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The Rayleigh–Lorentz invariant 
for superconducting resonators 
and optimal adiabatic 
qubit‑information detection
Jeong Ryeol Choi

Dynamical properties of a resonator can be analyzed using the Rayleigh–Lorentz invariant which is 
not an exact constant but varies more or less over time depending on variations of parameters. We 
investigate the time behavior of this invariant for a superconducting nano‑resonator in order for better 
understanding of qubit‑information detection with the resonator. Superconducting resonators which 
uses parametric resonance in a Josephson junction circuit can be utilized in implementing diverse next 
generation nano‑optic and nano‑electronic devices such as quantum computing systems. Through the 
analyses of the temporal evolution of the invariant, we derive a condition for optimal adiabatic qubit‑
information detection with the resonator. This condition is helpful for controlling the dynamics of the 
resonators over long periods of time. It is necessary to consider it when designing a nano‑resonator 
used for quantum nondemolition readouts of qubit states, crucial in quantum computation.

Superconducting  resonators1–3 can potentially be implemented to diverse amplification schemes for measuring 
weak information signals in quantum systems such as quantum computers and quantum sensors. Adiabatic read-
outs of qubit states in quantum computation using controllable resonators are required in optimized computing 
 models4–6, while adiabatic quantum computation with a robust quantum algorithm can be achieved on the basis 
of the adiabatic  theorem7,8. Due to this, adiabatic evolution of a  resonator5,9 incorporated with nondemolition 
qubit information detection has attracted considerable interest in quantum-information science. It is possible 
to investigate dynamical properties of a superconducting resonator from the analysis of the variation of the 
associated Rayleigh–Lorentz adiabatic  invariant10.

It is well known in quantum mechanics that, if the adiabatic hypothesis related to the Rayleigh–Lorentz adi-
abatic invariants holds, the initial eigenstate in the discrete spectrum of the Hamiltonian remains the same over 
time. In order to process quantum information using computing algorithms and to read out qubit-state signals, 
a suitable resonator is indispensable. As an implementation of quantum-information devices, superconducting 
qubits, such as charge  qubits11,12, flux  qubits13,14, and phase  qubits5,15, are artificial two-level systems that are basic 
units that store quantum information. Typically, such qubits are fabricated by superconducting circuits using 
nanotechnology facilities. The entanglement between a qubit and a SQUID (superconducting quantum interfer-
ence device) is usually used as a protocol for measuring the quantum states of the  qubit13,16.

Adiabatic invariants that are nearly conserved quantities when the system parameters change slowly have 
been one of the core research subjects concerning time-varying mechanical systems. After Burgers’ pioneer-
ing  work17 in the adiabatic hypothesis and its applications, adiabatic invariants for both nonconservative and 
nonlinear systems have been extensively  investigated18–20. The reason why adiabatic invariants have become a 
topic of interest is that we can deduce various dynamical properties of a system from such conserved quantities, 
leading to deepening the understanding of the system. Indeed, adiabatic invariants are useful for characterizing 
quantal and photonic properties of adiabatically evolving  nanosystems21–25.

Such Rayleigh–Lorentz invariants are not exact constants, but approximate constants under the assump-
tion that the variations of parameters are sufficiently slow. Namely, the Rayleigh–Lorentz invariants somewhat 
vary with time. The study of such variation for specific systems may allow us to gain insight in understanding 
the underlying mechanism associated with the  invariants19. The mechanics of such adiabatic invariance can be 
applied to analyzing dynamical properties of superconducting qubits in adiabatic quantum  computation8,26.
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In this work, we investigate the characteristics of the Rayleigh–Lorentz invariant of the nano-resonator system 
and find requirements for optimal qubit signal detection by utilizing such characteristics of the invariant. To 
attain fault-tolerant quantum computation, computational states should not be disturbed when we detect qubit 
information. Hence, wave function of a qubit state should be precluded from undergoing a decoherence-induced 
collapse during its measurement. In this regard, ideal qubit readout with high-fidelity is possible from a protec-
tive measurement based on the preservation of adiabatic evolution of qubit eigenstates. Protective measurement 
minimizes disturbance to the system and can possibly be used in situ as a standard quantum measurement with 
reliable precision. Based on our consequence for the condition for optimal adiabatic qubit-information detec-
tion, we will address quantum nondemolition measurement which is critical in order to extract scalable qubit 
information in quantum computation.

