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Cross‑modal semantic autoencoder 
with embedding consensus
Shengzi Sun1,2,3, Binghui Guo1,2,3*, Zhilong Mi1,2,3 & Zhiming Zheng1,2,3

Cross‑modal retrieval has become a topic of popularity, since multi‑data is heterogeneous and 
the similarities between different forms of information are worthy of attention. Traditional single‑
modal methods reconstruct the original information and lack of considering the semantic similarity 
between different data. In this work, a cross‑modal semantic autoencoder with embedding consensus 
(CSAEC) is proposed, mapping the original data to a low‑dimensional shared space to retain semantic 
information. Considering the similarity between the modalities, an automatic encoder is utilized 
to associate the feature projection to the semantic code vector. In addition, regularization and 
sparse constraints are applied to low‑dimensional matrices to balance reconstruction errors. The 
high dimensional data is transformed into semantic code vector. Different models are constrained 
by parameters to achieve denoising. The experiments on four multi‑modal data sets show that the 
query results are improved and effective cross‑modal retrieval is achieved. Further, CSAEC can also 
be applied to fields related to computer and network such as deep and subspace learning. The model 
breaks through the obstacles in traditional methods, using deep learning methods innovatively to 
convert multi‑modal data into abstract expression, which can get better accuracy and achieve better 
results in recognition.

With the development of Internet technology, a large amount of multi-media data is constantly emerging, which 
brings great challenges to information retrieval. Data sources include texts, images, videos and audios,  etc1. In 
fact, image and text information is quite common. Traditional single-modal retrieval cannot solve the compat-
ibility problem, since it only returns the original data for query in the same way and cannot meet the retrieval 
needs. Therefore, cross-modal information retrieval has become a topic of popularity, and methods have emerged 
and developed rapidly with the goal of effectively retrieving different information patterns, such as retrieving 
parts of images with  texts2,3.

Cross-modal retrieval utilizes various types of data to query different forms of information. To perform 
cross-modal retrieval, the key issue is to consider the semantic similarity between different forms of data. The 
heterogeneity between different modalities becomes a great challenge. Currently, existing image-text cross-modal 
retrieval methods include paired  models4,  sorting5,6,  mapping7,8, and graph  embeddings9,10. Besides, probabilistic 
models, metric learning methods, and subspace learning methods are applied to many data sets. Probabilistic 
methods learn multi-modal correlation by modeling joint multimodal data  distributions11. The metric learning 
method learns to calculate the distance metric between different  modalities12. Some classic  methods2,13 project 
data into a public space. To obtain good retrieval results, embedding methods are used to retain both semantic 
and original feature  information14. Original feature  information15,16 supplements semantic information by provid-
ing other internal modal relationships. Zhou et al.17 proposed a potential semantic sparse hashing method(LSSH), 
which combines sparse coding and matrix decomposition to obtain a potential shared semantic space. In deep 
methods, convolutional neural network(CNN) are commonly used to generate images. The semantic part embeds 
features for each word and generates text through text CNN or recurrent neural network(RNN)18.

The lack of semantic information will lead to limited retrieval results. Partial regression methods such as 
 SCM14,  LCFS7, and  LGCFL19 focus on preserving semantic information. However, the above three methods 
can only be used to deal with single-modal situations, ignoring the correlation between tags in multi-modal 
information. In addition, fixing the public space as a label space will decrease the efficiency when increasing 
amount of data.

To solve the above problems and achieve an efficient information retrieval, we propose a learning method 
called cross-modal semantic autoencoder with embedding consensus (CSAEC). First, the paired image and text 
data are embedded and mapped into a unified space, called mapping consensus, while retaining the original 
feature information and semantic information. Further, through feature extraction, the data is converted into 
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corresponding semantic code vectors. To remove redundant information, the multi-label space of high-dimen-
sional data is compressed, and parameters are introduced to achieve denoising. Then, feature projections are 
learned using paired encoder–decoders, one for image form and the other for text form. The similarity between 
the projected information is associated with the semantic code vector. Further, the objective function is mini-
mized, and the matrix is subjected to regularization and sparse constraints to balance the reconstruction error.

