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Long‑term cancer survival 
prediction using multimodal deep 
learning
Luís A. Vale‑Silva* & Karl Rohr

The age of precision medicine demands powerful computational techniques to handle high‑
dimensional patient data. We present MultiSurv, a multimodal deep learning method for long‑
term pan‑cancer survival prediction. MultiSurv uses dedicated submodels to establish feature 
representations of clinical, imaging, and different high‑dimensional omics data modalities. A data 
fusion layer aggregates the multimodal representations, and a prediction submodel generates 
conditional survival probabilities for follow‑up time intervals spanning several decades. MultiSurv is 
the first non‑linear and non‑proportional survival prediction method that leverages multimodal data. 
In addition, MultiSurv can handle missing data, including single values and complete data modalities. 
MultiSurv was applied to data from 33 different cancer types and yields accurate pan‑cancer patient 
survival curves. A quantitative comparison with previous methods showed that Multisurv achieves the 
best results according to different time‑dependent metrics. We also generated visualizations of the 
learned multimodal representation of MultiSurv, which revealed insights on cancer characteristics and 
heterogeneity.

Worldwide cancer deaths are currently estimated at about 10 million each year. As incidence and mortality 
continue to increase, cancer is projected to become the leading cause of death in every country in the 21st 
 century1. The prediction of time-to-event outcomes, such as cancer recurrence or death, underlies many clini-
cal decisions in oncology. Survival analysis, in particular, holds great value for patients, clinicians, researchers, 
and policy  makers2. The most basic cancer prognosis prediction technique relies on population-level estimates 
for the specific cancer site and stage. This method fails to take into account the differences between individual 
patients, even such fundamental ones as age at diagnosis. To overcome this limitation, a number of patient-
specific methods have been introduced in clinical practice, based on combinations of clinical information and 
laboratory measurements of validated  biomarkers3. However, survival prediction still relies often on the clinician’s 
subjective interpretation and  intuition4, limiting accuracy and  reproducibility5.

In general terms, survival analysis is the study of the time period it takes for an event to occur. In the context 
of cancer survival, this corresponds to the time between diagnosis and death from the disease. Ideally, survival 
studies would observe every patient until the target event is recorded. In practice, however, patients are often lost 
to clinical follow up earlier. In some cases, the event may not even occur at all, if the patient dies from a different 
cause. When the event of interest is not observed, the last contact time point is referred to as censoring time. 
Censored observations contain useful information for modeling, however, since the censoring time provides a 
lower bound on the patient’s survival time. The classical statistical approach to model survival data with censored 
observations is the semi-parametric Cox proportional hazards (CPH)  model6. This method is widely  used7, but 
has two important limitations. On the one hand, CPH is based on a linear model, making it unable to capture 
non-linear relationships between the input data and the risk of death. On the other hand, it assumes that the effect 
of the patient’s features is constant over time, constraining the method to yield proportional patient predictions 
at all follow up time points. The model consists of two terms: a baseline hazard, which varies over time but is the 
same for all patients, multiplied by a second term that depends on the patient features but does not change over 
time. In other words, predictions for different patients are proportional and differ only by scaling the baseline 
hazard with a factor that is constant over time. This means, for example, that the predicted survival curves for 
different patients do not cross, an assumption that is unrealistic in practice.

A successful approach to overcome CPH’s linearity constraint has been to use Deep Learning (DL) models. 
Deep Learning, a subfield of Machine Learning, uses artificial neural networks to discover informative representa-
tions of the raw input data automatically, without requiring manual feature  engineering8. Deep neural networks 
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have the ability to model highly complex non-linear relationships and have already demonstrated breakthrough 
success in  healthcare9 and  beyond8. The first approach leveraging DL models within the CPH framework used 
a simple feed-forward neural network with an unimodal data  input10. With the advent of big data collection for 
precision medicine, a wealth of new data modalities are increasingly available in routine clinical practice. Inte-
gration of such big data demands powerful modeling approaches, reinforcing the call for DL-based  methods9,11. 
Accordingly, a number of recent studies leveraged modern DL techniques to increase the capacity of DL-based 
 CPH12. Notable examples include methods designed to use clinical and gene expression data, namely  DeepSurv13 
and Cox-nnet14. Other methods focused on imaging data, such as CXR-risk, which uses chest  radiographs15, 
 LungNet16 and a gastric cancer survival prediction  model17, which use computed tomography (CT) images, a 
nasopharyngeal carcinoma survival prediction  model18, which uses magnetic resonance imaging (MRI) data, 
and  WSISA19, which employs histopathology slides.

The current availability of high-dimensional multimodal data, including clinical, imaging, and high-
throughput molecular data, calls for their integration within the framework of deep multimodal representation 
 learning20,21. Recent studies have extended DL-based Cox survival methods to integrate different data modalities 
and allow more accurate predictions. One example is SurvivalNet, which uses different high-throughput molecu-
lar data modalities from different cancer  types22. The GSCNN system combines digital pathology images with 
two validated genomic biomarkers from glioma  patients23. SALMON addresses breast cancer using a combina-
tion of gene and microRNA expression with a handful of clinical parameters and validated  biomarkers24. More 
recently, this approach was extended to use four different data modalities, including clinical information, digital 
pathology images, and two different genomics data modalities (gene and microRNA expression), integrated in 
a multimodal DL model for pan-cancer prognosis prediction across 20 cancer  entities25. While these methods 
overcome CPH’s linearity constraint using non-linear DL models, they still yield proportional hazards.

