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The LIM domain protein nTRIP6 
modulates the dynamics 
of myogenic differentiation
Tannaz Norizadeh Abbariki1,3, Zita Gonda1,3, Denise Kemler1, Pavel Urbanek2, 
Tabea Wagner1, Margarethe Litfin1, Zhao‑Qi Wang2, Peter Herrlich2 & Olivier Kassel1*

The process of myogenesis which operates during skeletal muscle regeneration involves the activation 
of muscle stem cells, the so‑called satellite cells. These then give rise to proliferating progenitors, 
the myoblasts which subsequently exit the cell cycle and differentiate into committed precursors, 
the myocytes. Ultimately, the fusion of myocytes leads to myofiber formation. Here we reveal a role 
for the transcriptional co‑regulator nTRIP6, the nuclear isoform of the LIM‑domain protein TRIP6, in 
the temporal control of myogenesis. In an in vitro model of myogenesis, the expression of nTRIP6 is 
transiently up‑regulated at the transition between proliferation and differentiation, whereas that of 
the cytosolic isoform TRIP6 is not altered. Selectively blocking nTRIP6 function results in accelerated 
early differentiation followed by deregulated late differentiation and fusion. Thus, the transient 
increase in nTRIP6 expression appears to prevent premature differentiation. Accordingly, knocking 
out the Trip6 gene in satellite cells leads to deregulated skeletal muscle regeneration dynamics in 
the mouse. Thus, dynamic changes in nTRIP6 expression contributes to the temporal control of 
myogenesis.

Skeletal muscle regeneration relies on resident adult stem cells, the so-called satellite  cells1. Upon muscle damage, 
these cells are activated and give rise to proliferating progenitor cells, the myoblasts. These then differentiate into 
committed precursor, the myocytes, which finally fuse together to form new multinucleated myofibres or fuse 
with existing  myofibres2–4. Each step along this process of adult or regenerative myogenesis is tightly regulated 
by a network of transcription factors (TFs), including the myogenic TFs MYOD and myogenin and the myocyte 
enhancer factor 2 (MEF2) A B and  C5–7. The temporal control of the activity of these TFs is essential to ensure 
the timely expression of their target genes and the subsequent progression through differentiation. One level 
of control is the expression of the TFs. For example, MYOD and myogenin are up-regulated in the early phases 
of muscle  regeneration8,9 and in turn both these TFs drive the expression of  MEF2C10, which is required in the 
late phases of myogenesis and in myofibre  maturation11,12. However, the regulation of TF expression alone is 
not sufficient for a tight temporal control of differentiation. For example, despite its role in promoting terminal 
differentiation, MEF2C is already expressed in proliferating  myoblasts13,14. Furthermore, a significant number of 
TFs involved in myogenesis do not show any regulation of their  expression15. Therefore, not only the expression 
but also the transcriptional activity of TFs has to be regulated.

Our previous demonstration that nTRIP6, the nuclear isoform of the LIM domain protein TRIP6, acts as a 
co-repressor for  MEF2C16 raises the hypothesis of its role in the regulation of myogenesis. TRIP6 belongs to the 
ZYXIN family of cytosolic LIM domain-containing proteins that regulate adhesion and  migration17,18. Surpris-
ingly, they also exert transcriptional co-regulator functions for various TFs, and have thus been proposed to 
shuttle from the cytoplasm to the  nucleus18–20. Amongst these proteins a particular case is that of  TRIP621–23. We 
have reported that TRIP6 is not shuttling, but that its co-regulator functions are mediated by a shorter, exclusively 
nuclear isoform, which we termed  nTRIP624–26.