Results
We show the performance of the proposed method with experimental results. On four multi-modal data sets, 
CSAEC is compared with other existing methods to verify its effectiveness. Specific results are analyzed through 
various index values.

Datasets and compared methods. WIKI14 The total number of entries in each version of Wikipedia 
has exceeded 53 million, supporting various languages, of which Chinese Wikipedia has more than 1.13 million 
entries. We choose 2200 image-text pairs for training and 700 image-text pairs for testing.

TVGraz20 It contains 2594 image-text pairs. We choose more than 10 words and select 2500 image-text pairs. 
We set 4000-dimensional feature for images and 8300 vertices for texts.

NUS-WIDE21 We set 60,000 image-text pairs for training and 10000 image-text pairs for testing. For the texts 
data, we choose 1000-dim tag occurrence features.

MIRFLICKR22 It contains 25000 instances for images and textual tags. We set 38 classes for image-text data 
and use the train-test split. By feature selection, 3000-dim tag frequency features are used for text representations.

Using four multi-modal data sets  WIKI14,  TVGraz20, NUS-WIDE21, and  MIRFLICKR22, we compare CSAEC 
with five existing methods, CCA 23,  BLM2,  LCFS7,  LGCFL19,  JFSSL10. CCA and BLM are two unsupervised models 
that use paired information to maximize the correlation between projection vectors. LCFS, LGCFL, and JFSSL 
are three supervised models that use semantic class information to directly associate data from one modality 
with data from another modality. The LGCFL method can learn the discriminant by moving the label space to 
increase the distance between classes and adding sparse constraints on the group during the regression  process19. 
The JFSSL method adds a regular term to the projection  space10.

Parameter settings. The spatial dimensions of WIKI, TVGraz, NUS-WIDE, and MIRFLICKR are set to 
10, 20, 10, and 40, respectively. We constantly adjust parameters within the range of 0.001, 0.01, 0.1, 1, 10 to 
analyze the performance of CSAEC. For several other methods, we set the parameter values according to the 
corresponding data set. For the data set, we randomly divide it into parts, one of which is the test data, and the 
rest is the unlabeled pool for active selection. The random data partition is repeated for ten times and average 
results over them are reported as the final model evaluation.

Complexity analysis. We set n ≥ d . The complexity of eigenvalue decomposition is O(n3) . When n is large, 
we can get the results with iterative algorithms to prove the precision of our proposed methods. The largest d 
eigenvalues may exit with different datasets. Obviously, the size of feature dimension influence the complexity. 
We just caculate with O(knd3) and k is the number of iterations.

Mean average precision (MAP) results of different methods. Mean Average Precision (MAP) is 
used to evaluate the validity of the retrieval results of different methods. R is the threshold for Precision–Recall 
(PR) Curves. Assuming that there are some positive examples in the datasets, we can get the corresponding 
values r. For each value of r, we can calculate the maximum precision when r > R . In order to verify the perfor-
mance of CSAEC, two types of directional cross-pattern retrieval tasks were performed: image-text query and 
text-image query. If the labels of the two types of data points are the same, the information is considered to have 
the relevance.

The methods are compared on the WIKI dataset. It can be observed from Table 1 that the performance of the 
CSAEC method in this paper has improved significantly.

Average ranks by each algorithm provide avaluable comparison.Let rji(m) denotes that the rank of jth of m 
algorithm applied to the ith dataset. Then the average rank of k algorithm can be expressed as Rj

m = 1
n

∑

i r
j
i(m) . 

Then establish a null assuming that all algorithms have strong similarities, which states that the ranks Rj should 
be equaled. The Friedman test testifies whether the calculated average ranks should have significantly difference 
from the mean rank expected under the null hypothesis.

Table 1.  MAP results of different methods (WIKI).