Recently, methods have been proposed to overcome both the linearity and the proportionality constraints 
of the CPH model. One method, named Cox-Time, handles time as an additional input feature to model its 
interactions with the regular input  features26. Other methods employ a fully-parametric approach, relying on 
discretization schemes of the measured time and outputting predictions for a set of predetermined time intervals. 
One method uses multi-task logistic  regression27, while a related method, named Dynamic-DeepHit, param-
eterizes the probability mass function of the survival distribution and adds a ranking component to the loss 28. 
Another approach consists in parameterizing a discrete conditional hazard rate at each time interval. This idea 
was originally introduced decades  ago29 and recently extended to leverage modern DL techniques in a method 
called Nnet-survival30. Very recently, a completely different approach has been proposed: transforming survival 
times into jackknife pseudo conditional survival  probabilities31. This casts survival prediction as a standard 
regression problem. These latter  approaches26–31 address both main limitations of CPH (linearity and hazard 
proportionality) but do not exploit multimodal data types.

In this work, we introduce MultiSurv, an end-to-end multimodal DL-based and discrete-time survival predic-
tion method for pan-cancer patient prognosis estimation. The method overcomes both the linearity constraint, 
by using non-linear DL-based models, and the hazard proportionality constraint, by predicting conditional sur-
vival probabilities for a set of discrete follow-up time intervals. Thus, the proposed MultiSurv method is the first 
non-linear and non-proportional method that leverages multimodal data. MultiSurv extends our previous work 
presented at a  conference32, which addressed the linearity constraint but not the proportionality constraint. In 
addition, the proposed method uses a different network architecture with a different data fusion layer. MultiSurv 
was applied to data from 33 cancer types comprising six input data modalities. The method yields accurate long-
term survival predictions for patients diagnosed with this wide variety of cancer types. We performed a quantita-
tive comparison of MultiSurv with previous methods, including classical CPH and DL-based methods. MultiSurv 
achieved the best performance for unimodal data, which is further improved by integrating multimodal data. We 
also studied the explainability of our DL method by visualizing the generated multimodal representation. This 
allows the identification of outliers and reveals insights on cancer characteristics and heterogeneity.

Results
DL‑based multimodal method for survival prediction: MultiSurv. MultiSurv has a modular archi-
tecture, with dedicated input data modality submodels, a data fusion layer, and a final survival prediction fully-
connected neural network submodel. MultiSurv determines conditional survival probabilities for a set of prede-
fined follow-up time intervals. A schematic overview of the model architecture is presented in Fig. 1. MultiSurv 
uses a set of six data modalities with potential complementary predictive value in cancer survival. These include 
clinical and demographic information, multi-omics data from four different modalities, and tissue biopsy imag-
ing data. The multi-omics modalities include genomics (copy number variation), transcriptomics (gene and 
microRNA expression), and epigenomics (DNA methylation) data, potentially containing established or novel 
 biomarkers33. The imaging data, on the other hand, contain tissue architecture  information34 that is lost in bulk 
analysis omics data. Since DL models can handle raw data and automate feature engineering, we used relatively 
simple feature selection techniques to reduce the computational cost. In order to make full use of the available 
dataset, we designed MultiSurv to cope with missing patient data. Missing values within single data modalities 
are handled using standard techniques: median substitution for continuous features, and introduction of an 
additional category for categorical features. Completely missing data modalities are also handled seamlessly 
using a dropout mechanism, with MultiSurv relying on those modalities that are available (see “Methods” sec-
tion for further details).

In MultiSurv, each input data modality is handled by a dedicated submodel, which automatically determines 
an appropriate representation of the input features. For the clinical and omics submodels, we used a fully-
connected neural network architecture with up to five hidden layers, a rectified linear unit (ReLU) non-linear 
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activation function, dropout regularization, and batch normalization. For the imaging submodel we used a 
ResNeXt-50 convolutional neural  network35 pretrained on the ImageNet natural image  dataset36 and fine-tuned 
during end-to-end training of MultiSurv. All data modality submodels output a feature representation vector of 
length 512. The data fusion layer integrates the multimodal feature representations by taking the element-wise 
maxima across the set of representation vectors, reducing them to a single fusion vector of the same length. This 
fusion vector is the input to a fully-connected neural network with 30 output units, one for each time interval 
of a set of predefined time intervals. MultiSurv yields predictions for time intervals of one year (spanning a 
combined total follow-up time of 30 years), each predicting the respective conditional survival: the probability 
of surviving that time interval given that the subject has survived at least to the beginning of the interval. The 
number and time length of the discrete output intervals is very flexible, with different choices achieving similar 
accuracy (Supplementary Fig. S1). The configuration of the output layer, the different modular components, and 
the tunable parameters were determined empirically. For more details on MultiSurv’s architecture we refer the 
reader to the “Methods” section.

MultiSurv achieves high prognostic accuracy. We measured the accuracy using two different metrics: 
the time-dependent concordance  index37, referred to as  Ctd, and the integrated Brier  score38, abbreviated as IBS. 
The  Ctd is an extension of Harrell’s concordance index (also known as C-index), a nonparametric statistic that 
quantifies the ability of the predictive model to discriminate among subjects with different event  times39. Just like 
the C-index, the  Ctd is a measure of the model’s discrimination power. A  Ctd of 1 indicates perfect concordance 
between predicted risk and actual survival, while a value of 0.5 means random concordance. The IBS, on the 
other hand, is based on the average squared distances between observed survival status and predicted survival 
probabilities at all available follow up times. It extends the Brier score, which applies to a single time point and 
measures both the discrimination power and the calibration of the model’s predictions. The lower the IBS, the 
better the model performance, with the best value at zero.