Here, we report that the expression of nTRIP6 is transiently increased at the transition between myoblast 
proliferation and differentiation and that nTRIP6 prevents premature differentiation. Thus, our data document 
the role of nTRIP6 in temporal control of myogenesis.
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Results
As a first step in investigating a possible involvement of nTRIP6 in myogenic differentiation, we studied its 
expression during the in vitro differentiation of the C2C12 mouse myoblast cells line (Fig. 1). nTRIP6 expression 
was very low at the beginning of the proliferation phase. It then increased with cell density, to reach a maximum 
towards the end of the proliferation phase, when the cells were nearly fully confluent before the medium was 
changed to differentiation medium (day 0). This maximum coincided with the start of MYOG (also known 
as myogenin) expression, used as an indicator of early myocytic  differentiation27,28. nTRIP6 levels were then 
decreased at time points when the expression of TNNI2, a late differentiation  marker29 started to increase and 
when myocyte fusion typically occurred (see Fig. 4 for fusion). Strikingly, the expression of the large cytosolic 
isoform TRIP6 remained constant (Fig. 1) and Trip6 mRNA levels were not increased (Supplementary Fig. S2) 
throughout the entire course of the experiment. The dynamics of its expression may suggest a regulatory role 
for nTRIP6 in the transition between proliferation and differentiation. We first investigated the putative role 
of nTRIP6 in differentiation. To address this question, we made use of a genetically encoded, nuclear-targeted, 
mCherry tagged blocking peptide that selectively inhibits the function of nTRIP6 in the nucleus without interfer-
ing with TRIP6 in the cytosol, as well as a scrambled version of the peptide as a  control16,30. Upon transfection 
in C2C12 cells, the peptides were exclusively located in the nucleus (Fig. 2a). Furthermore, the blocking peptide 
did not affect the cytosolic function of TRIP6, i.e.  adhesion31,32, whereas an siRNA which knocked-down both 
isoforms did (Supplementary Fig. S3), confirming the selectivity of the blocking peptide. In the C2C12 cells 
expressing the blocking peptide, Myog mRNA was expressed earlier in the proliferation phase and remained more 
elevated during the differentiation phase than in control cells expressing the scrambled version of the peptide 
(Fig. 2b). Conversely, the expression of Tnni2 was delayed in cells expressing the blocking peptide as compared 
to the control cells (Fig. 2c). These effects were also observed at the protein level: the blocking peptide increased 
the expression of MYOG at early time points (Fig. 2d) and, at later time points decreased that of TNNI2 (Fig. 2e), 
as well as that of MYH3 (embryonic myosin heavy chain) used as another marker of late differentiation (Fig. 2f). 
Given the known co-regulation of cell cycle exit and entry into  differentiation33, we also assessed proliferation. 
There was no difference in the proliferation (Fig. 3a) and in the kinetics of cell cycle exit assessed by EdU pulse 
labelling (Fig. 3b,c) between myoblasts transfected with the nTRIP6 blocking peptide and myoblasts transfected 
with the control peptide. We then studied the effect of the peptide on late differentiation and fusion. As another 
index of late differentiation, we quantified the number of cells expressing MYH3 upon transfection of the peptides 
(Fig. 4a,b). At day 0, just before the induction of differentiation, very few cells expressed MYH3, as expected. 
Twenty-four hours later (day 1), about 10% of the cells transfected with the control peptide expressed MYH3. 
This number was significantly decreased upon transfection of the nTRIP6 blocking peptide (Fig. 4b). Finally, cell 
fusion, which started at day 2 and strongly increased at day 3 in cells transfected with the control peptide, was 
significantly inhibited in cells transfected with the blocking peptide (Fig. 4c,d). Thus, blocking nTRIP6 function 
in myoblasts accelerates early but delays late myocytic differentiation and impairs myocyte fusion.   