R = 40 Image-text Text-image Average Average rank R = all Image-text Text-image Average Average rank

CCA 0.436 0.545 0.492 4.375 CCA 0.428 0.417 0.424 4.75

BLM 0.443 0.532 0.495 4.75 BLM 0.445 0.438 0.443 4.375

LCFS 0.461 0.564 0.517 2.75 LCFS 0.459 0.441 0.442 2.375

LGCFL 0.473 0.569 0.526 4.375 LGCFL 0.468 0.453 0.461 4.75

JFSSL 0.474 0.572 0.526 3.75 JFSSL 0.462 0.457 0.468 3.75

CSAEC 0.489 0.582 0.534 1 CSAEC 0.478 0.481 0.479 1
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When R = 40 , the Friedman statistic can be calculated as

Imam and Davenport can have a better statistic value than Friedman statistic which generates a conservative 
 behavior24

When R = all , the Friedman statistic can be calculated as

With four data sets and six algorithms, FF is distributed according to the F-distribution with (6− 1) = 5 and 
(6 − 1) (4− 1) = 15 degrees of freedom. The p-value calculated with F(5, 15) distribution has proved the null 
hypothesis can be rejected at a high level of significance. The reason may be that CSAEC uses the embedding 
matrix while preserving the original features and semantic information. Semantic information provides interac-
tive information between modalities and information within each modality, while original feature information 
takes into account of the similarity between modalities.

As can be seen from Table 2, on TVGraz dataset, CSAEC also achieved the best results for the two types of 
retrieval tasks. Our method improves the performance of image query text tasks better than text query images. 
Compared with other methods, the query results are improved.

Table 3 shows the MAP of each method on the NUS-WIDE dataset. The LGCFL and CSAEC methods per-
form better than CCA because both consider semantic information. The NUS-WIDE dataset is larger than the 
WIKI and MIRFLICKR datasets, so the semantic information has more interaction in NUS-WIDE, and similar 
information between different modal data can be found as much as possible.

On the MIRFLICKR dataset, it can be seen from Table 4 that the MAP value of this method is better than 
other methods, and the effect of JFSSL is second. The CSAEC method has the ability to retain both original 
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Table 2.  MAP results of different methods (TVGraz).

R = 40 Image-text Text-image Average R = all Image-text Text-image Average

CCA 0.629 0.624 0.627 CCA 0.612 0.603 0.619

BLM 0.637 0.625 0.634 BLM 0.623 0.618 0.626

LCFS 0.647 0.647 0.651 LCFS 0.637 0.625 0.634

LGCFL 0.658 0.641 0.653 LGCFL 0.649 0.636 0.641

JFSSL 0.654 0.645 0.656 JFSSL 0.654 0.649 0.657

CSAEC 0.672 0.653 0.671 CSAEC 0.663 0.659 0.674

Table 3.  MAP results of different methods (NUS-WIDE).

R = 40 Image-text Text-image Average R = all Image-text Text-image Average

CCA 0.782 0.775 0.768 CCA 0.759 0.762 0.764

BLM 0.859 0.836 0.849 BLM 0.835 0.842 0.833

LCFS 0.843 0.828 0.837 LCFS 0.834 0.833 0.835

LGCFL 0.782 0.778 0.791 LGCFL 0.774 0.776 0.772

JFSSL 0.767 0.769 0.765 JFSSL 0.753 0.767 0.754

CSAEC 0.867 0.861 0.863 CSAEC 0.859 0.852 0.848
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features and semantic information, and learns the feature code vector of the semantic tag space. This shows that 
CSAEC and JFSSL are effective for querying spatial information with labels.

Precision–Recall (PR) curves of different methods. It can be seen from Fig. 1 that for the image-text 
query task, the overall CSAEC query effect exceeds almost all other methods. On the MIRFLICKR dataset, the 
minimum accuracy of each method is higher. On the NUS-WIDE dataset, the performance advantage of CSAEC 
is more obvious. Overall, CSAEC improves the performance of image query text tasks. For text-image query 
tasks, CSAEC has higher recall rate than the other methods on the four benchmark data sets.

Parameter sensitivity. In Fig.  2, we analyze the impact of parameters. On the WIKI and NUS-WIDE 
datasets, the two parameter values are adjusted within the range of 0.001, 0.01, 0.1, 1, 10, and their changes are 
shown in Fig. 3. It can be seen that when the parameters change, the effect of CSAEC will be different, and its 
query performance is more sensitive than other methods. When the range is from 0.001 to 1, this method can 
get better results.

