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Noncytotoxic silver nanoparticles 
as a new antimicrobial strategy
Bartosz Skóra 1, Urszula Krajewska2, Anna Nowak2, Andrzej Dziedzic3, Adriana Barylyak4 & 
Małgorzata Kus‑Liśkiewicz 2*

Drug‑resistance of bacteria is an ongoing problem in hospital treatment. The main mechanism of 
bacterial virulency in human infections is based on their adhesion ability and biofilm formation. 
Many approaches have been invented to overcome this problem, i.e. treatment with antibacterial 
biomolecules, which have some limitations e.g. enzymatic degradation and short shelf stability. 
Silver nanoparticles (AgNPs) may be alternative to these strategies due to their unique and high 
antibacterial properties. Herein, we report on yeast Saccharomyces cerevisiae extracellular‑based 
synthesis of AgNPs. Transmission electron microscopy (TEM) revealed the morphology and structure 
of the metallic nanoparticles, which showed a uniform distribution and good colloid stability, 
measured by hydrodynamic light scattering (DLS). The energy dispersive X‑ray spectroscopy (EDS) 
of NPs confirms the presence of silver and showed that sulfur‑rich compounds act as a capping 
agent being adsorbed on the surface of AgNPs. Antimicrobial tests showed that AgNPs inhibit the 
bacteria growth, while have no impact on fungi growth. Moreover, tested NPs was characterized by 
high inhibitory potential of bacteria biofilm formation but also eradication of established biofilms. 
The cytotoxic effect of the NPs on four mammalian normal and cancer cell lines was tested through 
the metabolic activity, cell viability and wound‑healing assays. Last, but not least, ability to deep 
penetration of the silver colloid to the root canal was imaged by scanning electron microscopy (SEM) 
to show its potential as the material for root‑end filling.

Silver nanoparticles (AgNPs), due to their unique chemical, physical and biological properties, are one of the 
most commonly tested nanoparticles in  nanobiotechnology1,2. Various routes, including physical, chemical and 
biological procedures, have been developed to synthesize silver nanoparticles. However, an increased demand 
in eco-friendly processes and using biocompatible reagents make a great of interest the biological way of syn-
thesis of  nanoparticle3. During the green synthesis, biological compounds from bacteria, microalga and yeasts 
are used, instead of chemical formulas, which makes the reaction more environmentally friendly. Among many 
organisms, Saccharomyces cerevisiae, nonpathogenic and non-toxigenic, generally recognized as safe (GRAS) 
organism should be considered as a promising “tool” for green silver nanoparticles synthesis. Indeed, Niknejad 
et al. demonstrated the potential of S. cerevisiae for extracellular synthesis of fairly monodisperse silver nano-
particles and proved their antifungal  activity4. Furthermore, obtaining the functionalization of biogenic silver 
nanoparticles with a biocompatible compound, came from yeast extract, would further enhance their biological 
 activities3. Moreover, multi-sites action of nanosilver could be a promising candidate to overcome the ongoing 
microbial  resistance4.

Microbial adhesion, resulting in biofilm formation, is very often attributed or associated to the number 
of diseases. It is a significant virulence mechanism in the pathogenesis of many medically important bacte-
rial  pathogens5. Unfortunately, most currently used antimicrobial treatments are developed against planktonic 
 bacteria6. Moreover, biofilms are 10- to 1000-fold more adaptively resistant to antimicrobials than planktonic bac-
teria, probably because the biofilm antibiotic tolerance is thought to involve alternative mechanisms to bacterial 
antimicrobial  resistance5,7. According to the US Centers for Disease Control, 80% of human bacterial infections 
are due to biofilms, and therefore, they pose a significant problem to human  health7,8. Thus, due to the failure in 
the prevention or eradication of microbial biofilm, it is a great demand to look for a new strategy and treatment.
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Up to date, there are a few approaches to comb with recalcitrant biofilms; i.e. electrochemical treatment, use 
the antimicrobial compounds or biomolecules which exhibit antibiofilm activity and target the biofilm architec-
ture, as well as drug delivery methods [review  in7. In the latter one, especially engineered nanoparticles have been 
explored as drug delivery vehicles, where compound of interest is adsorbed to a nanomatrix or entrapped by  it9. 
However, targeting of bacteria pathogens with nanocarriers may have some limitation, such as shelf life, stability, 
encapsulation efficacy, drug release/leakage, and enzymatic degradation of loaded  compound10. To overcome 
these disadvantages, silver nanoparticles with its antimicrobial efficacy, may become an alternative strategy. 
Indeed, these nanostructure have been used to control bacterial colonization and infection in wound  healing11. 
Moreover, some authors demonstrated that AgNPs can interact with mature bacterial biofilm, and showed their 
high toxicity against  pathogens12. The strong antimicrobial effect of silver nanoparticles is indisputable. However, 
when they are supposed to be applied to humans, their toxic effect to eukaryotic cells must be considered. The 
cytotoxicity of AgNPs was noticed for human cervical cancer cells (HeLa), human lung carcinoma (A549), and 
human hepatocellular carcinoma (Hep-G2)13–15. Unfortunately, there is still gap in knowledge on the impact 
of the silver nanoparticles toward human cells when its antibacterial potential is taken into account the human 
application. For example, the lack of the cytotoxicity of silver nanoparticles toward eukaryotic cells, with their 
antibacterial potential may be very useful for endodontic treatment when the elimination of bacteria in the root 
canal system is  required16,17. Pathogenic microorganisms are able to penetrate the root dentin up to a depth of 
more than 1 mm, whereas disinfecting solutions only reach a depth around 100 µm18,19. Dentin with its struc-
tural features as dentinal tubules, which are filled with pathogenic germs in dentinal tubules is an ideal object 
for disinfection of nanoparticles. Thus, the new devices/compounds which may help to overcome the problem 
of the insufficient penetration depth into the tooth are very desirable.