We first evaluated MultiSurv’s performance with unimodal data, in order to validate the modality feature 
extractors, as well as to compare MultiSurv to existing methods that cannot handle multimodal data. We con-
sidered the classic CPH  model6, random survival  forests40, and two non-linear DL-based methods: the propor-
tional hazard method  DeepSurv13, and the non-proportional  DeepHit28. As can be seen in Table 1, MultiSurv 
achieved the best results for almost all data modalities for both metrics. Exceptions were gene expression data 
(mRNA), for which MultiSurv obtained the second best IBS score (after CPH), and DNA methylation data, for 
which it obtained a  Ctd score just below the second best, while still displaying the best IBS score. Among the six 
data modalities, the highest performance was obtained for clinical data, while imaging data (WSI) yields the 
lowest performance.

We also evaluated MultiSurv using multimodal data, with different numbers and combinations of the six data 
modalities. Table 2 lists the combinations yielding the best performance. Overall, judging by the results of differ-
ent data modality combinations, the contribution of each data modality to the multimodal models corresponds 
to the results in the unimodal configuration. Accordingly, we found that including clinical data was necessary to 
achieve the best results in the multimodal case. The best performance was obtained with bimodal inputs combin-
ing clinical data with gene expression (mRNA; highest  Ctd value) or DNA methylation (DNAm; highest IBS). 
Combining more than two modalitites resulted in slightly lower performance. To facilitate end-to-end training 

Figure 1.  The MultiSurv model architecture. Input data are all from the NCI Genomic Data Commons 
database, including up to six different data modalities. Each data modality is handled by a dedicated DL 
submodel, trained to generate modality-specific feature representations. A data fusion layer combines the 
generated feature representation vectors into a single fused representation. A final neural network takes the 
fused feature representation and outputs a conditional survival probability for each of a set of pre-defined 
follow-up time intervals. Taking the cumulative product of the set of conditional survival probabilities produces 
the predicted survival curve. CNN convolutional neural network, FC fully-connected neural network.
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of the multimodal configurations, we investigated leveraging the available trained unimodal models. We used 
the model weights from pretrained unimodal clinical and mRNA models to initialize the respective submodel 
weights of the bimodal clinical and mRNA MultiSurv configuration. While, as expected, this approach allowed 
faster convergence, it did not yield performance improvements. In addition, we tested a multimodal data dropout 
scheme, consisting of dropping a random data modality from each patient with a predefined probability during 
training, which did not improve the results. Concerning individual cancer types, we found a relatively large vari-
ability of the results. We analysed cancer types with at least 20 patients in the test dataset (Supplementary Fig. S2) 
and found  Ctd values approaching the optimal score of 1.0 for thyroid carcinoma (THCA; 0.988), kidney renal 
papillary cell carcinoma (KIRP; 0.959), and colon adenocarcinoma (COAD; 0.953). For sarcoma (SARC) and 
lung squamous cell carcinoma (LUSC), on the other hand, relatively low scores were obtained (0.589 and 0.554, 
respectively). Similar results were found for the IBS metric. The best results were obtained for THCA (0.045), 
KIRP (0.066), and prostate adenocarcinoma (PRAD; 0.079). The worst scores were obtained with SARC (0.265), 
head and neck squamous cell carcinoma (HNSC; 0.225), and LUSC (0.224). For all subsequent experiments, 
we employed the model trained using clinical and mRNA input data, which achieved the highest performance 
according to the  Ctd metric.

MultiSurv predicts long‑term survival. MultiSurv’s multiple discrete-time output layer yields time-
varying conditional survival predictions. These can be used to generate patient survival curves for the covered 
time span. We trained MultiSurv with yearly output time points spanning a total period of up to 30 years from 
diagnosis, corresponding to the latest event time recorded in the training dataset. Since the latest event time in 
the test dataset is around 20 years, we display MultiSurv’s predictions up to that time point only. We started by 
visualizing the predicted survival curves for four cancer types, selected as examples of different outcomes: pros-
tate adenocarcinoma (PRAD), with very good prognosis; kidney renal clear cell carcinoma (KIRC) and ovarian 
serous cystadenocarcinoma (OV), with worse prognosis; and glioblastoma multiforme (GBM), with very poor 
prognosis. Survival curves predicted by MultiSurv illustrate these differences very well (Fig. 2a). Patient group 
curves by cancer type can be obtained by averaging all respective patient predictions. These can then be com-
pared with the survival curves constructed using the Kaplan–Meier estimator, a non-parametric statistic used to 
estimate the survival function and visualize the actual survival trend in the available data. As shown in Fig. 2b, 
predicted cancer type curves follow the Kaplan-Meier estimates very closely. The same is true of the overall 
survival curve for the complete test dataset (Fig. 2c). MultiSurv predictions for all 30 other cancer types can 