To investigate the relevance of these findings for muscle regeneration in vivo, we generated a mouse line, 
C57BL/6J-Trip6Tm(loxP) hereafter referred to as Trip6fl/fl, in which the Trip6 gene is conditionally targeted by 
flanking exons 2 to 9 by loxP  sites34. These mice were crossed with C57BL/6J-Pax7tm1(Cre-ERT2)Gaka mice (short 
name Pax7Cre-ERT2), in which the tamoxifen-inducible version of Cre-recombinase (Cre-ERT2) was knocked 
into the Pax7  locus35. Treatment of the Trip6fl/fl;Pax7Cre-ERT2/wt offspring with tamoxifen results in the deletion of 
Trip6 only in satellite cells. These animals are hereafter termed Trip6scko. We verified the efficiency of tamoxifen-
induced recombination by monitoring TRIP6 immunoreactivity in satellite cells associated with isolated myofi-
bres. Whereas 100% of PAX7+ satellite cells from Trip6fl/fl mice showed TRIP6 immunoreactivity, it was decreased 
to about 10% of the satellite cells from Trip6scko animals treated with tamoxifen for 5 consecutive days (Fig. 5). 
Then, the animals were subjected to a muscle injury by direct injection of notexin into the soleus  muscle36 and 
regeneration was followed over time (Fig. 6; Supplementary Fig. S6). As an index of myogenic differentiation 
during regeneration, we counted the number of mononuclear cells expressing MYOD (Fig. 6c), which includes 
both proliferating myoblasts and differentiated  myocytes8,9. Seven days post injury (dpi) the number of MYOD-
positive cells was significantly higher in the regenerating muscle of Trip6scko animals than in the muscle of the 
Trip6fl/fl control mice. This difference was also observed at 14 dpi and 28 dpi. At 45 dpi, the number of MYOD-
positive cells had strongly decreased and was not different between the two genotypes (Fig. 6c). This increase in 
the number of  MYOD+ cells could reflect an increased myoblast proliferation or an increase in the number of 
unfused differentiated myocytes. Therefore, we also quantified the number of  MYOD+ cells expressing and not 
expressing the proliferation marker Ki67 (Fig. 6d,e). The number of proliferating myoblasts  (MYOD+/Ki67+) 
was not different between the Trip6scko and Trip6fl/fl regenerating muscles at 7 dpi. This number was significantly 
lower in the Trip6scko than in the Trip6fl/fl muscles at both 14 and 28 dpi (Fig. 6d). Conversely, at 7, 14 and 28 
dpi, the number of post-mitotic myocytes  (MYOD+/Ki67−) was significantly higher in the Trip6scko than in the 
Trip6fl/fl muscles (Fig. 6e). Thus, the higher number of MYOD-expressing cells in the Trip6scko muscle is not 
caused by an increased proliferation but to an accumulation of unfused myocytes. Indeed, we observed an 
inhibition of myocyte fusion, as indicated by a lower number of regenerating myofibres with multiple centrally 
located nuclei detected on the cross-sections of Trip6scko muscles as compared to Trip6fl/fl regenerating muscles 
(Fig. 6f). Given that an inhibition of myocyte fusion might lead to reduced myofibre size, we assessed the size 
of the regenerated myofibres by measuring their minimum Feret’s diameter (Fig. 6g). At 7 dpi, the minimum 
Feret’s diameter of the myofibres was larger in Trip6scko than in Trip6fl/fl muscles. However, this was the opposite 
at 14 and 28 dpi, with larger myofibres in Trip6fl/fl muscles. Finally, at 45 dpi, there was no more difference in 
the minimum Feret’s diameter of the regenerated myofibres in both genotypes (Fig. 5g). Finally, we counted the 
number of regenerated myofibres expressing the slow-type myosin heavy chains MyHC1 and MyHC2a (Fig. 7) 
as an indication of their maturation. At 14 dpi, the number of both  MyHC1+ and  MyHC2a+ myofibres was lower 
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Figure 1.  nTRIP6 expression is transiently increased during myoblast differentiation. C2C12 myoblasts lysates 
harvested at the indicated day of a differentiation experiment—day 0 corresponds to the switch from growth 
medium (GM) to differentiation medium (DM)—were subjected to Western blotting using the indicated 
antibodies. (a) Representative blots are shown. Full-length blots are presented in Supplementary Fig. S1. (b) 
The expression of TRIP6 and nTRIP6, as well as of MYOG and TNNI2 relative to the β-actin loading control 
are presented as mean ± SD of three independent experiments. Individual values are depicted by symbols, each 
representing an independent experiment.
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Figure 2.  Blocking nTRIP6 function accelerates early and delays late differentiation. Control untransfected 
C2C12 cells (Co) or cells transfected with either the mCherry-tagged, nuclear targeted nTRIP6 blocking peptide 
(BP) or the control, scrambled version of the peptide (cBP) were subjected to a differentiation experiment. (a) 
Twenty-four hours after transfection cell nuclei were counterstained with DRAQ7 and imaged by confocal 
microscopy. Representative images are shown. (b,c) Cells were harvested at the indicated day and the relative 
levels of the Myog (b) and Tnni2 (c) mRNAs were determined by reverse transcription and real-time PCR. 
Results are plotted relative to the expression of the Rplp0 gene (mean ± SD of three independent experiments). 
Bonferroni corrected P values are for (b) α = 0.044, β = 0.027 and γ = 0.012 and for (c) α = 0.050, β = 0.053 
and γ = 0.047. (d–f) C2C12 cells transfected with the BP or the cBP were harvested at the indicated day of a 
differentiation experiment. Cell lysates were subjected to Western blotting using the indicated antibodies. 
Representative blots are shown. Full-length blots are presented in Supplementary Fig. S5. The expression 
of MYOG, TNNI2 and MYH3 relative to the β-actin loading control are presented as mean ± SD of three 
independent experiments.
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Figure 3.  Blocking nTRIP6 function does not affect myoblast proliferation and cell cycle exit. C2C12 cells 
transfected with either the control (cBP) or the blocking peptide (BP) were subjected to a differentiation 
experiment. (a) Cells were counted at the indicated day and results are shown relative to the cBP-transfected 
cells at day-2 and are mean ± SD of three independent experiments. Individual values are depicted by symbols, 
each representing an independent experiment. (b, c) Cells were pulsed with EdU for 1 h at the indicated 
time point, fixed, stained for EdU incorporation and peptide expression (mCherry) and analysed by confocal 
microscopy. The percentage of EdU-positive nuclei among transfected cells (mCherry positive) is presented as 
mean ± SD of three independent experiments (b). Individual values are depicted by symbols, each representing 
an independent experiment. Representative images are shown (c, scale bar: 200 µm).
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in Trip6scko than in Trip6fl/fl muscles. This difference was not present anymore at 45 dpi. Thus, very similar to our 
observations in vitro, the loss of nTRIP6 expression in satellite cells results in a deregulation of the dynamics of 
muscle regeneration.  