The aim of the study was to describe the antibacterial effect of the green-synthetized silver nanoparticles, 
simultaneously with the analysis of their cytotoxic effect on eukaryotic cells. The antimicrobial potential was 
checked through either the ability to inhibit the formation of biofilm or to eradicate already existed one, for 
Pseudomonas aeruginosa and Escherichia coli. Moreover, the growth was monitored also through the zone of 
inhibition assay for Staphylococcus aureus and Candida albicans strains. To assess the cytotoxicity, the impact 
of AgNPs on metabolism activity, viability and migration ability of mammalian cell lines (mouse embryonic 
fibroblasts, human keratinocytes, human osteosarcoma and human non-small cell lung carcinoma) was demon-
strated. Bioformation of silver nanoparticles was monitored by UV–Vis spectroscopy. The structure and chemical 
composition of silver nanoparticles were evaluated with electron transmission microscopy imaging. The size 
and stability of the nanostructures were analyzed by hydrodynamic light scattering measurements. Moreover, 
the ability of the silver nanoparticles to penetrate the root canal has been imaging.

Material and methods
Reagents. Yeast extract Peptone Dextrose medium (YPD), Luria–Bertani (LB) and agar were purchased 
from BTL (Poland). Acridine orange (AO), 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan (MTT), crystal 
violet (CV), ethanol were purchased from Sigma-Aldrich (USA). Dimethyl sulfoxide (DMSO) and ethidium 
bromide (EtBr) were purchased from Chempur and MpBio, respectively. Dulbecco’s Modified Eagle Medium 
High Glucose (DMEM, Corning), antibiotic solution (Antibiotic Antimycotic Solution, Sigma-Aldrich), fetal 
bovine serum (FBS, Biowest), phosphate buffered saline w/o magnesium and calcium (PBS, Corning), 0.25% 
trypsin (PAA) were used.

Microorganisms and cell lines. Saccharomyces cerevisiae (10,058/69 strain) were previously isolated 
from patient mouth, delivered by Department of Microbiology (Medical University of Wrocław) and genetically 
 identified20. The YPD medium (10 g/L yeast extract, 10 g/L peptone, 20 g/L glucose) was used for preculture and 
the yeasts were grown in flat-bottom flask at 28 °C with rotatory shaking (150 rpm). For antimicrobial assays, 
bacteria (Staphylococcus aureus ATCC 25,923, Pseudomonas aeruginosa ATCC 27,853, Escherichia coli PCM 
2209) and fungi (Candida albicans ATCC 14,053) strains were employed.

Bacteria were precultured in LB medium at 37 °C with overnight shaking (150 rpm), while fungi in YPD 
medium at 30 °C. The cell lines used in this study were mouse embryonic fibroblasts (NIH 3T3, ATCC CRL-
1658), human keratinocytes (HaCaT, ATCC CRL-2522), human osteosarcoma (U-2OS, ATCC HTB-96) and 
human non-small cell lung carcinoma (NCI-H1299, ATCC CRL-5803). They were grown and handled accord-
ing to standard technique as described  elsewhere21. Cultures were performed in 24- or 96-well plate (Corning) 
containing 1.5 mL and 200 µL of DMEM medium for wound-healing assay and MTT assay or AO/EB staining, 
respectively. Medium was supplemented with 1% of antibiotics solution and 10% of fetal bovine serum and 
cultures were incubated at 37 °C in a 5%  CO2 air saturated incubators. 24 h before the experiments, cells were 
seeded at a density 5 ×  104 and 5 ×  103 cells/well for 24- or 96-well plate, respectively.