Figure 2.  MultiSurv predictions allow construction of accurate survival curves. MultiSurv outputs patient 
survival predictions for the defined discrete-time follow up intervals. These can then be averaged to obtain 
group-wide survival predictions. (a) Survival curves constructed using Multisurv predictions for each patient 
in the test dataset diagnosed with one of four selected cancer types. One example patient is highlighted for 
each cancer type and the corresponding last follow up time point is annotated (as “Last follow up” if the patient 
is censored or “Death” if it corresponds to patient death). Highlighted patient codes are TCGA-HI-7169 for 
PRAD, TCGA-B0-5691 for KIRC, TCGA-29-1762 for OV, and TCGA-19-1390 for GBM. (b) Survival curves 
for the four example cancer types in (a) compared with Kaplan–Meier estimator outputs. (c) Survival curves 
for all patients in the test dataset compared with the Kaplan–Meier estimator output. (d) MultiSurv predictions 
allow accurate stratification of patient risk groups. Patients were split into low and high-risk groups according 
to MultiSurv’s first output interval risk prediction using the median value across all patients as the threshold. 
The two resulting groups have significantly different Kaplan–Meier estimates (log-rank test). The plot shows 
MultiSurv prediction averages overlayed on the Kaplan–Meier estimators. PRAD prostate adenocarcinoma, 
KIRC kidney renal clear cell carcinoma, OV ovarian serous cystadenocarcinoma, GBM glioblastoma multiforme.
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be found in Supplementary Fig. S3. MultiSurv can thus be used to generate accurate long-term predictions for 
previously unseen patients. In order to test this more formally, we used MultiSurv to identify two different risk 
groups. We split the patients in the test dataset into two groups according to their survival probabilities predicted 
by MultiSurv. This yielded risk groups that do indeed have significantly different survival distributions (log-rank 
p value 2.3-56 comparing Kaplan-Meier estimates; Fig. 2d), confirming the accuracy of the model’s predictions.

MultiSurv yields non‑proportional predictions. The learned effect of the input data on MultiSurv’s 
survival probability predictions for each output time interval can vary freely. In other words, MultiSurv is not 
constrained by the proportional hazards assumption of Coxian methods (both the classic linear method and its 
non-linear developments). This is more realistic, since many input features in the data used in this study seem 
to violate the proportional hazards assumption. Testing the assumption that the influence of the input features 
is constant over time, which underlies the hazard proportionality in the CPH family of models, suggests that it 
does not hold for many features in the data. For example, the null hypothesis of non-varying effects is rejected 
( p < 0.05) for six out of a total of 10 features in the clinical data modality (race, prior malignancy, pharmaceuti-
cal treatment, radiation treatment, tumor stage, and age at diagnosis). Similarly, out of the 50 principal compo-
nents of each omics data modality, 12, 18, 12, and 13 of mRNA, DNAm, miRNA, and CNV data, respectively, all 
fail the test as well. Additionally, it is easy to find examples of crossed survival curves in the data (Supplementary 
Fig. S4). These cannot be reproduced by methods constrained by the proportional hazards assumption, which 
yield patient predictions with the same ranking for all follow up time points.

MultiSurv learns effective feature representations. In order to gain insights towards the network’s 
internal representation of the patient data, we investigated the feature representations learned by MultiSurv. We 
used the t-distributed Stochastic Neighbor Embedding algorithm (t-SNE)41 to embed the multimodal fused 
representations generated for each patient in the test dataset from the original 512-dimensional space into a 
two-dimensional space (Fig. 3a). To inform the visualization, we highlighted points for patients diagnosed with 
each of the four previously selected cancer types. The remaining cancer types are visualized in Supplemen-
tary Fig. S5. Patients diagnosed with each of the cancer types appear in specific clusters and occupy different 
regions of the two-dimensional space, aligning well with the known cancer type prognosis. For the the specific 
embedding instance visualized here, moving along the two-dimensional space from left to right corresponds 
roughly to the progression from the good prognosis of PRAD, through the intermediate prognoses of KIRC 
and OV, to the very poor prognosis of GBM (compare the corresponding survival curves in Fig. 2b). Patients 
diagnosed with PRAD mostly occupy a tight cluster. Similarly, GBM patients even form their own island, indi-
cating highly specific characteristics of this cancer type. Patients diagnosed with KIRC and OV give rise to more 
heterogeneous representations (Fig. 3a), hinting at the existence of distinct subpopulations within those cancer 
types. These learned representations are also useful to identify survival outliers. We picked a few patients whose 
embedded representations stand out visually from their cancer type clusters and plotted their predicted survival 
curves. This allowed convenient identification of some of the patients with most extreme prognosis within their 
respective cancer type (Fig. 3b–e). The distribution of individual patient representations in the two-dimensional 
embedding also serves to visualize each cancer type’s outcome prediction heterogeneity. The cancer types with 
embedded points closely clustered together, PRAD and GBM, show relatively homogenous patient prognosis 

Figure 3.  Visualization of feature representations learned by MultiSurv. We collected the internal fused feature 
representation vector of the MultiSurv model trained on clinical and mRNA data and embedded it into a 
two-dimensional space using t-SNE. (a) Embedded feature representations for each patient in the test dataset. 
Patients diagnosed with each of four selected cancer types are highlighted. Within each of the highlighted cancer 
types, visually selected outlier patients are annotated. All patient survival curves, highlighting the selected 
outliers, are displayed for (b) PRAD, (c) KIRC, (d) GBM, and (e) OV. PRAD prostate adenocarcinoma, KIRC 
kidney renal clear cell carcinoma, OV ovarian serous cystadenocarcinoma, GBM glioblastoma multiforme.
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(Fig. 3b,d). On the contrary, KIRC and OV appear as less defined clusters in Fig. 3a, with correspondingly larger 
variation in prognosis (Fig. 3c,e).