Discussion
We have here unravelled the role of nTRIP6 in the temporal control of myogenesis. nTRIP6 expression is tran-
siently up-regulated at the transition between myoblast proliferation and myocytic differentiation. In turn, 
nTRIP6 temporarily represses myoblast differentiation, allowing proper myocyte differentiation and fusion at 
later stages.

Our observation that nTRIP6 expression increases at the transition between myoblast proliferation and early 
differentiation suggested a function at this critical time point. Indeed, blocking nTRIP6 function in the nucleus 
using a nuclear-targeted  peptide16,30 accelerated early myocytic differentiation but did not have any effect on 

Figure 4.  Blocking nTRIP6 function delays late differentiation and fusion. Control C2C12 cells transfected 
with either the mCherry-tagged, nuclear targeted nTRIP6 blocking peptide (BP) or the control, scrambled 
version of the peptide (cBP) were subjected to a differentiation experiment. Cells were fixed at the indicated 
day and subjected to immunofluorescence analysis using antibodies against MYH3 and mCherry. Nuclei were 
counterstained using DAPI. (a) Representative images are presented (scale bar 100 µm). (b) The percentage 
of MYH3 expressing cells among transfected cells (mCherry-positive), (c) the fusion index (percentage of 
mCherry positive nuclei within fused myotubes), and (d) the number of mCherry-positive nuclei per myofiber 
are presented as mean ± SD of three independent experiments.
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proliferation and cell cycle exit. Thus, the function of nTRIP6 at this stage of myogenesis is to prevent premature 
differentiation. We have recently reported that nTRIP6 acts as a transcriptional co-repressor for  MEF2C16, a 
transcription factor involved in late differentiation and  fusion11,12, which is however already expressed during the 
myoblast proliferation  phase13,14. Notably, Myog is a known MEF2C target  gene37 and our result of an accelerated/
increased expression of Myog upon blocking nTRIP6 function is fully in line with the co-repressor function of 
nTRIP6 for MEF2C. Thus, the transient increase in nTRIP6 expression at early stages of myogenesis may serve 
to prevent premature differentiation at these stages at least in part by repressing the transcriptional activity of 
MEF2C. The lack of nTRIP6 activity delayed the expression of TNNI2 and MYH3, which are also MEF2C target 
 genes38,39. One would have rather expected an increased expression of these genes upon blocking the function 
of nTRIP6. Thus, the effect of nTRIP6 on the expression of these late differentiation cannot be attributed to the 