Synthesis of AgNPs. The Saccharomyces cerevisiae 10,058/69 strain was used for AgNPs synthesis due 
to their silver nitrate reduction properties. The production of AgNPs were performed with lower and higher 
concentration of  AgNO3, 1 mM and 3 mM (for further analysis the abbreviations were as followed: AgNPs_L or 
AgNPs_H). Briefly, after 48 h of yeast culturing at optimal temperature 28 °C with shaking, the cell suspension, 
when reached the density  atOD600 ~ 14, was centrifuged. The obtained supernatant was removed, followed the 
yeast biomass was resuspended in sterile distilled water and cultured for next 48 h in 28 °C with shaking. The 
post-culturing water was collected by centrifugation and its pH was adjusted to 10. Consequently, the silver 
nitrate was added to the post-culturing water in final concentration 1 mM and 3 mM and placed into 60 °C for 
24 h. The specific conditions during the synthesis (i.e. silver ions concentrations, time and pH of the synthesis) 
were chosen based on our preliminary results (data not shown). For the evaluation of the ability to penetrate the 
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root canal of the tooth, the colloid of silver nanoparticles was developed in collaboration with the Institute of 
Cell Biology of NAS, Lviv, Ukraine.

Physicochemical characterization of AgNPs. UV–Vis spectrum of AgNPs was recorded on TECAN 
spectrofluorometer (Infinite M200, Thermo Scientific) in the range of 330–900 nm. To determine the concentra-
tion of AgNPs, the microbalance technique using Radwag MYA 5.4Y balance was used. Briefly, 100 μL of the 
colloid suspension was placing on aluminum crucible with known mass and evaporating the solvent to a dry 
mass. Concentration values are given as mean and standard deviation of triplicate. The Dynamic Light Scat-
tering (DLS) and the polydispersity index (PdI) were determined using the universal Nanoplus HD3 system 
(Particulate System/Micrometrics) equipped with 660 nm laser diode, as described  elsewhere22. All the analysis 
were performed at 25 °C. Prior measurement, solutions of AgNPs were sonicated (310 W, 50 Hz, 100%, 10 min, 
Polsonic, SONIC-3). AgNPs were imaged with transmission electron microscopy (FEI Tecnai Osiris as described 
 elsewhere23.

Antimicrobial potential of AgNPs. The antimicrobial of synthesized AgNPs activity through the zone of 
inhibition was tested against different pathogens such as S. aureus, P. aeruginosa, E. coli and C. albicans, accord-
ing to a modified standard  protocol24. Briefly, this modification consisted in punching 5-mm diameter wells 
in the nutrient agar instead of using a soaked disc. 100 µL of the overnight culture of the strains suspensions 
were spread onto the agar plates. When dried, 50 µL of AgNPs_1 and AgNPs_3 were aseptically transferred 
into separate wells. The plates were incubated at 30 or 37 °C for 24 h, for yeast and bacteria respectively. The 
inhibition zones surrounding the wells were recognized as the ability of the NPs to inhibit the growth of cells. 
For further analysis, P. aeruginosa and E. coli strains have been chosen to evaluate the influence of AgNPs on 
the bacteria ability to create biofilm in the presence of nanoparticles. Here, two type of assays have been imple-
mented, to determine if the AgNPs can (i) prevent biofilm formation or (ii) reduce the final biofilm  biomass25. 
(i) To evaluate the inhibition of biofilm formation the overnight bacteria inoculums (~  108 CFU) were mixed 
with the colloid of AgNPs in the range of concentrations of 0.125–2 mg/mL. Cells were then incubated for 24 h 
at 37 °C without agitation, to allow biofilm formation. Plates were washed thrice with PBS from non-adhered 
cells and dried for 15 min at room temperature. Biofilms were stained for 15 min by adding 0.4% of crystal violet 
(CV) solution to each tested well. Then after, cells were washed with PBS to remove excess of the dye. Finally, the 
crystals were solubilized with 30% acetic acid, followed by absorbance measurement at 595 nm using a micro-
plate readers (Infinite M200, Thermo Scientific). Results are reported relative to untreated biofilm biomass, as 
an OD values. (ii) Degradation of pre-established biofilm was tested as described above with some alterations. 
Cells were seeded in 96-well plate in LB without adding AgNPs and incubated at 37 °C for 24 h to allow biofilm 
creating. After this time, the wells were rinsed and replaced with fresh one, containing different concentrations 
of AgNPs. After 24 h the CV staining as described above was performed. The results were expressed as a percent-
age of biofilm degradation compare to non-treated cells.

Cytotoxicity of AgNPs. Cell metabolic activity. The 1-(4,5-Dimethylthiazol-2-yl)-3,5-diphenylformazan 
(MTT) assay was used as an indicator of metabolism activity level of the cell after AgNPs solutions treatment. The 
assay was performed according  to23. Briefly, cells were seeded on 96-well plate at density 5 ×  103 cells/well, 24 h 
before the experiment. After this time, the medium was removed and replaced with the fresh one, containing 
different concentrations of AgNPs colloid (1 mM and 3 mM of precursor variants) in the range of 0.125–2 mg/
mL. Cells were cultured for 24 h at 37 °C in a humidified incubator in a 5% of  CO2 atmosphere. The medium 
was discarded from each well and 200 µL of fresh DMEM with MTT (0,5 mg/mL) was added into well. After an 
additional incubation of 2–3 h, to allow the formazans to form, 100 µL of DMSO were added per well to stop the 
reaction and dissolve crystals. The absorbance was finally measured at 565 nm wavelength on microplate reader 
(Tecan, Switzerland) and the metabolic activity results were expressed as a percentage of the control (untreated 
cells). All tests were performed at least in triplicate.