Discussion
We developed the DL-based multimodal survival prediction method MultiSurv, the first non-linear and non-
proportional method for multimodal data. We investigated the combination of clinical information, digital 
pathology images, and several high-dimensional genomic data modalities from patients diagnosed with one of 33 
different cancer entities, publicly available from the National Cancer Institute’s (NCI) Genomic Data Commons 
(GDC) database. The complete network, including the data modality-specific feature representation submodels, 
the multimodal fusion layer, and the discrete-time survival predictor, was trained end-to-end using stochastic 
gradient descent. MultiSurv delivers non-proportional outputs and achieves accurate long-term predictions 
across cancer entities. Overall, MultiSurv achieved the best performance for virtually every tested unimodal 
data modality, with clinical data proving to be the most informative (Table 1). Using multimodal data allowed 
further improvement of the performance for certain data modality combinations (Table 2).

Recent work by Cheerla and  Gevaert25 also tackled pan-cancer survival prediction using a DL-based approach. 
Their method relies on a DL-based CPH model, as in the DeepSurv  method13, extended to handle multimodal 
data. The authors used the same TCGA database employed here, but included only 20 of the 33 available cancer 
types. They reported a best pan-cancer C-index of 0.784, which is lower than MultiSurv’s best  Ctd of 0.822 using 
all 33 cancer types. The C-index and  Ctd values can be compared directly here since the method in 25 yields 
proportional hazards and thus results in equal values for the two metrics (see “Model evaluation” section in the 

Table 1.  Method performance with unimodal data inputs. CPH Cox proportional hazards, RSF random 
survival forest, Clinical tabular clinical data, mRNA gene expression, DNAm DNA methylation, miRNA 
microRNA expression, CNV gene copy number variation, WSI whole-slide images. Time-dependent 
concordance index  (Ctd) and integrated Brier score (IBS) with 95% bootstrap confidence interval (CI; numbers 
in parentheses). The best and second best results for each metric for each data modality are boldfaced and 
italics, respectively.

Metric Data

Method

CPH6 RSF40 DeepSurv13 DeepHit28 MultiSurv

Ctd

Clinical 0.796 (0.779–0.813) 0.770 (0.751–0.789) 0.792 (0.773–0.810) 0.809 (0.792–0.826) 0.809 (0.793–0.825)

mRNA 0.733 (0.712–0.755) 0.719 (0.695–0.741) 0.746 (0.722–0.768) 0.752 (0.728–0.774) 0.758 (0.735–0.780)

DNAm 0.739 (0.719–0.760) 0.729 (0.709–0.752) 0.759 (0.739–0.780) 0.737 (0.715–0.758) 0.736 (0.714–0.759)

miRNA 0.676 (0.651–0.700) 0.664 (0.639–0.689) 0.685 (0.661–0.711) 0.700 (0.674–0.725) 0.702 (0.677–0.728)

CNV 0.570 (0.543–0.599) 0.604 (0.579–0.630) 0.596 (0.571–0.621) 0.575 (0.549–0.599) 0.617 (0.591-0.643)

WSI – – – – 0.569 (0.543-0.597)

IBS

Clinical 0.143 (0.135-0.154) 0.184 (0.179-0.191) 0.143 (0.134-0.154) 0.173 (0.165-0.184) 0.143 (0.134–0.155)

mRNA 0.177 (0.165–0.190) 0.191 (0.181–0.200) 0.180 (0.159–0.198) 0.191 (0.180–0.198) 0.178 (0.157–0.194)

DNAm 0.179 (0.165–0.192) 0.186 (0.176-0.192) 0.177 (0.156–0.203) 0.194 (0.179–0.208) 0.175 (0.156–0.189)

miRNA 0.186 (0.171–0.202) 0.193 (0.183-0.201) 0.194 (0.170–0.219) 0.186 (0.177–0.197) 0.179 (0.160–0.199)

CNV 0.214 (0.207–0.224) 0.217 (0.208–0.225) 0.229 (0.215–0.247) 0.217 (0.212–0.224) 0.210 (0.200–0.221)

WSI – – – – 0.220 (0.206–0.231)

Table 2.  Model performance using a selection of combinations of the six input data modalities. Clinical 
tabular clinical data, mRNA gene expression, DNAm DNA methylation, miRNA microRNA expression, 
CNV gene copy number variation, WSI whole-slide images. Individual data modalities included in each 
evaluated model are marked with • . The best and second best results for each metric are boldfaced and italics, 
respectively.

Included data modalities

Ctd (95% CI) IBS (95% CI)Clinical mRNA DNAm miRNA CNV WSI
• • 0.822 (0.805–0.837) 0.138 (0.126–0.150)
• • 0.808 (0.791–0.826) 0.134 (0.125–0.148)
• • 0.792 (0.775–0.810) 0.147 (0.136–0.161)
• • 0.795 (0.778–0.812) 0.140 (0.131–0.152)
• • 0.801 (0.783–0.817) 0.148 (0.140–0.158)
• • • 0.810 (0.793–0.829) 0.146 (0.135–0.158)
• • • • 0.798 (0.781–0.815) 0.153 (0.139–0.168)
• • • • • 0.802 (0.748–0.820) 0.149 (0.136–0.162)
• • • • • • 0.787 (0.769–0.806) 0.152 (0.140–0.166)
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“Methods” section for more detail on this point). For an even more direct comparison, we reduced the dataset 
to the same 20 cancer types (in our setting 9197 patients were included out of the total 11,081) and trained Mul-
tiSurv on clinical and mRNA data. With this configuration, MultiSurv still achieved a higher  Ctd of 0.801. We 
also noted interesting differences in the most informative data modalities. Cheerla and Gevaert reported miRNA 
and mRNA as the most and least informative modalities, respectively. The reason behind the lower value of the 
clinical data modality in that study is particularly interesting and is probably due to the fact that only four of the 
available clinical features were used. We found that the additional features used in our work, even if missing in 
a considerable percentage of the patients, contribute to improved performance. This was the case for MultiSurv, 
as judged by performance gains when adding individual features, as well as for the baseline models. The CPH 
and RSF methods, in particular, provide direct access to feature importance. In both cases, age at diagnosis, 
tumor stage, and cancer type were the most informative features. Additionally, prior malignancy, pharmaceutical 
treatment, radiation treatment, and synchronous malignancy also stood out in the RSF model. Beyond that, the 
differences in performance may be explained by differences in model architecture.