Loss analysis. Figure 3 shows the convergence loss curve of the method in this paper. We perform CSAEC 
over 10 iterations on all datasets. It can be seen that on WIKI and NUS-WIDE, as the number of iterations 
increases, the loss value continues to decrease. After fewer iterations, the loss has been reduced and stabilized, 
and the method is considered to be convergent in the end.

Discussion
The research on cross-modal retrieval technology has attracted much attention and is beginning to be put into 
practice. In addition, the semantic gap between the low-level features and high-level semantic features in the 
multi-modal dataset is a huge challenge. The bottleneck in accuracy and quality lies in the key factors. Researchers 
work on the construction of similarity constraints through category labels, but the methods are limited. Study 
the special correlation between multi-modal data is of great urgency.

Semantic information is significant knowledge retained during querying. Different forms of data have dif-
ferent feature spaces, but they have the same semantic space. Data with the same semantics are related in vari-
ous forms. Semantic information can be used not only to indicate the degree of association between multiple 
modalities, but also to indicate the connections within each modality.

In this work, an effective cross-modal retrieval method CSAEC is proposed. By embedding mapping consen-
sus on multi-modal data, while retaining the original feature information and semantic information, a semantic 
code vector is obtained. The paired encoder–decoders are linearly symmetric, returning feature projections to 
the original data, minimizing reconstruction errors. Parameters are introduced in the objective function with 
regularization sparse constraints. Experiments show that the autoencoder effectively completes the query task 
and improves the retrieval performance.

Cross-modal retrieval technology involves basic knowledge related to mathematics, and statistics to meet the 
needs of the application. Also, CSAEC can be applied to fields related to computers and networks such as deep 
and subspace learning. Further, CSAEC will play a great role in the field of recognition and analysis. In the next 
step, characteristics of the human body, such as facial expression and body movement, can be used on the deep 
neural network model to perform simultaneous features on multiple modal learning. Datasets can be unified to 
the same feature space as semantic expression through multiple nonlinear transformations. CSAEC can restore 
more similarities between image and text information for feature extraction. The model takes into account of 
different modalities and the importance of tasks for machine learning. The model breaks through the obstacles 
in traditional methods, using deep learning methods innovatively to convert multi modal data into abstract 
expression, which can get better accuracy and achieve better results in recognition.

Methods
Related work. Cross-modal similarity learning has aroused great attention in the academic community. 
However, the heterogeneity of data and the existence of semantic differences makes this problem challenging. At 
present, the two most common measurement methods are maximizing correlation and minimizing Euclidean 
 distance25. The typical methods to maximize correlation are CCA 23 and improved methods, learning a latent 
space that maximizes the correlation between the projection features of the two modalities.  Reference26 used 
CCA to obtain the shared potential space of 2D and 3D facial images corresponding to people. PLS and BLM 

Table 4.  MAP results of different methods (MIRFLICKR).

R = 40 Image-text Text-image Average R = all Image-text Text-image Average

CCA 0.873 0.856 0.859 CCA 0.732 0.739 0.734

BLM 0.861 0.858 0.864 BLM 0.742 0.746 0.751

LCFS 0.895 0.873 0.891 LCFS 0.756 0.754 0.757

LGCFL 0.895 0.889 0.891 LGCFL 0.768 0.765 0.762

JFSSL 0.904 0.881 0.893 JFSSL 0.778 0.782 0.784

CSAEC 0.925 0.981 0.956 CSAEC 0.798 0.824 0.815
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(a) WIKI image-text (b) WIKI text-image