Cell viability. Examination of cell viability has been conducted by ethidium bromide (EB) and acridine orange 
(AO) staining to distinguish live and death cells, according  to26. Briefly, confluent cells were incubated for 24 h 
in the presence of 0.5 or 1 mg/mL of AgNPs. After this time, plates were centrifuged (300 × g, 5 min) and super-
natant was discarded. Cells were washed with PBS and were stained with a solution of acridine orange (100 μg/
mL in PBS) and ethidium bromide (100 μg/mL in PBS) at a volume ratio of 1:1 for 5 min. Under fluorescence 
microscope (Olympus, Japan) living cells were visualized as green while dead cell were stained in red. For cell 
viability determination, a total of 100 cells from image (at least six images from different wells were examined) 
were counted and dead cells were expressed as a percentage of the total number of the cells.

Wound‑healing assay. The impact of AgNPs on cells migration were performed using wound-healing assay 
(scratch assay), according  to27. Briefly, the cells were seeded at a density 5 ×  104 cells/well in 24-well plate and 
incubated until reached 90% of confluence. Wells with confluent cells were scratched by using a P10 pipette tip in 
the diameter of the culture. Then after, the medium was removed, and the cells were washed with PBS to discard 
detached cells. Followed, the 0.5 mg/mL of AgNPs solution suspended in DMEM with 1% of FBS was added to 
each well and cultured for 24 and 48 h. Wound closures were periodically visualized (0, 24 and 48 h intervals) 
under inverted microscope. The ability of cell to migrate and wound closure after AgNPs treatment was calcu-
lated with using ImageJ software according  to28. The results were expressed as a percentage of the scratch closure 
compared to scratch surface at 0 h time in each group. All tests were performed at least in duplicate.



4

Vol:.(1234567890)

Scientific Reports |        (2021) 11:13451  | https://doi.org/10.1038/s41598-021-92812-w

www.nature.com/scientificreports/

Electron scanning microscopy of the root canal penetration. To examine the tooth samples in an 
electron scanning microscope, 44 endodontically developed.

single-rooted human teeth with straight canals were taken, in which 2 μL of a solution of silver nanoparticles 
were injected. The tooth samples were prepared in the longitudinal direction of the root canal to visualize the 
lumen of the dentinal tubules. The study was performed using an electron scanning microscope (ESEM XL30, 
Philips, Netherlands).

Statistical analysis. The results represent the mean ± SD from at least three independent experiments. 
One-way ANOVA with Tuckey post-hox test, using Graph 10 software (*P < 0.05; **P < 0.01 and ***P < 0.001) 
was performed (*P < 0.05; **P < 0.01 and ***P < 0.001) compare to the control group. t-test was also used to 
determine statistical difference between scratch closure (HaCaT vs. U-2OS) (#P < 0.05).

Results and discussion
Physicochemical characterization of AgNPs. The ability of yeast water extract to reduce silver ions in 
the reacting solution and formed the silver nanoparticles was monitored with UV–visible spectra, where specific 
surface plasmon resonance (SPR) should appear during nanoparticles  formation29. SPR is the absorption of 
the visible electromagnetic radiation of the collective oscillations of surface  electrons30. Indeed, the maximum 
absorption peak was observed at 420 nm, for both of the samples (Fig. 1A). This wavelength was identical as 
reported by Elamawi et al., who obtained silver NPs synthetized from the cell-free fungal extract of Trichoderma 
sp.31. And was also closely matched (410 nm) to those obtained from the cell-free filtrate of Aspergillus fumiga‑
tus32. According to the Mie’s theory only a single SPR band is expected in the absorption spectra of spherical 
metal  nanoparticles33. We present that silver nanoparticles absorb blue light and exhibit one single peak, thus, 
they are spherical in shape. Moreover, morphology of the synthesized NPs was confirmed with transmission 
electron microscopy (Fig. 1B), where predominantly spherical shape was imaged.