MultiSurv shows better performance for the 33 considered cancer types than previous multimodal methods 
using TCGA datasets, with the exception of glioma patients for which  SurvivalNet22 and  GSCNN23 report bet-
ter results. These studies evaluated combined data from glioblastoma multiforme (GBM) and brain lower grade 
glioma (LGG), with C-index values above 0.8 (higher than MultiSurv’s  Ctd of 0.650 and 0.741, respectively). Like 
the pan-cancer method described  above25, these other previous methods yield proportional hazards. In any case, 
MultiSurv’s predictions are still very well calibrated (particularly for GBM, as evidenced by the very low IBS score 
of 0.109). The relatively low  Ctd values can be explained by the fact that survival curves for glioma patients are 
very similar across patients (see the predicted curves for GBM patients in Fig. 3d). This allows for a well calibrated 
model to still yield incorrect rankings of patient survival probabilities (measured by the C-index and  Ctd metrics).

MultiSurv could be further improved in several ways. One main avenue would be to include additional input 
features and additional data modalities. In MultiSurv, this is straightforward and can be achieved by develop-
ing the dedicated feature representation submodel for the additional data modality. New feature representation 
submodels can be integrated seamlessly into the existing MultiSurv architecture. Another avenue concerns 
improvement of the digital pathology image submodel. The main challenge is to cope with the wide variety of 
tissue appearances in over 30 cancer types (from a comparably wide variety of physiological systems), as well as 
the large size of the input images (gigapixel-level digitized slides). More sophisticated patch sampling techniques 
could be investigated to improve the result further. Finally, even though we tested a wide range of different tech-
niques already, other schemes for multimodal representation learning could be  studied20,21.

In conclusion, in this study we developed MultiSurv, a non-linear and non-proportional hazard discrete-time 
pan-cancer survival prediction system. The best model architecture was determined by investigating a wide 
variety of data modalities, as well as multimodal data fusion techniques. MultiSurv learns effective internal 
representations of the raw multimodal input data, which allows accurate long-term survival predictions for 
patients diagnosed with a wide variety of cancer types. MultiSurv can leverage the multiple high-dimensional 
data modalities now available in precision medicine-based clinical practice. This way, MultiSurv can be a useful 
tool in the clinical management of cancer patients, helping clinicians deliver accurate and reproducible prognosis 
predictions.

Methods
Data. Data used in this work are from the GDC Data Portal (https:// portal. gdc. cancer. gov/). We used the 
dataset generated by The Cancer Genome Atlas (TCGA) program, which includes a rich body of imaging, clini-
cal, and molecular data from 11,315 cases of 33 different cancer  types42. Patients were followed for a recorded 
length of time until death or loss to clinical observation. We used only publicly available data in which donors 
have been rendered unidentifiable. Ethical approval for patient data collection is the responsibility of the TCGA 
program. We downloaded the clinical data table for the TCGA project using the TCGAbiolinks package v2.8.4 
in the R statistical computing software environment v3.5.1. This table includes patient codes, available clini-
cal features, as well as survival labels (“vital_status”, corresponding to the event indicator, and follow-up dura-
tions: “days_to_last_follow_up” and “days_to_death”) for a total of 11,167 patients. We dropped a few addi-
tional patients with incomplete label information: 16 patients missing vital status information; 11 patients with 
recorded death but missing “days_to_death”; and 53 patients missing both follow up durations. The final number 
of patients, percentage of censored observations, and simple descriptive statistics of follow up durations for each 
cancer type are listed in Supplementary Table S1.

We used six different data modalities: tabular clinical data (herein simply referred to as “clinical”), gene 
expression (referred to as “mRNA”), microRNA expression (miRNA), DNA methylation (DNAm), gene copy 
number variation (CNV) data, and whole-slide images (WSI). We performed some feature selection and data 
pre-processing for each data modality. Details of the different data modalities, as well as data pre-processing 
procedures, are provided in Supplementary Note 1. The final number of patients and features in each data modal-
ity after preprocessing is listed in Table 3. For the CPH and RSF baseline methods, the dimensionality of the 
omics data modalities (mRNA, DNAm, miRNA, and CNV) was further reduced to the 50 principal components, 
using principal component analysis (PCA; implementation from scikit-learn v0.22.1), so that the computation 
time was reasonable.

