sediment inclusive of bed load. 
As a result, both the sediment concentration and flux decrease pronouncedly downstream. From the pre-con-
struction to the full impoundment phase, the multi-year averaged maximum flow discharge varies by a factor of 
1.3, while the corresponding suspended load concentration and transport rate differ by a factor of 3.0 and 3.8, 

Figure 14.   Dependence of Ltr on Q and h.
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respectively. The decline in the concentration augments the sediment carrying capacity of the flow and height-
ens the scouring potential in the riverbed. The bed sediment becomes thus coarser as time elapses, indicative of 
sediment particle re-sorting.

Irrespective of the project phases, the 120 km upper and 180 km lower segments of the 500 km of the river 
always suffer from a scouring process. In the former, along with the full-pool impoundment from 2010, the bed 
level downcutting slows gradually down towards 2025. In the latter, the erosion continues at a constant pace, 
which is integrated with the tidal actions up the estuary. In the 200 km middle segment, the general erosion 
switches to slight deposition sometimes during the progressive impoundment and lasts to September 2018. Then 
erosion begins at its upper end and extends some 90 km down the segment by 2025. The noticeable sediment 
reduction from upstream is the extrinsic cause for the river-bed erosion.

As of June 2003, the impoundment has resulted in a gradual reduction in sediment supply. The river course 
downstream sees a process of progressive adjustment to the changes. It seems that the 500 km reach has not yet 
achieved a hydro-morphological equilibrium and the riverbed down-cutting is going to continue for a period.

The study predicts the general trend of near-future sedimentation and morphological changes. With the 
2010–2015 field data as basis, the prediction covers 10 years from 2015 to 2025. As the waterway is huge and 
complex, featuring appreciable variability in both flow and sediment, more recent and updated field data of 
bathymetry, flow and sediment are deemed necessary to extend the modeling and make reliable prediction in 
a longer perspective.

The construction of dams leads to hydraulic fragmentation of a river catchment. A reservoir modulates 
the river flows and interrupts the sediment transport to its downstream reaches. Soil conservation measures 
upstream also cut down the sediment flux into the reservoir. As a result, the reduction in sediment budget and 
the significant morphological adjustments downstream become a fact, which has implications for the society 
and the economy. It is the intention of this research to provide reference for the study of similar sedimentation 
issues in alluvial rivers.

Data availability
The data that support the findings of the study are available from Yangtze Water Resources Commission, Hydrol-
ogy and Water Resources Survey Bureau of the Yangtze River Estuary and Yangtze Waterway Bureau. Source 
data are not provided with this paper.

Code availability
The software used for the simulations in this study is available at https://​oss.​delta​res.​nl/​web/​delft​3d/​home.
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