For various bioapplications, physicochemical properties determine nanomaterial cellular uptake, transport 
and  fate34. Considering this, here we evaluated some of the most important features of the nanomaterials, pri-
marily the size, stability and surface chemistry of biomanufactured AgNPs. The dynamic light scattering (DLS) 
was used to study the size distribution and colloidal stability of  AgNPs35. The synthetized silver nanoparticles 
presented a size with median value 20.1 nm and 17.5 nm, for the sample AgNPs_L and AgNPs_H, respectively 
(Fig. 2). The stability of the nanoparticles as colloid is very important, as unstable NPs will not be able to disperse 
homogenously, which may effect on their antibacterial properties and reducing the  efficacy31,36. Therefore, the 
polidyspersity index (PdI) was used as a value which show the stability of the nanomaterial. The higher the PdI 
value is, the less monodispersed are the  nanoparticles37. In this study, the PdI of the materials were equal to 0.107 
and 0.397 after synthesis or 0.327 and 0.319, after 8 month storage, for the AgNPs_L and AgNPs_H, respectively 
(Fig. 2). Thus, this suggest the nanoparticles are stable as they do not exhibit any considerable aggregation. It is 
worth to mention that many papers reported on difficulties in the synthesis of stable solution of NPs due to their 
tendency to  agglomerate38–40. According to Gorham et al. PdI of AgNPs increased due to oxidation-dependent 
processes. The authors reported that citrate-coated AgNPs are characterized by increasing of agglomeration 
level during 104-day storage, despite citrate  use41. Similar effect was observed by Izak-Nau et al., who show that 
agglomeration of citrate-coated AgNPs can be delayed effectively about 6 months since being synthesized. After 
this time, the hydrodiameter size of NPs in tested solutions increased  significantly42. Interestingly, our results 
clearly showed that using post-harvested yeast water during synthesis allow to obtain stable NPs solutions, as 
PdI is not increased significantly, even after 8-month-storage.

Figure 1.  (A) UV–Vis absorption spectra of biosynthesized AgNPs_L (circle) and AgNPs_H (diamond). (B) 
Example of TEM image of AgNPs.
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The morphology and elemental composition of the AgNPs were determined by transmission electron micros-
copy (TEM) and energy dispersive X-ray spectroscopy (EDS). Figure 3A depicts the HRTEM image of biosyn-
thesized silver nanoparticles showing the lattice fringes clearly. The calculated inter planar distance was equal to 
0.235 nm, confirmed occurrence of phase of Ag. According to the STEM-HAADF and EDS results (Fig. 3B-F) 
the synthesized nanomaterial is mainly constituted of Ag (Fig. 3D). Interestingly, the presence of sulfur precisely 
covering the nanoparticles was mapped (Fig. 3E). This may suggest that biocompounds reach in sulfur, which 
exists in the yeast water extract, may have the capping and stabilizing role. Many studies have revealed that the 
use of inorganic stabilizers such as citrate, PVP or PAA during synthesis allow to obtain stable NPs  solutions43,44. 
However, some of them can influence negatively on human health e.g. PAA, which may cause the irritation 
of respiratory system after  inhalation45. On the other hand, during the biological synthesis of nanoparticles, 
some biocompounds i.e. exopolysaccharides or proteins may exist as a stabilizing agent when nanoparticles 
are  formed46,47. The sulfur which was imaged on Fig. 3E suggests the presence of some yeast proteins coating 
the surface of NPs. According to the above-mentioned literature, we suppose that during the synthesis, the 

Figure 2.  Size of the AgNPs_L (A) and AgNPs_H (B) evaluated by hydrodynamic light scattering analysis. PdI, 
polidyspersity index.

Figure 3.  (A) Representative HRTEM images of single silver nanoparticle with lattice fringes. Silver was 
identified by the inter-planes spacing d = 0.235 nm corresponding to the (111) plane of silver. Measurement 
of inter-planes spacing was done on FFT image. (B, C) HAADF STEM image of AgNPs with various 
magnification. (D–F) The chemical composition analysis of AgNPs. EDS elemental mapping images of silver 
(red), sulfur (blue), and an overlay of the Ag and S. All the EDS measurements are collected from image B 
(lower magn.) and C (higher magn).
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Saccharomyces cerevisiae proteins or sulfur-rich biocompund coating the AgNPs surface and stabilize them, 
allowing to maintain stable while storage.

Antimicrobial effect of AgNPs. Zone of inhibition. Antimicrobial potential of the silver nanoparticles 
is ascribed to their diverse mechanism of action, and it is believed as the multistep and multilevel  process48. 
To evaluate this potential, the biosynthesized AgNPs (both of the tested variants) were analyzed against most 
pathogenic strains of bacteria: Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus and fungi 
Candida albicans, through the zone of inhibition assay. After 24 h of exposure, the growth was inhibited for each 
of the bacteria strains, whereas no inhibition was observed for yeast strain for both of the tested samples (Fig. 4). 
Kota et al. showed that AgNPs were characterized by high antibacterial properties, confirmed by analysis on six-
teen pathological isolates from human, both Gram positive and Gram negative  strains49. Moreover, the authors 
proved that 50 µg/µL concentration of these nanoparticles were able to increase zone of bacteria growth inhibi-
tion with the same efficiency in all tested  isolates49. Interestingly, Jalal et al. showed high antifungal properties 
of AgNPs (extracellularly synthetized by C. glabrata supernatant) towards six Candida species50. Similarly results 
were presented by Perween et al., who reported on potential usefulness of AgNPs in C. albicans infections, better 
than well-known antifungal  xenobiotics51. These conclusions are in the opposition of our results, which showed 
no effect on C. albicans growth inhibition of tested AgNPs solutions, which may be caused by higher diameter of 
tested AgNPs and/or sulfur coating of NPs surface.

