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Topological phase transition 
between a normal insulator 
and a topological metal state 
in a quasi‑one‑dimensional system
Milad Jangjan & Mir Vahid Hosseini*

We theoretically report the finding of a new kind of topological phase transition between a normal 
insulator and a topological metal state where the closing‑reopening of bandgap is accompanied by 
passing the Fermi level through an additional band. The resulting nontrivial topological metal phase is 
characterized by stable zero‑energy localized edge states that exist within the full gapless bulk states. 
Such states living on a quasi‑one‑dimensional system with three sublattices per unit cell are protected 
by hidden inversion symmetry. While other required symmetries such as chiral, particle‑hole, or full 
inversion symmetry are absent in the system.

In recent years, the exploring of topological phases has been at the center of attention, in particular, in condensed 
matter  systems1. The key feature is the emergence of symmetry protected gapless boundary modes due to topo-
logical bulk states. Topological phases mainly have been categorized into topological  insulators2–5 and topological 
 superconductors6 that are studied theoretically and experimentally. In contrast to these topological phases where 
edge states reside within the gap of bulk states, there are other types of unconventional topological phases known 
as topological semi-metals7 and topological metals (TMs)8,9. In the former, there exist band touching nodes at 
Fermi energy occurring in three-dimensional noncentrosymmetric or magnetic materials. While the latter case, 
which can also take place in low-dimensional systems, has a finite Fermi surface.

Depending on the properties of edge states, topological semimetals and metals can be regarded as two types. 
First, while topological edge states remain isolated in the bandgap, Fermi level crosses bulk and edge states at 
different momenta (quantum numbers). This situation, for instance, has been reported in  TMs8,  semimetals10, 
and even in a narrow energy window of topological  insulators11. Second, gapless edge states coexist with gapless 
bulk states such that some edge and bulk states would have not only the same energy but also the same momen-
tum (quantum number). This phase has been investigated in a quasi-one-dimensional (1D)  system18 where the 
finite-energy edge states can penetrate into bulk states hybridizing with  them12 and in a 1D system where the 
coexistence of edge and bulk states occurs at Fermi energy in a single point of parameter  space9. However, this 
kind of TM phase deserves to be investigated further with a more stable feature.

Often, on the other hand, topological superconducting or insulating phase can be settled down, respectively, 
on trivial superconductors or insulators through occurring topological phase transition when a band inversion 
takes place. Furthermore, in previous works, it has been shown that the TM phase can be established on a trivial 
metallic ground state through closing-reopening of subband  gap9 or main  bandgap8. So, it is indeed intriguing 
to have a situation in which the underlying states in the nontrivial and trivial topological phase of a system 
belonging to different states can be related to each other, possibly, with a new kind of topological phase transition.

In this paper, within the tight-binding approach in a quasi-1D model with three sublattices per unit cell 
(Fig. 1), the occurrence of a new kind of topological phase transition between a normal insulator (NI) and TM 
is investigated. Interestingly, in such phase transition, in addition to gap closing-reopening between two bands, 
another band passes the Fermi level (Fig. 2) resulting in the emergence of zero-energy edge states within bulk 
states (Fig. 3a). Although the system has no explicit symmetry, in a subspace of the Hilbert space, there is a hid-
den inversion symmetry protecting the TM phase.
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Model and theory
The model we consider is a three-component quasi-1D lattice as represented in Fig. 1. Using the tight-binding 
theory, the Hamiltonian of system can be defined as

where X†
n ( Xn ) is the creation (annihilation) operator on the sublattice X(= A,B,C) of the nth unit cell and 

N is the number of unit cell. Also, t1 = t(1+ δ1) is intra unit cell hopping and t(′)2 = t(1− (+)δ
(′)
2 ) is oblique 

(1)H =
N
∑

n=1

t1(A
†
nBn + B†nCn + A†

nCn)+
N−1
∑

n=1

t ′2(A
†
nAn+1 + B†nBn+1)+

N−1
∑

n=1

t2(C
†
nAn+1 + C†

nBn+1)+ h.c,

Figure 1.  (Color online) Schematic geometry of quasi-1D lattice comprising of three sublattices A, B, and C per 
unit cell. Intra and horizontal (oblique) inter unit cell hoppings are indicated by dark magenta and dark cyan 
(green) colors, respectively.
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Figure 2.  (Color online) Band structure of the system for (a) t1 = −2t , (b) t1 = −1.2t , and (c) t1 = −0.6t 
under periodic boundary conditions. Horizontal thin line indicates Fermi level. Here, t ′

2
= t2/2 = −0.6t.
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Figure 3.  (Color online) Energy spectra and the inverse participation ratio with their relevant topological 
invariant as a function of t1/t under open boundary conditions for (a) t ′

2
= t2/2 and (b) t ′

2
�= t2/2 = −0.3 . 

