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A predictive model for pain 
response following radiotherapy 
for treatment of spinal metastases
Kohei Wakabayashi1*, Yutaro Koide1, Takahiro Aoyama1, Hidetoshi Shimizu1, 
Risei Miyauchi1, Hiroshi Tanaka1, Hiroyuki Tachibana1, Katsumasa Nakamura2 & 
Takeshi Kodaira1

To establish a predictive model for pain response following radiotherapy using a combination of 
radiomic and clinical features of spinal metastasis. This retrospective study enrolled patients with 
painful spine metastases who received palliative radiation therapy from 2018 to 2019. Pain response 
was defined using the International Consensus Criteria. The clinical and radiomic features were 
extracted from medical records and pre-treatment CT images. Feature selection was performed and 
a random forests ensemble learning method was used to build a predictive model. Area under the 
curve (AUC) was used as a predictive performance metric. 69 patients were enrolled with 48 patients 
showing a response. Random forest models built on the radiomic, clinical, and ‘combined’ features 
achieved an AUC of 0.824, 0.702, 0.848, respectively. The sensitivity and specificity of the combined 
features model were 85.4% and 76.2%, at the best diagnostic decision point. We built a pain response 
model in patients with spinal metastases using a combination of clinical and radiomic features. To the 
best of our knowledge, we are the first to examine pain response using pre-treatment CT radiomic 
features. Our model showed the potential to predict patients who respond to radiation therapy.

Abbreviations
BED  Biologically effective dose
LOOCV  Leave-one-out cross-validation
MBS  Model-based segmentation
NRS  Numerical rating scale
PS  Performance status
RF  Random forest
RFE  Recursive feature elimination
SINS  Spine instability neoplastic score
S-LANSS  Short versions of the Leeds Assessment of Neuropathic Symptoms and Signs

Radiotherapy is widely used for pain relief associated with painful bone metastases and was performed in 12.5% 
of all radiotherapy treatments in  Japan1. The rate of pain relief after radiotherapy is estimated to be 60%2, mean-
ing 40% of patients do not get adequate pain relief after radiation therapy. It may become possible to select the 
patients who do not benefit from radiotherapy, if we can predict the degree of pain relief after therapy. In a report 
on predictive clinical models, the World Health Organization performance status (PS), numerical rating scale 
(NRS), and primary tumor site were important factors for predicting pain  relief3. However, this model did not 
exhibit high performance, thus better predictive models of performance are needed for clinical use.

"Radiomics” is an image analysis method involving the extraction of multiple features from medical images. 
By analyzing a specified area and many radiomic features from CT, MRI, PET and other images, it is possible 
to identify the tumor genotype and  phenotype4. Furthermore, a database of clinical information can be created 
and machine learning techniques such as random forests (RF), an ensemble classifier which classifies data using 
decision trees and facilitates the validation and evaluation of the classification accuracy of a set of  predictors5,6, 
can be used to improve the accuracy of diagnosis and prediction of prognosis after  treatment7,8.
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Herein, we sought to develop better diagnostic methods to determine pain response for patients with spinal 
metastases. We built a highly accurate model using radiomic and clinical features for predicting pain relief after 
radiotherapy for painful spinal metastases. Our models provide proof-of-concept for predictive tools for pain 
response and, with further refinement, will become an essential clinical tool for patients with bone metastases.

Materials and methods
Patient selection. This retrospective study was approved by our institutional review board (Aichi Cancer 
Center Medical Ethics Committee), with waivers for patients’ informed consents. We confirmed that all methods 
were performed in accordance with the relevant guidelines and regulations. Patients with painful spine metasta-
ses who received palliative radiation therapy were enrolled at the Aichi Cancer Center from 2018 to 2019. Eligi-
ble patients met the following criteria: (1) pathological diagnosis of cancer, (2) received palliative radiotherapy 
(i.e., a score of at least 2 on the Numerical Rating Scale (NRS) for pain) for painful spine metastasis and (3) no 
prior radiation to the site. Exclusion criteria were: (1) metal artifacts close to target spine, (2) palliative surgery 
before radiotherapy, (3) other extraspinal metastases in the radiation field and (4) no pain assessment more than 
1 month after radiotherapy.

Overall study design. The methodological workflow is described in Fig. 1. The clinical features and radi-
omic features were extracted from medical records and pre-treatment CT images. Pearson’s correlation was used 
for the elimination of redundant features. Several feature subsets were obtained by random forests and recursive 
feature elimination (RF-RFE). We trained the random forests (RF) model and validated the model using leave-
one-out cross-validation (LOOCV) with all the feature subsets. Finally, the feature subset with the highest area 
under the curve (AUC) was selected as the optimal subset for the model.