MultiSurv can handle missing data, which allows full use of the available dataset. Many patients lack entries 
for specific features of the clinical data modality. This is handled in the data preprocessing stage as described in 
Supplementary Note 1 (“Tabular clinical data” section). When training MultiSurv with unimodal data, patients 
missing the entire respective data modality are excluded. For multimodal data, single missing data modalities 
are coped with by replacing them by a zero input of the same dimension, to allow integration in the patient 

https://portal.gdc.cancer.gov/
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batching procedure. This allows the model to learn from existing data of other modalities. MultiSurv also includes 
a multimodal data dropout option to avoid overfitting, implemented using the same mechanism. Concretely, 
during model training, one data modality from each patient is chosen at random with a specified probability and 
replaced by a zero input (provided at least two modalities are available for the patient).

Validity of proportional hazards assumption. The proportional hazards assumption is a core restric-
tion of the CPH family of models. These models include a non-parametric time-varying baseline hazard that 
is equal for all study subjects. The baseline hazard is scaled by a factor determined by a parametric term that 
depends on the subjects’ input features, but which is constant over time. In other words, these models assume 
that the effect of the input features does not vary over time. The predicted survival probabilities for any two given 
subjects are thus proportional to each other at all considered time points. We tested the validity of the propor-
tional hazard assumption for the data used in this work using a statistical test for time-varying feature effects. 
We fit a CPH model on single data modalities from the training data using the lifelines software library v0.23.843. 
As for model evaluation, we used all features when modeling clinical data and the 50 principal components 
when modeling omics data modalities. We then used the “check_assumptions” method to run the statistical test 
and rejected the null hypothesis (feature effect does not vary with time) for features with a p value below 0.05. 
Additionally, we inspected plots of scaled Schoenfeld  residuals44 for all features for which the null hypothesis 
is rejected, which are a part of the output of the method and provide a visualization of the time-varying effects.

Model architecture. MultiSurv is a deep multimodal discrete-time survival prediction system with a 
modular architecture as shown in Fig. 1. The overall architecture is composed of three core modules: a feature 
representation module, consisting of dedicated data modality submodels, each outputting a fixed-size hidden 
data representation; a multimodal data fusion layer, which fuses the data modality submodel outputs into a 
single representation; and an output submodel that maps the incoming fused feature representation to a set of 
discrete-time conditional survival probability predictions. We used fully-connected neural networks with two 
to five hidden layers, the rectified linear unit (ReLU) non-linear activation function, dropout regularization, and 
batch normalization for all data modalities except imaging data (WSI). The dedicated WSI submodel consists of 
a ResNeXt-5035 convolutional neural network pre-trained on the ImageNet natural image  dataset36. For integra-
tion in MultiSurv, we replaced ResNeXt-50’s fully-connected output layer by a 512-unit layer, to match the fixed 
size of MultiSurv’s data modality feature representations. For training, we fixed (“froze”) the pre-trained weights 
up to the fourth convolutional block and allowed fine-tuning of the weights in all remaining layers (starting from 
the last convolutional block, named stage “conv5”). Finally, we used a fully-connected architecture again as the 
output submodel, with the same structure used for the data modality submodels. The next two sections provide 
more details on the data fusion and output layers.

Multimodal data fusion layer. MultiSurv’s data fusion layer reduces the set of feature representation vec-
tors to a single fusion vector, used as the input to the subsequent module. Let Z = [z1, . . . , zn] be the matrix 
composed of the feature representation vectors, with zl ∈ R

m containing the feature representation of the lth 
input data modality. MultiSurv’s multimodal data fusion layer yields a compact representation vector c ∈ R

m , 
computed as the row-wise maximum of Z:

The fused feature representation thus corresponds to the maxima over the different data modalities. We 
also tested several alternative schemes, described in Supplementary Note 2, but found no improvement in 
performance.

Discrete‑time survival model formulation. MultiSurv is a fully parametric discrete-time survival 
model parameterized by a deep neural network. This formulation overcomes the proportionality constraint of 
CPH-based models and can be trained using stochastic gradient descent (SGD). Briefly, we assume that the 
follow-up time is discrete and let {t1, t2, . . . , tp} be the set of upper limits of p left-closed and right-open time 
intervals. For a given study subject, the hazard function hj defines the probability that the event of interest is 

(1)ck = max
1≤l≤n

zk,l , k = 1, . . . ,m.

Table 3.  Summary information of the different data modalities after preprocessing.

Modality No. patients

No. features

Continuous Categorical

Clinical 11,081 1 9

mRNA 9605 1000 –

DNAm 10,257 5000 –

miRNA 9616 1881 –

CNV 10,325 – 2000

WSI 8376 299 × 299 –
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observed in interval j, given that the subject has survived at least until the beginning of the interval. We used 
the negative of the log likelihood as the loss function to train the model. The log likelihood for time interval j is:

where h(i)j  is the hazard probability for the ith subject during time interval j. There are rj subjects at risk during 
interval j (with event or censoring time later than the beginning of the interval) and the first dj subjects experi-
ence the event during this interval. The total loss is the sum of the losses for each time  interval30. Intuitively, the 
first term in equation 2 serves to encourage the model to increase, at each time interval j, the predicted hazard 
rate hj of the dj patients whose death occurred within that interval. The second term encourages the model to 
increase the predicted survival probability ( 1− hj ) for all rj − dj patients who survived the interval. With this 
second term, in addition to uncensored patients, the loss leverages the information provided by censored patients, 
namely the fact that they are known to have survived time intervals earlier than their recorded censoring time.