Here, t ′
2
= −0.6t . (c) Topological phase diagram as functions of intra and inter unit cell hoppings t1 and t2 . The 

red region represents the nontrivial TM phase while the gray region indicates NI.
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(horizontal) inter unit cell hopping to the nearest neighbors. δ1 and δ(′)2  are some parameters modulating hopping 
energies. We choose t as the unit of energy.

With periodic boundary conditions, H is invariant under translations by a unit cell. So, after Fourier 
transformation, the Hamiltonian can be written in the basis of ψ†

k
= (Ak ,Bk ,Ck)

† yielding compact from 
H =

∑

k ψ
†
k
H(k)ψ

k
 with

Diagonalizing Eq. (2) gets the eigenvalues,

where η = t1 + 2t ′2cos(k) . The possibility of emerging topological phases though gap closing/reopening condi-
tions at the ks = (0,π) would be provided if E+ = E− leading to

Note, Eq. (4) implicates that topological phase transition is possible if the term under the square root is zero, 
i.e., t ′2 = t2/2 . Under such condition, Eq. (4) indicates phase boundaries distinguishing topologically nontrivial 
phase from topologically trivial one.

In Fig. 2, we depicted the band structure of system showing closing and reopening of the energy gap between 
the two bands E+ and E− near the topological phase transition point. In Fig. 2a, the gap of system is open and 
there are no energy states at Fermi energy. So, the system is a NI. With increasing t1 , from Fig. 2b, one can see 
that the gap closes leading to the topological phase transition. At the same time, surprisingly, the band E0 shifts 
towards the Fermi level and touches it. After topological phase transition, as shown in Fig. 2c, the energy gap 
between E+ and E− is reopened and the band E0 crosses the Fermi level which represents a metallic state. This 
signals that the whole system will be a conductor in a nontrivial topological phase giving rise a new type of 
topological phase transition from the NI to the TM phase.

As already mentioned above, if t ′2 �= t2/2 the system does not support any topological phase. Because, in 
general, Hamiltonian (2) does not have chiral, particle-hole, and/or inversion symmetries. As such, the system 
provides a trivial phase without any topological edge state in the gap or bulk states under the open boundary 
conditions. However, if t ′2 = t2/2 then inversion symmetry in a subspace of the Hilbert space of system would 
be revived (as will be discussed below) and Eq. (4) reduces to t1 = t2e

iks reminiscing the gap closure condition 
of SSH  model13. So, hereafter, we set t ′2 = t2/2 otherwise specified. Note that to satisfy the requirement t ′2 = t2/2 , 
the hoppings can also be effectively tuned by externally applied periodic fields using Floquet-Bloch  theory14,15 
(for details  see16).

Furthermore, Hamiltonian H(k) has exchange symmetry with the corresponding exchange operator ϒ 
defined as,

which exchanges the sublattices A and B. Owing to the presence of such symmetry, [H(k),ϒ] = 0 , and then the 
Hamiltonian can be block-diagonalized in the basis of ϒ under the transformation U −1

H(k)U = H
BD(k) 

yielding

where

and

Note that the obtained bases of exchange operator (9) can be related to a unitary matrix in block-diagonalizing 
a class of quasi-1D and -2D systems comprised of odd  chains17,18. In fact, the block-diagonalization (6) splits the 
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Hilbert space of the system into two subspaces so that one can examine their topological properties indepen-
dently. Interestingly, in a one of the subspaces, the subsystem h2 can be regarded as a generalized SSH model with 
next-nearest hopping, t ′2 , and on-site potential, t119. Then, the subspace associated with h2 would host topological 
phases which in combination with the metallic subspace of h1 would make the whole system TM.