Three models including the radiomic model (radiomic feature-based model), clinical model (clinical feature-
based model) and combined model (combined radiomic and clinical feature-based model) were constructed 
with a selected feature subset and validated using the AUC.

Assessment items. We defined complete response or partial response based on the International Consen-
sus Criteria for pain  response2. Pain response was categorized as ‘pain reduction’ if there was at least a 2-point 
reduction in NRS at the irradiated site from the initial worst pain (without an increase in analgesic use) or an 
analgesic decrease of at least 25% without an increase in NRS. Patients were categorized as responders if they met 
the criteria for pain response at an evaluation at least 1 month after radiotherapy. Patients who did not show pain 
response were categorized as non-responders.

CT image acquisition. Non-contrast enhanced CT scans for radiotherapy were used in this study. An 
Aquilion LB CT system (Canon Medical Systems, Tochigi, Japan) was used with the following conditions: tube 
voltage = 120 kV, tube current = automatic exposure control, matrix size = 512 × 512 pixels, field of view = 550 mm, 
and slice thickness = 3 mm.

Figure 1.  The workflow for our study of radiotherapy-induced pain response in patients with spinal metastases.
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Segmentation of regions of interest. We made three regions of interest (ROI) including the spinal 
canal, the spine, the spine and surrounding tissues (Fig. 2). The ROI of the spinal canal was created on a RaySta-
tion (ver. 6.2, RaySearch Laboratories) using model-based segmentation (MBS), which automatically delineates 
organs (Fig. 2a). The ROI of the spine was delineated with MIM (ver. 7.0, MIM software Inc., Cleveland, OH) 
using a threshold of 150 HU and manual adjustment, such as removal of vascular calcification near the spine 
(Fig. 2b). The ROI of the spine and surrounding tissues was enlarged 1 cm from the ROI of the spine (Fig. 2c) in 
order to analyze extraspinal extending mass lesions.

In all ROIs, regions outside the treatment field were eliminated. All manual adjustments were done by one 
radio-oncologist with more than 2 years of experience.

Radiomic feature extraction from CT image. The PyRadiomics Python package (version 2.2.0) was 
used for the extraction of radiomic  features9. 107 quantitative radiomic features were extracted from all three 
ROIs including: 18 first-order statistics, 14 Gy level difference matrices, 24 Gy level co-occurrence matrix fea-
tures, 16 grey-level run length matrix features, 16 Gy level size zone matrix features, 5 neighborhood gray-tone 
difference matrix features, and 14 shape features.

Clinical data. The following clinical features were derived from medical records: NRS (continuous), primary 
tumor sites (lung, digestive, breast, head & neck or other), PS (0–1 or 2–4), gender, age (continuous), biologi-
cally effective dose (BED10) (continuous), short versions of the Leeds Assessment of Neuropathic Symptoms 
and Signs (S-LANSS) (0–11 or 12–24) and the spine instability neoplastic score (SINS) (0–6 or 7–12). To com-
pare baseline categorical and continuous variables, chi-square and Mann–Whitney tests were used between the 
responder and non-responder groups.

Feature selection with random forest. Features with a Pearson correlation coefficient of > 0.7 were con-
sidered dependent factors and the feature with the larger mean absolute correlation with all remaining features 
was eliminated. We used RF-RFE to optimize the number of features. RFE calculates the importance of the 
feature to determine the best subset. N features were ranked from the most to the least important (N is the total 
number of features which RFE was applied to). Then, N feature subsets could be obtained by selecting a different 
number of features. Each feature subset was fed into the RF and validated by LOOCV. Training and validation 
were repeated ten times and its performance could be evaluated using the score of the area under the curve 
(AUC). Finally, the feature subset with the highest AUC was selected as the optimal subset for the discrimina-
tion task.

In this study, all parameters of RF were default. Since small sample sizes were expected, we decided to apply 
our analysis using a single training cohort.

Model building. The radiomic model was built from the radiomic features and clinical model was built 
from the clinical features following feature selection. In building the combined model, the selected features of 
the radiomic and clinical models were combined, and feature selected again. To assess the performance of each 
model, we used AUC, sensitivity, and specificity which were calculated by selecting the optimal feature subset.

Statistical analysis. Statistical analysis was performed using R version 3.5.2 (The R Foundation for Sta-
tistical Computing, Vienna, Austria). The level of confidence was kept at 95% and P values less than 0.05 were 
considered significant. Receiver operating characteristic (ROC) curve analysis was performed to calculate the 
AUC and its corresponding 95% confidence interval.