Figure 5.  Recombination efficiency in satellite cells and loss of TRIP6/nTRIP6 expression in Trip6scko myogenic 
cells. Myofibres with the associated satellite cells isolated from the Extensor digitorum longus of Trip6fl/fl 
and Trip6scko mice were subjected to immunofluorescence analysis using anti-TRIP6/nTRIP6 and anti-PAX7 
antibodies. Nuclei were counterstained using DRAQ5. (a) Representative images are shown (scale bar: 20 µm). 
(b) The percentage of satellite cell (PAX7-positive) showing TRIP6 / nTRIP6 immunoreactivity is presented as 
mean ± SD (3 animals per genotype, 10 myofibres per animal).
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Figure 6.  Skeletal muscle regeneration in Trip6 knockout mice. (a) Schematic representation of the protocol. The Trip6 
gene was knocked out in satellite cells by intraperitoneal injection of tamoxifen in Trip6fl/fl; Pax7Cre-ERT2/wt mice and muscle 
degeneration was induced by injection of notexin in the M. soleus. (b-g) The regenerating and uninjured contralateral muscles 
of Trip6scko (ko) and Trip6fl/fl control animals (fl/fl) were harvested at the indicated day post-injury (dpi). Muscle sections were 
stained with anti-Laminin, anti-MYOD and anti-Ki67 antibodies and counterstained with DAPI. (b) Representative images 
at 14 dpi are shown (the full set is presented in Supplementary Fig. S6; scale bar: 30 µm). (c) Number of MYOD-positive 
mononuclear cells normalized to the number of myofibres; (d) Number of MYOD-positive mononuclear cells expressing Ki67 
normalized to the number of myofibres; (e) Number of MYOD-positive mononuclear cells not expressing Ki67 normalized 
to the number of myofibres; (f) distribution of the number of centrally located nuclei detected on myofibres cross-sections; 
(g) Minimum Feret’s diameter of the regenerating myofibres expressed as percent of the contralateral uninjured muscle. 
Bonferroni corrected P values are presented (5 animals per group).
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Figure 7.  Expression of myosin heavy chains. Sections of regenerating Trip6scko (ko) and Trip6fl/fl control (fl/
fl) muscles harvested at the indicated day post- injury (dpi) were stained with an anti-Laminin antibody (cyan) 
together with either an anti-MyHC1 or an anti-MyHC2a antibodiy (magenta) as indicated. (a) Representative 
images are shown (scale bar: 250 µm). (b) The number of myofibres positive for MyHC1 and MyHC2a is 
presented as percent of the total number of myofibres. Bonferroni corrected P values are presented (5 animals 
per group).
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co-repressor function for MEF2C. Our results also show that blocking nTRIP6 functions inhibits late differentia-
tion and fusion. However, the expression of nTRIP6 is no more elevated when fusion starts at day 2. Therefore, 
the inhibitory effect of blocking nTRIP6 function on late differentiation and fusion is most likely an indirect 
consequence of the lack of nTRIP6 activity at earlier time points, leading to a deregulated early differentiation. 
The in vivo relevance of these findings is confirmed by our results on muscle regeneration in mice in which Trip6 
is knocked out in satellite cells. For example, we observed an increase in the number of MYOD-expressing cells in 
Trip6scko regenerating muscle. Given that both myoblasts and myocytes express  MYOD8,9, this increase could be 
due to either an increased myoblast proliferation or a decreased myocyte fusion. However, we did not observe an 
increased but rather a decreased number of proliferating myoblasts in the Trip6scko regenerating muscle, associ-
ated with an increased number of myocytes. This observation matches the accelerated early myocytic differentia-
tion that we observed upon blocking nTRIP6 function in vitro. Furthermore, the increased number of myocytes 
associated with a reduced number of centrally located nuclei and with a delay in the increase in myofibre size 
in the Trip6scko regenerating muscle confirms a delay in myocyte fusion. Therefore, the deregulated dynamics of 
muscle regeneration in the Trip6scko animal is very reminiscent of the deregulated dynamics of in vitro myogenesis 
that we observed upon blocking nTRIP6 function. In the Trip6scko knock out animals the expression of both the 
long cytosolic isoforms (TRIP6) and short nuclear isoform (nTRIP6) is lost. Thus, the observed regeneration 
phenotype could be due to the loss of either nTRIP6 in the nucleus or TRIP6 in the cytosol or both. The main 
function of the cytosolic isoform TRIP6 is to regulate adhesion and  migration21,23, a property shared by other 
members of the ZYXIN family of focal adhesion LIM domain  proteins40. However, no general phenotype was 
observed upon the total deletion of the Trip6 gene in the mouse, as could have been expected from the loss of 
such an important  function34. This observation, together with the absence of overt phenotypes in mice with 
deletion of the genes for  ZYXIN41,  LPP42,  Ajuba43,  LIMD144, and  Migfilin45, strongly suggests a redundancy in 
the function of TRIP6 and other family members in the cytosol. It is therefore unlikely that the muscle regenera-
tion phenotype that we observed in Trip6scko is due to the loss of the cytosolic function of TRIP6. Furthermore, 
the striking similarities between the in vivo phenotype and the in vitro effects of the nTRIP6 blocking peptide, 
which is targeted to the nucleus and can thus only block the function of nTRIP6, very strongly suggests that the 
delayed muscle regeneration in the knock out is a consequence of a loss of nTRIP6. Therefore, nTRIP6 modulates 
the dynamics of myogenesis and of muscle regeneration by preventing premature differentiation.