To discuss about the symmetry of the subsystem h2 we rewrite its Hamiltonian as

where σ0 is the identity matrix, σi is the i(= x, y, z) component of the Pauli matrices, and

It is well-studied that the simultaneous presence of all three components hx , hy , and hz in 1D two-band Ham-
iltonians, for instance, SSH model, breaks inversion symmetry and, subsequently destroys topological edge 
 states20. But, for our model although hz is nonzero, due to the relation hz = 1

2
√
2
hx , one can find effective inversion 

symmetry, �h2(k)� = h2(−k) , in the subspace of h2 with inversion operator

This implies that there exists a hidden inversion symmetry in the system protecting the topological phase. 
The emergence of inversion-symmetry-protected topological phase can be verified by quantized Z  invariant21.

Moreover, the h2 has time-reversal symmetry fulfilling Th2(k)T
−1 = h2(−k) where the time-reversal opera-

tor is T = σ0K with K being the complex conjugate operator. Also, the reason for the breaking of chiral sym-
metry can also be seen from the energy dispersions of the two-band subsystem h2 which are

Here, the term h0 breaks chiral symmetry so, as usual, one may expect that the zero-energy edge states will be 
shifted by this term. Nevertheless, interestingly, the relation between h0 and hx holds the energy of edge states at 
zero energy which is in contrast to the previous studies. Therefore, due to T 2 = 1 and �2 = 1 , according to the 
generalized periodic  table22–24, the symmetry class of subsystem h2 is AI with topological index Z . Note that, in 
our case, the primary periodic  table4 cannot be applied because it is based on nonspatial symmetries.

The existence of the hidden inversion symmetry guarantees that the eigenvectors of h2 have a well-defined 
parity at the inversion symmetric momenta ks = (0,π) . So, one can define an integer invariant as Z = |n0 − nπ | 
where n0 and nπ denote the number of negative parities at ks = 0 and ks = π ,  respectively21. The analytical expres-
sion of topological invariant Z for the subsystem h2 can be obtained as (for details  see16)

where sgn(x) is the Sign function. For Z = 1 a nontrivial topological phase will be revealed in the subspace of 
h2 . In such a situation, due to bulk-edge correspondence, the gapless edge states associated with the nontrivial 
topological character of bulk states will be appeared at the boundary of the system under open boundary condi-
tions. For Z = 0 the subsystem h2 has a trivial phase.

Generally, combining the two-band subsystem h2 with the single-band subsystem h1 leads to another topologi-
cal aspect for which the gapped topological bands would coexist with the trivial metallic band resulting in the TM 
 phase8,9,12,17,18. This means that when the system has open boundary conditions, in the topologically nontrivial 
phase of h2 , there exist zero-energy edge states near the system boundaries while the subsystem h1 has topologi-
cally trivial phase. So, the band structure of the whole system shows an interesting phenomenon that topological 
edge states of h2 are in the metallic bulk states of h1 instead of being in the system gap as will be shown below.

Numerical results
To complement the analytical results with numerical ones, we diagonalize the Hamiltonian (1) numerically under 
open boundary conditions. In order to identify the localized edge states penetrated into extended bulk states 
under open boundary conditions, in the following, we evaluate the inverse participation ratio (IPR) of  states25. 
The IPR for an eigenstate ψE(j) in the corresponding eigen energy E is given as

If ψE(j) is localized, then IE = 0 , whereas if ψE(j) is extended, then IE = −1.

(10)h2 = h0σ0 +
∑

i

hiσi ,

(11)h0 = hz = η/2,

(12)hx =
√
2η,

(13)hy =
√
2t2sin(k).

(14)� =
1

3
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1 2
√
2

2
√
2 − 1

)

.
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√
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2
√
2
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√

9h2x

8
+ h2y .

(16)Z =
{

0, if sgn(η(0)) = sgn(η(π))
1, if sgn(η(0)) �= sgn(η(π))