Figure 2.  Segmentation of three regions of interest from CT images of patients with spinal metastases. (a) 
Spinal canal; (b) spine; (c) spine and surrounding tissues.
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Results
To better understand pain response following radiotherapy for spinal metastasis, we performed a retrospective 
analysis using patient clinical features and radiology-based images. 69 patients were enrolled, and their clinical 
features are listed in Table 1. 48 patients were classified as responders and 21 as non-responders (Fig. 3). Lung 
(n = 20), digestive (n = 15) and breast (n = 14) were the most common primary tumor sites. Other primary can-
cers included head & neck (n = 9), unknown primary (n = 4), soft tissue (n = 3), gynecological (n = 2), prostate 
(n = 1) and renal (n = 1). All patients received three-dimensional conformal radiotherapy delivered with photon 
beams generated by a linear accelerator (Synergy, TrueBeam). The results of Pearson’s correlation removed 277 
redundant features from a total of 321 radiomic features. The clinical feature subset had no redundant features.

Based upon the feature subset, random forests and recursive feature elimination (RF-RFE) was performed. The 
feature selection process is depicted in Fig. 4a,b. The clinical feature subset and radiomic feature subset with the 
highest AUC contained 6 and 3 features, respectively. To construct a combined model, RF-RFE was performed 
and the combined model with the highest AUC (Fig. 4c) contained 6 feature subsets (3 clinical and 3 radiomic 
features). The selected features in each model are listed in Table 2. The ROC curves and AUC are shown in Fig. 5 
and Table 3, respectively. The best model was the combined model, with an AUC of 0.848 and accuracy of 82.6%. 
The combined model was not significantly better than radiomic model (p = 0.599) and the radiomic model was 
not significantly better than the clinical model (p = 0.208), however; it was significantly greater than the clinical 
model (p = 0.044). To this end, we have developed a predictive model which will aid in the determination of 
patient outcome when treating spinal metastases with radiotherapy.

Discussion
Incomplete patient response to radiotherapy for painful spinal metastases greatly hinders quality of life. Using 
a combination of clinical features and radiomics, we sought to establish a predictive model for patient pain 
response to radiotherapy treatment. Our study found that a model combining pre-treatment CT based radiomic 
features and clinical features showed good predictive scores for pain relief after palliative radiation in patients 
with painful spinal metastases compared to a clinical feature-based model.

In our study, age, NRS, and BED10 were determined as important features using our combined model. Pre-
vious studies have reported that pain response is associated with age and  NRS10,11. Other features which have 

Table 1.  Patient demographics and disease characteristics.

Response to RT No response to RT

p value(n = 48) (n = 21)

Age 0.938

Median (range) 61 (26–86) 60 (35–83)

Gender 0.218

Male 25 15

Female 23 6

Primary tumor site 0.046

Lung 14 6

Digestive 10 5

Breast 13 1

Head & neck 3 6

Other 8 3

Radiation treatment (BED10) 0.049

8 Gy/1fr (14.4 Gy) 6 5

20 Gy/5fr(20.0 Gy) 29 5

24 Gy/6fr (33.6 Gy) 9 8

30 Gy/10fr (39.0 Gy) 4 3

WHO performance status 1

0–1 44 19

2–3 4 2

4 0 0

Numeric rating scale 0.102

Median (range) 5 (0–10) 7 (0–10)

S-LANSS 0.22

0–11 40 14

12–24 8 7

SINS 0.528

0–6 13 8

7–18 35 13
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been reported as affecting pain response after radiotherapy are gender, performance status, primary tumor site, 
neuropathic pain, Bilsky grade, prior radiation at the site of interest, and sleep  disturbance7,11–14. In this study, 
we evaluated NRS and S-LANSS as pain indices because they are widely used, and were recorded in all patients. 
SINS, which we also evaluated, is an indicator of spinal instability and we referred it to when consulting with 
the spine surgery department or at multidisciplinary conferences. The AUC in previous studies that modeled 
pain response from clinical features was 0.633. All of the models created in our study yielded better AUCs than 
previous reports, suggesting our refined methods were more successful in generating accurate models.

Figure 3.  CONSORT flow diagram. Patients who received radiotherapy for painful bone metastases at the 
Aichi cancer center.

Figure 4 .  A comparison of feature subsets for predictive models of pain response using the area under receiver 
operating characteristic curve. (a) Radiomic model; (b) clinical model; (c) combined model. The optimal 
number (orange dot) was determined from the highest AUC. The clinical, radiomic and combined feature 
subsets with the highest AUC contained 6, 3 and 6 features, respectively.