(c) TVGraz image-text (d) TVGraz text-image

(e) NUS-WIDE image-text (f) NUS-WIDE text-image

(g) MIRFLICKR image-text (h) MIRFLICKR text-image

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

pr
ec

is
io

n

recall

CCA BLM LCFS LGCFL JFSSL CMSA-EMC

pr
ec

is
io

n

recall

CCA BLM LCFS LGCFL JFSSL CMSA-EMC

pr
ec

is
io

n

recall

CCA BLM LCFS LGCFL JFSSL CMSA-EMC

pr
ec

is
io

n

recall

CCA BLM LCFS LGCFL JFSSL CMSA-EMC

pr
ec

is
io

n

recall

CCA BLM LCFS LGCFL JFSSL CMSA-EMC
pr

ec
is

io
n

recall

CCA BLM LCFS LGCFL JFSSL CMSA-EMC

pr
ec

is
io

n

recall

CCA BLM LCFS LGCFL JFSSL CMSA-EMC

pr
ec

is
io

n

recall

CCA BLM LCFS LGCFL JFSSL CMSA-EMC

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.2

0.4

0.6

0.8

1

1.2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 1.  Precision–Recall (PR) curves of different methods. On the four datasets, We compared CSAEC with 
other five methods to prove the better results. The method completes the query task and improves the retrieval 
performance.
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are methods to minimize Euclidean distance. Sharma and  Jacobs27 used PLS to achieve heterogeneous facial rec-
ognition in different poses, high-resolution and low-resolution facial images, and between photos and sketches. 
Bilinear models (BLM) are used for cross-media retrieval and heterogeneous face  recognition2.

An autoencoder is an unsupervised neural network model. It learns the hidden features of the input data, 
which is called encoding. Meanwhile, CSAEC reconstruct the original input data using the learned new fea-
tures, which is called decoding.  Autoencoders28 are trained models for learning potential representations of a 
set of data. CSAEC uses training data sets to copy the input information to the output. Therefore, the underly-
ing representation is a valid attribute. Some scholars have proposed deformation methods for autoencoders. 
 Reference15 correlated potential representations of two single-mode autoencoders. Kodirov et al.16 learned the 
semantic code vectors of latent space. Lange et al.29 combined the training of deep autoencoders (for learning 
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Figure 2.  Parameter sensitivity. The two parameter values are adjusted within the range of 0.001, 0.01, 0.1, 1, 10. 
The parameters’ query performance is relatively sensitive.

Figure 3.  Convergence curves. We plot the convergence curves of iterative algorithm with respect to the loss 
value. With very few iterations, the losses become small and stable.
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compact feature spaces) with RL algorithms (for learning strategies). RL is short for Reinforcement Learning. 
Tara et al.30 used the training set to apply the AE-BN mode. The traditional autoencoder simply seeked potential 
representations to reconstruct the original data, and the method conducted the similarity with semantic code 
vectors. Inspired of related work, we improve existing methods and constructs a set of cross-modal semantic 
autoencoder with embedding consensus (CSAEC). The process is shown in Fig. 4. The paired image-text data is 
uniformly mapped to a low-dimensional embedding space, the manifold structure is retained, and the original 
information is converted into corresponding semantic code vectors. The consensus matrix and semantic code 
matrix are continuously updated. Further, by learning the image and text projection matrices, the encoders are 
used to associate them with corresponding semantic codes, and the decoder is reprojected back to the high-
dimensional data. In addition, regularization and sparse constraints are performed on the decoder. Balanced 
parameters are used to reconstruct the original features. As a result, the method performs effectively on the 
retrieval of multi-modal information.

Embedding consensus. Denote (V T) the original data matrix, where V = (v1, v2, . . . , vN )
T is the image 

information and T = (t1, t2, . . . , tN )
T is the text information. The vector (vi , ti) represents the i-th row of infor-

mation and (vdi , t
d
i ) represents the d-th dimension of the data (vi , ti) . Mapping consensus mainly deals with 

the problem of multi-mapping disagreements. Since every data point is different, according to the mapping 
process, the representation of the same data point can be mapped into the latent embedding space. In this 
occasion, mapping conflict may occur. The reason is that the data point is unique which leads to different 
mapping results. The aim of mapping consensus is preserving validity of mappings and avoid mapping con-
flict. Considering of a fixed object (vi , ti) represented in different dimensions (vdi , t