MultiSurv uses a modification of the survival model implementation  in30, which was previously employed 
for simulated data and for life expectancy prediction of hospitalized patients from low-dimensional data. Briefly, 
MultiSurv’s prediction submodel (which takes as input the compact fusion vector generated by the fusion layer) 
is defined with an output layer containing p units, one for each time interval. A sigmoid activation function 
converts each unit’s output to a predicted conditional probability of surviving the respective time interval (cor-
responding to the complement of the conditional hazard rate in that interval, or 1− hj for interval j). Patient i’s 
predicted probability of surviving through the end of time interval j is given by:

The loss function is a reformulation of Eq. (2) divided by study subject rather than by time interval, which 
facilitates implementation of the training procedure with mini-batches of patients.

Motivated by the idea that encouraging similarity between different feature representations may facilitate data 
fusion, we experimented with an auxiliary loss penalizing dissimilarity between the data modality representa-
tions. This auxiliary loss consisted of the average cosine distance between pairs of input data modality feature 
representations. The final loss was a weighted sum of main and auxiliary losses. Adding this auxiliary loss did not 
yield any improvement in performance, however, so we did not include it in the final MultiSurv configuration.

Model training. Data from individual patients were stratified by cancer type and randomly split into train-
ing (80%), validation (10%), and test (10%) datasets. The validation set was used to assess the performance dur-
ing iterative model development. We trained the models using Adam stochastic gradient descent  optimization45 
in the PyTorch v1.4.0 implementation with default settings except for the learning rate. Initial learning rates 
were chosen using a learning rate range test in a pre-training run, performed by monitoring training loss over a 
linear range of learning rate  values46. The resulting start values for the learning rate used for model training were 
between 0.001 and 0.005. These values were plugged into a scheduler set to reduce the learning rate upon learn-
ing stagnation: typically, a reduction by a factor of two after 10 epochs with no observed increase in validation 
performance. We also employed early stopping to save model states upon stagnation of learning (specifically, 
before registering an increase in validation loss). Models trained from scratch generally converged after less than 
50 training epochs.

Model evaluation. We used two different time-dependent metrics to assess model performance. The first 
is the time-dependent concordance index,  Ctd37, which is an extension of the widely used Harrell’s concordance 
index or C-index39. Coxian (CPH-based) methods are not designed to actually define the time-dependent base-
line hazard term, but it can be estimated from the data to obtain additional information. By definition, Coxian 
methods have the same C-index at all predicted follow up times, since the time-dependent baseline hazard does 
not depend on the patient features. This means that the differences in predictions between individual patients 
are proportional and, hence, their predicted survival curves do not cross. Consequently, the survival probability 
rankings used to compute the C-index do not change over time. Having the same C-index at all predicted follow 
up times also means that  Ctd values for these methods are equal to their C-index values. The second metric we 
use is the integrated Brier score (IBS), which quantifies the average squared distances between observed survival 
status and predicted survival  probabilities38. To calculate the IBS, we define a set of 100 equidistant time points 
between the minimum and maximum event times in the test dataset. We dropped the last quartile of time points, 
since the IBS typically becomes unstable at the latest time points.

All presented results were obtained using the test set. To avoid biased evaluation results, the test set remained 
unused and hidden until the final evaluations. In addition, we report 95% two-sided confidence intervals obtained 
using the non-parametric percentile bootstrap method with 1000 samples from the test set. Since the data in the 
test dataset produces a 20-year long Kaplan–Meier estimate, for direct comparison we plot MultiSurv’s output 
up to 20 years post diagnosis (rather than the 30-year period predicted by MultiSurv).

Previously published methods. We evaluated four previously published methods in order to establish 
baseline performance values that MultiSurv’s results could be directly compared to. The first is the classical CPH 
 model6. The second is  DeepSurv13, a modern non-linear, DL based CPH method. Yet another baseline method 

(2)
dj∑

i=1

log(h
(i)
j )+

rj∑

i=dj+1

log(1− h
(i)
j ),

(3)S
(i)
j =

j∏

q=1

(1− h(i)q ).
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is  DeepHit28, as a representative of the DL-based non-proportional methods. Finally, we used the random sur-
vival forest (RSF)  method40, a non-Coxian, non-proportional flexible alternative to the DL-based discrete-time 
approaches.

Software and hardware. The software was developed using Python v3.6.8 (Anaconda v4.3.34 distribu-
tion). MultiSurv models were trained using PyTorch v1.4.047 (with cuda v10.1.243 and cudnn v7.6.3) on a work-
station equipped with an Nvidia GeForce GTX 1070 graphics processing unit (GPU) and a server equipped with 
two Nvidia GeForce RTX 2070 GPUs. The CPH and RSF baseline models were fit using the Python software 
packages lifelines v0.23.843 and pysurvival v0.1.248, respectively. The two DL-based baseline models, DeepSurv 
and DeepHit, were trained using the Python software package pycox v0.2.026. For the employed metrics,  Ctd 
and IBS, we used the implementations in pycox v0.2.026. To embed the representation vectors from the original 
512-dimensional space into a two-dimensional space using the t-distributed Stochastic Neighbor Embedding 
algorithm (t-SNE)41, we used the implementation in scikit-learn v0.22.149, with a perplexity of 50 and otherwise 
default values. In addition, we relied on several other Python software packages to build important functional-
ity, most notably NumPy v1.18.150, SciPy v1.4.151, and pandas v1.0.152. All software code written for this pro-
ject, including the method implementation and code used to generate figures and tables, is publicly available at 
https:// github. com/ luisv alesi lva/ multi surv.
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