,

(17)IE =
Ln

∑

j |ψE(j)|4

Ln3N
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The band structure of system along with its corresponding topological invariant Z as a function of t1 is plotted 
in Fig. 3(a) and (b) for the cases t ′2 = t2/2 and t ′2 �= t2/2 , respectively. In Fig. 3(a), with establishing the hidden 
inversion symmetry due to t ′2 = t2/2 , the gap of h2 closes and then reopens at the topological phase transition 
points such that topological edge states appears. Since the inversion operator can commute with h2 , the expecta-
tion values of inversion operator at the inversion symmetric momenta k=0 and π are either 1 or −1 . Subsequently, 
the topological invariant, which is the sum of negative parities, takes the quantized values 0 and 1 for the trivial 
and nontrivial regimes, respectively. In the nontrivial region, the system hosts the degenerate zero-energy edge 
states within the bulk states in a width range of t1 indicating the emergence of stable TM phase. Since, in the 
trivial region, the system is a trivial insulator, as a result, a topological phase transition has occurred between 
the NI and the stable TM phase. Also, when t ′2 �= t2/2 , owing to violating the hidden inversion symmetry, as 
shown in Fig. 3(b), the degeneracy of edge states is destroyed, and depending on values of t1 , the system is either 
NI or trivial metal. Also, the invariant Z takes continuous values. Because, in this case, the quantum number 
associated with inversion operator are no longer a good quantum number. As such, the expectation values of 
inversion operator do not take integer values. In Fig. 3(c), topological phase diagram is shown as functions of t1 
and t ′2 . The regions represented by red (gray) colors indicate the nontrivial TM (NI) regime. One can easily see 
that in addition to the condition t ′2 = t2/2 , when |t2| > |t1| the TM phase will be appeared.

In Fig. 4, the local density of states (LDOS) as functions of energy E and unit cell index x is displayed. In the 
TM phase, at zero energy, the localized states are revealed at the ends of the system (see Fig. 4a). One can also 
see, as mentioned above, these localized edge states coexist with the bulk states. Note that the peak intensities of 
localized edge states at both ends are not the same. This is because of breaking chiral symmetry. In the NI phase, 
at Fermi energy, the LDOS vanishes (see Fig. 4b) and the localized edge states disappear.

It is well studied that symmetry protected topological states can exist in a system as long as a certain sym-
metry is preserved. So, the system exhibits the topological edge state in the topological regime in the presence 
of symmetry. In the present study, to demonstrate that the hidden inversion symmetry has a fundamental role, 
we examine the stability of the topological phase by considering on-site and off-site Hamiltonians, respectively, 
given by

breaking the inversion symmetry of the system. Here, Vc and tc are the strength of on-site and off-side potentials. 
Such Hamiltonians are chosen such that the condition t ′2 = t2/2 remains intact. At first, we add each of the above 
Hamiltonians to Eq. (1) separately and calculate the band structure under open boundary conditions. The band 
structure and the corresponding topological invariant Z as a function of t1 are depicted in Fig. 5(a) and (b). 
Although one may expect that due to fulfilling the condition t ′2 = t2/2 , the system would host topological edge 
states, but either of the two perturbations breaks the inversion symmetry, resulting in lifting the degeneracy of 
topological edge states and in destroying the TM phase. On the other hand, if we add both H1 and H2 to the main 
Hamiltonian (1) simultaneously for specific strength Vc = t1 and tc = t2 , the hidden inversion symmetry will be 
restored and, as shown in Fig. 5(c), the system hosts the topological edge states at zero energy with nontrivial 
value of Z.

Summary and discussion
We introduced a quasi-1D model that presents a new topological phase transition between the TM phase and NI. 
In such topological phase transition, in addition to bandgap closing-reopening, another band crosses the Fermi 
level. The Hamiltonian of system can be block-diagonalized into two subsystems in the presence of exchange 
symmetry. One of these subsystems can be regarded as the generalized SSH model hosting topological edge 

(18)H1 =
N
∑

n=1

VcC
†
nCn,

(19)H2 =
N−1
∑

n=1

tcC
†
nCn+1 + h.c,

Figure 4.  (Color online) Dependence of local density of states on E and on unit cell index x in (a) the TM phase 
with t1 = −0.9t and (b) the NI phase with t1 = −1.55t . Here, t ′

2
= t2/2 = −0.6t.
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states when the band of other subsystem passes the Fermi level resulting in the TM phase. Finally, the edge states 
created in the absence of chiral or particle-hole symmetry and protected by the hidden inversion symmetry. By 
breaking the hidden inversion symmetry, depending on the parameter, the system has either NI or metallic state 
with nondegenerate trivial edge states.

Experimentally, our model can be realized by coupled acoustic  resonators18, topolectrical  circuits26, optical 
 lattices27, photonic  crystals28,29, and mechanical  systems30–34. Using cold atoms, it is possible to simulate quasi-1D 
 chains35 and to reveal the topological features employing density and momentum-distribution  measurements36. 
Also, using spatially resolved radio-frequency  spectroscopy37, the topological edge states can be probed by the 
LDOS. Furthermore, using edge state transport in topological states of matter, one can distinguish between 
topologically trivial and nontrivial edge  states38,39.
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