d
i )(d = 1, 2, . . . ,D) , we set 

ϕd : (vi , ti) → Ui(i = 1, 2 . . . ,N) for each value of d, where Ui is the definite representation of this point in latent 
embedding space and ϕd is the latent embedding mapping for d-th dimension. Embedding consensus matrix 
realizes the unity of each pair of image and text information mapping results, and further learns the semantic 
code vector. Manifold dimension reduction preserves the local geometry of the original data points. To prevent 
the results from being affected by the noise data, the parameter γ d

i  is introduced. When sum up all of the d 
dimensions of (vdi , t

d
i )(d = 1, 2, . . . ,D) , the 

∑D
d=1 γ

d
i  can be transformed into diag(γi) . So we get

Wi = (Ui ϕ
1(v1i , t

1
i ) , . . . , ϕ
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i )) is a low-dimensional embedding matrix, which retains the manifold 
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Figure 4.  The process of CSAEC. We map the datasets to an embedding space, learn projections by multi-
modal semantic autoencoder and reconstruct original features. (V T) is the original data matrix, Ui is a low-
dimensional consensus vector of embedding consensus ϕd , W is a low-dimensional embedding matrix, C is the 
corresponding semantic code. Two encoders Pv , Pt project image and text data into low-dimensional space A, 
and two decoders reproject A back to high-dimensional data.
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the data is transformed into the corresponding semantic code vector by embedding the consensus matrix. To 
eliminate the influence of noise, when the mapping result of data (vi , ti) is abnormal, γ d

i  tends to 0. The corre-
sponding features are extracted using the original image and text information. Wi can be written as Wi = WEi 
, where Ei = (eTi , . . . , eTN+(i−1)D+1 , . . . , e

T
N+iD) is the feature matrix.

Sum the N components of images and text in each dimension

Denote

where H is the correlation matrix between the mapping points and the original data points, and D is the diago-
nal matrix. Using matrix C, image and text information can be converted into corresponding semantic codes. 
Furthermore, let � = (ϕ1(v11 , t

1
1 ) . . . ϕ

D(vD1 , t
D
1 ) . . . ϕ

1(v1N , t
1
N ) . . . ϕ

D(vDN , t
D
N )) , the final expression is

The variables in the objective function are relatively complex, and each univariate is solved by using an itera-
tive update method.

First, fix C, U and update �.

Since � = (V T)ϕT , the objective function can be transformed into a solution for a single variable

where

Find the partial derivatives of ϕT

Second, fix �,U  and update C.
The expression becomes

The solution of C can be referenced  to31.
Third, fix �,C and update U
The update process is transformed into a single variable U

ϕ = diag(ϕ1 , . . . , ϕD),Ci =

(

−eTD+1

ID+1

)

diag(γi)(eD+1 ID+1)

ŴC =

N
∑

i=1

ŴC(i) =

N
∑

i=1

tr(WiCiW
T
i )

=

N
∑

i=1

tr(WEiCiE
T
i W) = tr(WCWT )

W =(U ϕ1(v11 , t
1
1 ) , . . . , ϕ

D(vD1 , t
D
1 ) , . . . , ϕ

1(v1N , t
1
N ) , . . . , ϕ

D(vDN , t
D
N ))

C =

N
∑

i=1

EiCiE
T
i = D −H

ŴC = tr(WCWT )

= tr((U �)

(

C11 C12

C21 C22

)(

UT

�T

)

)

= tr(UC11U
T )+ tr(�C21U

T )+ tr(UC12�
T )+ tr(�C22�

T )

min
�,C,U

ŴC = tr(WCWT )

= tr(UC11U
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∥

∥

∥
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ϕT = diag(ϕ , . . . , ϕ)

UT = (U1 , . . . , U1 , . . . , UN , . . . , UN )
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∂ϕT
= 2((V T)ϕT − UT )(V T) = 0

ϕT = (V T)−1UT
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Find the partial derivative of U

Cross‑modal semantic autoencoder. By mapping the image and text to the embedding consensus 
space, CSAEC can contain enough raw data information. V ∈ Rdv×n,T ∈ Rdt×n denote the visual and textual 
feature matrices, respectively, where dv and dt are the visual and textual feature dimensionalities. The following 
is to learn the projection matrix Pv ∈ Rd×dv , Pt ∈ Rd×dt separately: the encoder connects the image and text 
projection with the semantic code vector C, and the decoder is restricted so that the code vector can reconstruct 
the original features of the image and text. The encoder and decoder are linearly symmetric. Two encoders 
Pv , Pt project image and text data into low-dimensional space A, and two decoders reproject A back to high-
dimensional data. The hidden layer contains both image and text information.