Table 2 .  The model features after feature selection. S_LeastAxisLength LeastAxisLength from an ROI of spine, 
S_MCC MCC from an ROI of spine, SS_Idmn Idmn from an ROI of spine and surrounding tissues, PTS_
Digestive primary tumor site is digestive, PTS_Head & neck primary tumor site is Head & neck.

Model Feature

Radiomic S_LeastAxisLength S_MCC SS_Idmn

Clinical
age S-LANSS BED10

NRS PTS_Digestive PTS_Head & neck

Combined
S_LeastAxisLength S_MCC SS_Idmn

age BED10 NRS
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Radiomics is a non-invasive way to obtain high-dimensional, mineable and quantitative data from medical 
images such as CT scans. CT scans are routinely taken for diagnostic purposes. CT scan are also taken during 
and after treatment to check for changes in lesion size, shape, and characterization. Compared to blood tests and 
biopsies, radiomics does not require specialized equipment, making it an accessible diagnostic option. The goal 
of radiomics is to improve diagnosis and prediction in clinical practice.

Previous studies that did not use radiomic features have investigated medical images to assess the response 
of bone metastases after  therapy15–18. In contrast, radiomics is able to extract more information from the ROI, 
such as intensity and shape, which can be combined to create a model with high predictive and diagnostic 
 capabilities19–21. There have been several studies examining bone metastases utilizing  radiomics22–25. To the best 
of our knowledge, we are the first to examine pain response using pre-treatment CT radiomic features.

Pain from bone metastases is a common symptom with many patients exhibiting debilitating  pain26. Radio-
therapy is an important treatment for pain relief from bone metastases, however; the inability to move for several 
minutes can cause pain. If the patient moves, there is a risk of injury. In the case of palliative irradiation of bone 
metastases, the radiation dose is low, but it is not without the potential for adverse events. Considering these 
aforementioned risks associated with therapy, it is important to identify patients who have a higher likelihood 
to respond to treatment. If the study can identify patients who are not expected to respond, it will be possible 
to choose alternative treatments such as higher-dose radiotherapy, early surgical intervention, switching opioid 
regimens or systemic therapy.

Some limitations from our study should be noted. The number of cases was small. 52 patients were excluded 
from our initial population owing to our exclusion criteria. The anthropogenic changes in spinal structures and 
metal artifacts due to surgery, which were included in the exclusion criteria, were thought to influence some 
radiomic features and this was expected to lead to a decrease in prediction accuracy. In addition, we excluded 
re-irradiated cases. The exclusion of re-irradiated cases was done to create an accurate model with a more 
homogeneous group of cases.

Figure 5 .  Receiver operating characteristic (ROC) curves of predictive models for pain response. The 
combined model had a higher area under curve (0.848) than the other parameters and was not significantly 
better than radiomic model (p = 0.599), however; it was significantly greater than the clinical model (p = 0.044).

Table 3.  Area under receiver operating characteristic curve, sensitivity, specificity and accuracy of the 
predictive models for pain response.

Model AUC 95% CI Sensitivity (%) Specificity (%) Accuracy (%)

Radiomic 0.824 0.718–0.931 70.80 85.70 73.90

Clinical 0.702 0.568–0.840 54.20 90.50 65.20

Combined 0.848 0.755–0.940 85.40 76.20 82.60
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Due to the limited sample size, the evaluation of our model was measured based on the training cohort, and 
not the test cohort. Only examining the training cohort caused overfitting in feature selection and training on 
RF. We avoided overfitting by using LOOCV and not using hyperparameter optimization. Second, segmenta-
tion may also need to be investigated. In the present study, we used a semi-automatic segmentation approach 
for the spine and surrounding structures using CT number. This allows us to reduce the differences in manual 
segmentation between images. In some cases, it is possible that most of the volume of the ROI may have been 
normal structures. It is preferable to evaluate the radiomic features of the actual bone lesion, but some patients 
did not have an MRI which is required to accurately delineate bone lesions. We decided to include patients who 
did not have an MRI in order not to reduce the number of enrolled patients and abandoned the evaluation of the 
ROI based on segmentation of the actual bone lesion. We also abandoned the analysis of MRI radiomic features 
which were used to analyze bone metastatic lesions.

In the future to address the limitations of our study, we will conduct a multicenter observational study, 
which will expand the sample size and prepare the external validation set to test the prediction performance 
and generalization capacity of our model. Future studies will be needed to consider re-evaluating segmentation 
settings and usage of MRI images.

In conclusion, we created a model combining clinical and radiomic features to predict patients who respond 
to radiotherapy for spinal metastases. We hope that our model, and subsequent refinements, will inform on 
clinical decisions for patients with bone metastases and improve their quality of life.
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