Inhibition of biofilm formation. Bacterial colonization on abiotic or biotic surfaces may leads to biofilm forma-
tion and these microbial aggregates in biofilms produce a blockade that resists antimicrobial  agents48. Thus, due 
to extremely small sizes of NPs, they may be useful for accomplishing antimicrobial actions and fighting intracel-
lularly with  bacteria52. Herein, the antibiofilm efficacy of the silver nanoparticles was evaluated with the crystal 
violet staining assay, in a case of ability to inhibit biofilm formation. Different biofilm percentage of reduction 
was detected for inhibition biofilms when treated with different concentrations of AgNPs_L, however, in the 
concentration dependent manner. For the E. coli strain, the best reduction was achieved at the highest concen-
tration 2 mg/mL, which causes reducing the OD biofilm from 1.3182 (control) to 0.2806 in the tested group 
(Fig. 5A). While P. aeruginosa exhibits decreasing of biofilm OD up to 0.1813 (control group 1.0831) after 24 h 
treatment of 2 mg/mL concentration of AgNPs_L (Fig. 5B). Various mechanisms of antibacterial properties of 
AgNPs are described in the literature. Among them the high level of ROS production and the failure to eliminate 
them by P. aeruginosa after silver NPs exposition was  noticed53. Thus, it is suggest that AgNPs may become an 
antimicrobial agent on the multidrug-resistant strain, which is an ongoing problem in the  medicine53. Similarly, 
our results showed the high antibacterial potential of AgNPs_L against E. coli and P. aeruginosa. Moreover, the 
presented results revealed the potential of tested AgNPs to prevent the creation of bacterial biofilm. Masurkar 

Figure 4.  Antimicrobial activity of the AgNPs after 24 h of incubation against Staphylococcus aureus, 
Escherichia coli, Pseudomonas aeruginosa and Candida albicans.

Figure 5.  Biofilm inhibition after treatment of AgNPs in E. coli (A) and P. aeruginosa (B). Strains were 
incubated for 24 h in the presence of AgNPs. Post-treatment surface-associated biofilm was stained and the 
OD of biofilm biomass were presented. Mean values with standard deviation (error bars) with *, **, ***are 
statistically different from the respective control at P < 0.05, P < 0.01, and P < 0.001, respectively (one-way 
ANOVA, Tukey test).
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et al. highlighted that AgNPs were able efficiently to inhibit biofilm of Staphylococcus aureus, comparable to 
antibiotic-treated  group54. Martinez-Gutierrez et al. presented a comprehensive report about negative impact 
of AgNPs on many clinically important bacteria strains i.e. S. aureus, S. epidermidis and A. baumanni which are 
considered to be problematic in hospital  treatment55. Our results clearly showed that AgNPs synthetized with 
easy, cheap, fast and cost-effective way, may have high application value to treat pathogenic strains.

Biofilm eradication. The presence of bacterial biofilms is an emerging problem in nowadays hospital infec-
tions, due to high resistance of these structures on  antibiotic56,57. Many xenobiotics were tested as a potential 
anti-biofilm agents, however the highest efficiency of biofilm eradication was proved by  AgNPs58,59. Therefore, 
herein the efficiency of AgNPs ability to E. coli and P. aeruginosa biofilm eradication was evaluated (Fig. 6). In 
both tested bacterial strains, AgNPs caused decreasing in biofilm biomass. The highest eradication was observed 
for 1 mg/mL and 2 mg/mL concentrations for both tested strains and reached 65% and 53% in E. coli or 44% 
and 36% in P. aeruginosa, respectively (Fig. 6). The degradative effect of AgNPs in dose-dependent manner was 
observed, providing by higher eradication of established biofilm of 2 mg/mL and 1 mg/mL concentrations in 
comparison to 0.5 – 0.125 mg/mL concentrations of tested AgNPs (Fig. 6) E. coli established biofilm was more 
sensitive to AgNPs presence than the P. aeruginosa one (Fig. 6). Similar antibacterial effect on E. coli biofilm 
was also proved by Goswami et al., who showed the AgNPs (synthetized by tea leaf extract) were able to eradi-
cate biofilm up to 100%, similar properties of this AgNPs were also observed for S. aureus  biofilm60. Moreover, 
Ching-Yee et all. showed that citrate-coated AgNPs were characterized by high antibacterial properties against 
P. aeruginosa biofilm and caused its  detachment61. Nevertheless, many literature data show that biofilm eradi-
cation ability of AgNPs is strict correlated with concentration – the higher AgNPs content, the more effective 
biofilm  degradation62,63. The same tendency was observed in our results, proving that AgNPs usually act in dose-
dependent manner and can be useful in treatment of antibiotic-resistant bacterial strains.