Results
Description of the superconducting resonator. While the picture of parametric resonance in a cav-
ity is rich and rather complicated, the designing of superconducting resonators is flexible thanks to diverse 
available methods for parametric  pumping1. Hence, the characteristics of superconducting resonators and their 
mathematical representation are more or less different depending on adopted models and fabrication meth-
odologies. Moreover, for a specific resonator, the degree of approximation for its nonlinear terms in the circuit 
also affects the explicit form of the equation of motion for the time behavior of a flux. Throughout this work, 
we consider a kind of superconducting resonator that were recently proposed and analyzed by Krantz et al. for 
 convenience27–29. Krantz et al. adopted quarter wavelength superconducting resonators that include a coplanar 
waveguide (CPW) transmission line as a practical tool for reading out qubit states. The response of this system 
near the resonance frequency can be modeled in terms of a parallel RLC resonating circuit. The phase differ-
ence in the SQUID is represented as ϕ = 2πφ/φ0 where φ is the magnetic flux in the superconducting loop 
while φ0 is the magnetic flux quantum which is given by φ0 = π�/e . Because the flux is quantized, the allowed 
quantities of ϕ are discrete. When we describe complicated electronic circuits including Josephson junctions, we 
can choose either charge q or flux φ (or ϕ ) as coordinate. If we choose q as coordinate, φ can be managed as the 
conjugate momentum, while q is regarded as momentum in the case where φ has been chosen to be coordinate. 
Because the flux in Josephson junctions of the SQUID exhibits nonlinear characteristics, it is favorable in this 
case to choose φ as  coordinate30. The resonator acts as a parametric oscillator that can be tunable by adjusting 
the overall inductance (or capacitance). For some technical reasons, the modulation of frequency by a nonlinear 
flux-tunable inductance is preferable to tuning the  capacitance27. The resonator can be operated by a radially 
oscillating small ac-flux added to a static dc-flux. In many cases, the operated angular frequency (pumping fre-
quency) of the ac-flux is nearly twice the resonant angular frequency, ωp ≈ 2ωr.

A schematic diagram for a tunable CPW quarter wavelength resonator considered both nonlinearity and 
damping is given in Fig. 1. In this case, the system is described by an extended Duffing equation which is of the 
 form1,29,31

Figure 1.  (A) is the schematic diagram of the CPW quarter-wavelength resonator (blue part) coupled to a qubit 
(red part); green part is microwave flux-pumping inductively coupled to the SQUID. (B) Represents that the 
resonator can be modeled by LC oscillator near the resonance, while SQUID gives nonlinear time-dependence 
of the resonator inductance Lr ; right part of (B) is the equivalent diagram for this.
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Here, Q is the quality factor, α is the Duffing nonlinear term, ξ(t) is a noise or external signal, ω(t) is a time-
dependent angular frequency, and �(t) is a time function that is represented as

where � is a correction to the Duffing nonlinearity caused by a modulation of α through the pump, and ǫ is the 
strength of pumping. In Eq. (1), higher order terms have been taken into account in order to meet experimental 
results that exhibit pump-induced frequency shift. Nonlinearity in the system has been induced by connecting 
the SQUID to the cavity, whereas the damping takes place by attaching the cavity to a transmission line.

In the representation of the flux equation, Eq. (1), we have followed the convention of notations as that in 
Ref. 31, which are expressed in terms of φ , but if we rescale the Duffing nonlinear term as α → (2π/φ0)

2α , Eq. 
(1) reduces to that in Refs. 1,29. The time behavior of the Duffing coefficient α�(t) characterized by Eq. (2) is 
identical to that given in Ref. 1 under an appropriate assumption, which is |f (t)| ≪ 1 where f(t) is a controlling 
field defined in that reference. The most up-to-date technique for reading qubit data with high fidelity is using 
the nonlinear properties of the nano-resonator coupled to the qubit  system27.

The resonator system described by Eq. (1) can be applied to various next-generation nanotechnologies for 
quantum information processing. For convenience, we consider a particular case that ω(t) is given in the  form29

where β is a dimensionless parameter. Equation (3) indicates that the oscillating frequency of the Duffing resona-
tor is modulated in  time32. If β → 0 , the frequency given in Eq. (3) reduces to that of Eq. (1) in Ref. 33 and/or 
Eq. (1) in Ref. 34, leading the system being similar to those treated in the same references. On the other hand, 
the last term in the bracket of Eq. (3) is the one that appeared in Eq. (1) of Ref. 35. To know how to determine 
various parameters in the system, refer to Ref. 27. For other models where the equation for the flux is different 
from Eq. (1), refer to Refs. 36,37.