For the image data, the embedding form of the automatic encoder is used to represent the information of the 
original features. The image-text paired representation should be unified, since in the retrieval stage, when the 
query information is given, the query will be sorted according to the similarity. So, we get

where A ∈ Rd×n represents n groups of training texts in a d-dimensional hidden space. The additional reconstruc-
tion task imposes a new constraint in learning of the projection function so that the projection must preserve all 
the information contained in the original textual features. For image modality, we also adopt an autoencoder to 
let the embeddings contain information from original visual features. We hope the representations of image-text 
pairs in the hidden space to be uniform. This form is a binding linear  autoencoder18 and has only one hidden 
layer.

For text data, to make sure of the low-dimensional ability to restore the original information points, let

For each data point vi(i = 1 , 2, …, N), it can be approximated as a linear combination of all the other sam-
ples. Based on the mapping consensus we have proposed, the datasets ϕd : (vi , ti) → Ui(i = 1, 2 . . . ,N) , we set 
d = dv = dt . In this way, the feature matrices V ∈ Rd×n,T ∈ Rd×n , Pv ∈ Rd×d , Pt ∈ Rd×d . Then by imposing 
sparsity on the matrix A and the projection matrix Pv to the process of reconstruction, the optimal sparse com-
bination matrix A and projection matrix Pv can be obtained by solving the problem

where ai is the ith column vector of the matrix A. As in the manifold learning methods, PvV  should satisfy the 
orthogonal constraint. Through the sparsity constraint, the information captured by A can be used to search the 
relevant features and eliminate the effect of noise features. The function for structure learning is formulated as

According to the expressions above, a multi-modal autoencoder can be obtained. Also, we make sure that the 
hidden layer contains enough semantic information. The hidden representation of the data is associated with 
the semantic code vector C. Considering the similarity between different modalities, we use tag information 
to standardize the potential representation of the autoencoder. The  reference18 has minimized the function by 
summing up the low-dimensional information of visual and text datasets. This  method18 relaxed the constraints 
and rewrite the objective of multi-modal autoencoder. In this way, the results have been improved. In retrieval 
phase, when a query is given, documents are sorted according to their similarity to the query. To guarantee the 
projected images and texts containing both semantic information and original feature information, we propose 
an improved autoencoder. On this basis, a regularization sparse constraint on the low-dimensional matrix A is 
added to obtain the final objective function

where β is the weight parameter for balancing the two types of data information, and is a parameter that deter-
mines importance of semantic code vector.

We also use alternating iterative updating methods to solve the objective function separately.
First, fix A and update Pv , Pt
The solutions of the projection matrix Pv , Pt are similar. Let

2C11U
T +�C21 +�TC12
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−1(�C21 +�TC12

T ))T
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The expression is transformed into univariate functions of Pv

By finding partial derivatives of Pv , the specific solution method can be found in the  reference31. Similarly, 
the update function of Pt is

Second, fix Pv , Pt and update A Find partial derivative of variable A

According to the solution method of LASSO  problem32, matrix A can be updated.
Synthesizing the process above, we propose the cross-modal semantic autoencoder with embedding 

consensus. 

Cross-Modal Semantic Autoencoder with Embedding Consensus (CSAEC)

Input: Data matrix V, T and code vector C, parameters β , η

Output: Projection matrices Pv , Pt
Initialize: Use matrix C to initialize matrix A;

Repeat:

   Fix A, and update Pv , Pt according to Eq.(1) and Eq.(2);

   Fix Pv , Pt , and update A according to Eq.(3);

Until convergence.

Received: 1 May 2020; Accepted: 6 April 2021
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