Biological activity. Cell metabolic activity and viability. The potential effect of AgNPs on cell metabolic 
activity was tested using MTT assay which measures the cell mitochondrial activity through NAD(P)H-de-
pendent cellular oxidoreductase  enzyme64. The toxicity of various concentrations of the silver nanoparticles (in 
the range of 0.125–2 mg/mL) toward four different cell lines: mouse embryonic fibroblasts (NIH 3T3), human 
keratinocytes (HaCaT), human osteosarcoma (U-2OS) and human non-small cell lung carcinoma (NCI-1299) is 
shown on Fig. 7. Generally, cell metabolic activity was decreased in a dose-dependent manner for human fibro-
blasts, keratinocytes and osteosarcomas (Fig. 7A-C). While, NCI-1299 cell line exhibits similar level of toxicity 
no matter on the concentration of the NPs (Fig. 7D). The highest significant (***P < 0.05) decrease was obtained 
at 2 mg/mL for each tested line, for both type of sample (AgNPs_L and AgNPs_H) compared to the nontreated 
cells. Comparing the results for cancer and normal cell lines, after their exposure toward two highest concentra-
tions of AgNPs (2 and 1 mg/mL), it is shown that the cancer cells exhibit higher level of metabolic activity in 
the range from 48 to 73% (compared to control), respectively for U-2OS and NCI H1299 cell lines, contrary to 
normal cells (HaCaT and NIH 3T3), which metabolic activity was in the range from 37 to 43%, in comparison 
to control (Fig. 7). It is known that AgNPs are one of the most reactive metal  nanoparticles65,66. The cytotoxicity 
effect of these nanostructures is correlated to ROS generation, after uptake inside the  cell2. According to Kumari 
et all. cancer cell lines are more resistant to oxidative stress generation, due to their adapting  ability67. Our results 
showed higher toxicity of AgNPs in normal keratinocytes and fibroblasts than in cancer ones, which confirm 
the higher resistance of these cell types to AgNPs-dependent oxidative stress (Fig. 7). On the other hand, Garvey 
et al. proved higher toxicity in lung carcinoma cells in comparison to normal human keratinocytes. However, the 
authors used chemically synthetized AgNPs citrate-coated, which are well-known of their high  toxicity68. Cap-
ping agent attached to the surface of nanomaterial may have an impact on their biological activity. Indeed, our 
EDS results (Fig. 3D-F) showed that silver nanoparticles have been coated with sulfur-rich molecules, which act 
as a stabilizers. Therefore, we supposed these compounds decrease direct contact of high-reactive AgNPs surface 
with cells and decrease their toxic effect. This is in line with Senthil et al. who reported on the green synthetized 
AgNPs and showed less cytotoxicity effect on HaCaT cells, but higher antibacterial  properties69.

Many authors usually report on the cytotoxicity of the nanomaterials toward cells based on the only one 
method used for the  analysis70–74. Considering only mitochondria activity, it may give the false positive results due 

Figure 6.  Biofilm eradication after treatment of AgNPs in E. coli (A) and P. aeruginosa (B). Created biofilms 
were treated with AgNPs for 24 h and the percentage of biofilm eradication in comparison to untreated bacteria 
was calculated. Mean values with standard deviation (error bars) with *, **, ***are statistically different from the 
respective control at P < 0.05, P < 0.01, and P < 0.001, respectively (one-way ANOVA, Tukey test).
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to cells exhibit some activity even in early and late apoptosis  stadium75. Therefore, in this study, either the AO/EB 
staining or MTT assays have been implemented to evaluate the ratio of the live and dead cells or metabolic activ-
ity, respectively. The dual acridine orange/ethidium bromide (AO/EB) staining assay was used to discriminate 
the live and dead cells after exposure to silver nanoparticles. Confluent cells were incubated with 0.5 and 1 mg/
mL of AgNPs_L or AgNPs_H for 24 h and were labeled by AO/EB. For the higher NPs concentration (1 mg/mL), 
the number of dead cells was significantly increased for each type of cell line (Fig. 8A-D). Contrary, the number 
of live cells exposure to 0.5 mg/mL of AgNPs was still around 95%. Thus, this confirms the previous results and 
exhibits no or low toxicity in the range of 0.125–0.5 mg/mL of AgNPs. Representative images of the cells stained 
with AO/EB are shown on Fig. 8a-l, where red and green colors are dead and live cells, respectively. Based on 
this result, for further wound healing assay the AgNPs_L sample was used. Sambale et al. used the LDH release 
level as an indicator of AgNPs toxicity in lung carcinoma (A549) and proved that tested nanostructures did not 
significantly change the LDH level in the medium, highlighting that cytotoxicity effect of AgNPs is related to 
stabilizer and cells  type76. Similarly, our results allow to concluded that the tested nanostructures (in the lower 
concentration of NPs) were more toxic for normal cell lines than for cancer ones.