Now we consider the case of a weak Duffing nonlinear term, that can be established by putting α ≃ 0 , as a 
solvable case. Upon this situation, the Hamiltonian describing Eq. (1) is a quadratic form and the corresponding 
energy can be written as (see “Methods” section which is the last section)

where C is the capacitance of the resonator.

Rayleigh–Lorentz invariant. Rayleigh10 discovered, for a specific time-varying system, that the quantity 
I(t), which is defined as

almost does not vary over time, provided that the variations of system parameters are sufficiently slow. Subse-
quently, Lorentz rediscovered this consequence in the semiclassical regime and pronounced his discovery at the 
famous first Solvay Conference (for detailed reviews of this, see Refs. 19,20).

If we insert Eq. (4) in Eq. (5), we obtain the Rayleigh–Lorentz invariant of the system such that

where ω(t) is given by Eq. (3). Apparently, the ratio of energy to the angular frequency is an adiabatic invariant 
that is useful for studying dynamical properties of the  system9. The adiabatic invariant given in Eq. (6) is an 
approximate constant under the condition that the variations of parameters of the dynamical system are suf-
ficiently slow.

Let us analyze the time behavior of I(t) for several particular cases. We have plotted its temporal evolution 
using Eq. (6) in Fig. 2 for several different choices of the value of parameters. We have chosen ξ(t) as a sinusoidal 
form in these analyses for the purposes of simplicity. While I(t) almost does not vary for the case of small values 
of ωp or ωd , it oscillates as ωp and/or ωd become large. S ́anchez–Soto and Zoido discovered similar oscillations 
of I(t) for the systems of linear or exponentially lengthening  pendulums19. Figure 3 shows large-scale oscillation 
of I(t) through the joint effects of ωp and ωd . This figure also exhibits the fact that the amplitudes of such oscilla-
tions become high as ξ0 increases. We can confirm from these analyses that, if the process of the change for the 
parameters of the system is too fast, I(t) would not remain constant.

Optimal adiabatic condition. Let us deduce a useful adiabatic condition between system parameters 
from the formula of Eq. (6). The first term in Eq. (6) exponentially decays out as time goes by. Hence, it vanishes 
for a sufficient large t and, as a consequence, we obtain a useful parametric behavior from the remaining term, 
which yields at later time, as

(1)d2φ

dt2
+ (ωr/Q)

dφ

dt
+ ω2(t)φ − α�(t)φ3 = ξ(t).

(2)�(t) = 1− 3�Qǫ cos(ωpt)/(2ωrωp),

(3)ω(t) =

[

ω2
r + ǫ cos(ωpt)−

βǫ2Q

2ωrωp
(1− cos(2ωpt))

]1/2

,

(4)E(t) = exp(−ωr t/Q)
ω(t)

ω(0)

(

E(0)+
Cξ2(0)

2ω2(0)

)

−
Cξ2(t)

2ω2(t)
,

(5)I(t) = E(t)/ω(t),

(6)I(t) =
exp(−ωr t/Q)

ω(0)

(

E(0)+
Cξ2(0)

2ω2(0)

)

−
Cξ2(t)

2ω3(t)
,
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This is the main consequence of the present work. When controlling dynamics of the resonator  adiabatically9,38 
over a long time, one should consider this relation. By comparing Fig. 4A with Fig. 4B,C (or with other previous 
figures), we see that the variation of the invariant is negligible in the case where this condition has been met. If we 
regard that one of the main problems for quantum computing is achieving high-fidelity quantum nondemolition 
readouts of the qubit states without measurement-induced decoherence, protective or nondemolition measure-
ment of qubit states upon adiabatic approximation is  important39,40. In this regard, the adiabatic condition given 
in Eq. (7) is useful in realizing reliable state detection with high efficiency, because it is possible to reduce the 
disturbance of the state substantially if such a condition holds.

Practical implementation of protective quantum measurements is based on the fact that, while we can com-
pletely describe a system using the Schrödinger wave, the quantum state in adiabatic measurement does not 
change throughout the experiment. Adiabatic  measurement5,6,41,42 in addition to other adiabatic processes, such 
as adiabatic preparation of a  state43 and its  transfer44,45, enables high-fidelity operations in quantum informa-
tion processing. The adiabatic condition, Eq. (7), may provide a concrete qubit-state-detection protocol which 
is robust not only to noise, but pulse errors as  well46. This may open a route for a single-shot non-demolition 
measurement of a superconducting qubit on the basis of the adiabatic  process5.