Wound healing assay. Cancer cell migration and invasion play a key role in disease  progression77. Therefore, we 
further examine the impact of the silver nanoparticles on the behavior of the cancer and normal cells through 
the scratch assay. The motility capacities of the cells were performed on human keratinocytes and osteosarcoma 
cells. After 48 h either HaCaT or U2OS control cells (without AgNPs treatment) were able to migrate and close 
the scratch (Fig. 9). While, after exposure to AgNPs this ability was inhibited. Although, the migration ability of 
both of the tested cell line decreased after nanomaterial exposure, there is a difference among each type of cell. 
AgNPs inhibited more the migratory capability of the human osteosarcoma cell, compared to keratinocytes. 
After 48 h the % of scratch closure compare to time 0 was equal to 54% and 15% for normal and cancer cells, 
respectively. Many researchers emphasize on cytotoxicity of the metal NPs and highlight the migration of tumor 
cell and metastasis-related ability may be impacted by  nanomaterials78. Herein, the strong inhibition efficacy of 
AgNPs on migration was observed in cancer cells, which were in line with other  group79,80. Thus, this suggests 
that silver nanoparticles may have potential function in the inhibition of the metastasis.

Penetration of the root canal of the tooth by AgNPs. As can be seen from the obtained photomicro-
graphs, the walls of the root canal are covered with silver nanoparticles (Fig. 10A). In addition, the penetration 
of nanoparticles into the dentin structure is observed. The depth of free penetration of silver nanoparticles in the 
dentinal tubule is about 20 μm (Fig. 10B), which is an extremely important experimental  fact81. From a physi-
cal point of view, the dentin-nanoparticle system tries to reach thermodynamic balance. Nanoparticles tend to 
occupy a position that corresponds to their minimum energy costs. Such conditions have been found in the 
developed system of dentinal microcanals, penetrating and lingering in them at a certain depth. Thereby causing 
a deep bactericidal effect on the pathogenic  microflora82. We observe that the size of silver inclusions distributed 
at different depths in the microtubules is preferably slightly larger than the stated 15 nm sizes of nanoparticles 
(Fig. 10B). This is due to their tendency over time to agglomerations and clustering. This fact can play another, 

Figure 7.  Cell metabolic activity of the NIH 3T3 (A), HaCaT (B), U-2OS (C), and NCI-1299 (D) after 24 h 
exposure to various concentration of AgNPs_L and AgNPs_H. The values are the means (n = 6) with standard 
deviation (error bars). The statistical significance is indicated as follows: *P < 0.05, **P < 0.01, ***P < 0.005 
according to one-way ANOVA, Tukey test.
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no less important role. Agglomerates of nanoparticles, the size of which acquires the measurement of the diam-
eter of the microtubules, reliably block the return of bacteria from the periphery of the dentin to the macrocanal 
of the  root43,83. Thus, the binary action of nanoparticles actually significantly enhances the bactericidal effect of 
silver.

The green synthesis of silver NPs is usually based on either the whole yeast cells or cell extract. In case of 
metal nanoparticles are formed with using yeast biomass, they can accumulate inside the cells in response to 
exposure to metal ions and additional steps are demand to extract the  nanomaterials47,84. So far, there is lack of 
the data where the nanoparticles biomanufacturing is performed with the post-culturing water. In that way, the 
yeast biomass can be easy obtained as the waste product, and may be used many times for preparing the nano-
materials. Moreover, the low-cost of their production will take place in case of culturing in the huge bioreactors 
at the industrial scale, which does not require the complicated down-stream process for the recovery of the 
silver nanoparticles. What more, due to antibacterial effect these materials may be useful for various biomedical 
application, i.e. as antimicrobial and disinfect agent, or to prepare the antiseptic  layers85–87. Simultaneously, the 
same nanomaterial, depends on the concentration used, could be a great platform for targeted drug delivery, as 
well as to combat with cancer  cells88,89. Altogether, the presented method of AgNPs synthesis, is a simple, cost-
effective and efficient approach to obtain the nanomaterials.

Conclusions
The presented work was focused on the physicochemical and biological characterization of biosynthesized sil-
ver nanoparticles. It was found that manufactured AgNPs had spherical shape with the size range between 
17–20 nm, depends on the concentration of the silver ions. TEM, DLS and PdI analysis pointed out that AgNPs 
were administered as a stable and a well dispersed single particles suspension. The EDX map of sulfur located 
around the nanoparticles suggests that some proteins or sulfur-rich biocompund coat the AgNPs surface and 
stabilize them. A series of assays with bacteria and fungi strains have confirmed the antimicrobial activity of the 
AgNPs. Importantly from the potential biomedical application, beside the pronounced antibacterial activity, the 
reduced cytotoxic effect towards mammalian somatic and tumoral cells was confirmed. Moreover, the ability to 
deep penetration of the silver colloid to the root canal, imaged by SEM, highlight its potential as the material 
for root-end filling.

Figure 8.  Cell viability of the NIH3T3 (A), HaCaT (B), U2OS (C) and NCI-1299 (D) after exposure to 
AgNPs_L and AgNPs_H. Cells after NPs treatment were stained with acridine orange and ethidium bromide, 
and were imaged with inverted fluorescence microscope (representative images—right panel). Dead cells were 
scored per 100 total cells analyzed and expressed as % (graphs).
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