Discussion
In light of the present research, the invariant plays a crucial role in investigating the dynamics of information 
detection of a qubit with a superconduction resonator. The invariant is approximately constant for small values 
of the pumping and driving frequencies. We see that the first time-dependent term of the invariant given in 
Eq. (6) decays exponentially. Hence, the last term in the same equation should become approximately constant 
over sufficiently long periods. In this way, a useful condition for adiabaticity has been found under which the 
invariant is approximately constant over estimated long-time scales, as shown in Eq. (7). This condition could 
help to control the dynamics of the superconducting resonator over long periods of time. Rigorous conserva-
tion of adiabatic invariants is requisite in order to keep the system being adiabatic during the operation of the 
nano-resonator47,48. Hence, Eq. (7) is important as a requirement for optimal qubit-information detection in 
protective/nondemolition adiabatic  measurements4–6,9,38–40.

In order to prevent liable transfer of the eigenstate of the system Hamiltonian to other ones, it is necessary 
to preserve adiabaticity of the eigenstate. Then the collapse or entanglement of the system would not appear 

(7)ξ(t) ∝ ω3/2(t).

Figure 2.  The effects of the increase of the frequencies ωp and ωd on temporal evolution of the Rayleigh-
Lorentz invariant, where a sinusoidal noise ξ(t) = ξ0 cos(ωdt + θ) has been taken. Here, ξ0 is the amplitude 
of the external force and ωd is the driving frequency. (A) is for several different values of ωp , whereas (C) for 
ωd . We have used ωd = 1 for (A) and ωp = 1 for (C). Other quantities that we have used are ωr = 0.5 , ǫ = 0.1 , 
β = 1 , Q = 5 , ξ0 = 0.2 , E(0) = 1 , C = 1 , and θ = 0 . (B) and (D) are enlarged plots between t = 0.2 and t = 0.4 
for (A) and (C), respectively.
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and, consequently, the eigenstate can be measured with a high precision. Protective measurement is possible in 
such a way, which helps in detecting the actual physical state characterized by the wave function for a quantum 
system. The temporal response of qubit readout is well-characterized and qualitatively understood from adiabatic 
measurement, while high fidelity readouts of a qubit state are of central importance for achieving a successful 
realization of quantum computers.

Methods
The method for deriving energy expression given in Eq. (4) appears in Ref. 31. We briefly review it starting from 
the general representation of the energy of the system:

Figure 3.  Emergence of large-scale oscillations of the Rayleigh–Lorentz invariant via the joint effects of ωp 
and ωd , which is shown for several different values of ξ0 . The same formula of ξ(t) as that in Fig. 2 is taken. The 
values of ( ωp , ωd ) that we have used are (10, 10) for (A), (100, 10) for (B), and (10, 100) for (C). Other values are 
common and given by ωr = 0.5 , ǫ = 0.1 , β = 1 , Q = 5 , E(0) = 1 , C = 1 , and θ = 0.
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where q is the canonical charge stored in C. Let us consider the classical action of the form, J =
∮

qdφ . Then the 
integration using Eq. (8) gives

(8)E(t) = e−2ωr t/Q
q2

2C
+

1

2
C
[

ω2(t)φ2 − 2ξ(t)φ
]

,

(9)J(t) =
2πeωr t/Q

ω(t)

(

E(t)+
Cξ2(t)

2ω2(t)

)

.

Figure 4.  Graphical demonstration for optimal adiabatic condition from temporal evolution of I(t). Each panel 
is drawn for several different values of ωp and ωr . ξ(t) = ξ0ω

3/2+δ(t) has been taken regarding Eq. (7), where 
δ is a deviation from the optimal condition. Panel (A) is for δ = 0 , (B) for δ = 1 , and (C) for δ = 2 . The values 
of parameters that we have taken are ǫ = 0.5 , β = 0.5 , Q = 10 , ξ0 = 0.4 , E(0) = 2 , and C = 1 . (A) shows that 
I(t) does not vary locally when ξ(t) follows the condition in Eq. (7). If ξ(t) deviates from that condition, the 
fluctuation of I(t) emerges (B,C).



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:13722  | https://doi.org/10.1038/s41598-021-92555-8

www.nature.com/scientificreports/

Hence, J has been represented in terms of E(t). Now from the relation J(t) = J(0) , we easily have the formula 
of the energy given in Eq. (4).
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