Methods
Cell lines, transfection and cellular assays. C2C12 myoblasts (obtained from ATCC, LGC Standards 
GmbH, Wesel, Germany) were cultured in Dulbecco’s modified Eagle’s medium (DMEM) supplemented with 
10% foetal calf serum (FCS) and were routinely checked for mycoplasma contamination. We used a standard-
ized protocol for the differentiation of C2C12 myoblasts. Cells were seeded at a density of 5 ×  103 cells/cm2 in 
growth medium (GM, 10% FCS-containing DMEM) at day-3, relative to the induction of differentiation at day 
0. When cells reached confluence at day 0, differentiation was induced by changing the medium to differentia-
tion medium (DM, 2% horse serum-containing DMEM), which was then replaced every day. For transfection, 
the pcDNA3.1 expression vectors for the mCherry-tagged, nuclear targeted nTRIP6 blocking peptide and the 
scrambled control peptide have been  described30. Transfection was performed by nucleofection using the Nucle-
ofector Kit V (Lonza, Cologne, Germany), reaching a transfection efficiency of 80% (5% confidence interval: 
74–86%, n = 7), and the cells were seeded for differentiation as described above.

The synthetic siRNA duplex targeting mouse Trip6  mRNA25, and a control siRNA duplex targeting  dsRed46 
were purchased from Eurofins MWG Operon (Ebersberg, Germany). siRNAs were transfected at a concentration 
of 20 mM into C2C12 cells using TransIT-X2 (Mirus Bio LLC, Madison, WI). The sequences of the siRNAs are 
provided in Supplementary Table S1.

For adhesion assays, plasmid or siRNA transfected C2C12 myoblasts were trypsinized and re-seeded 48 h 
post-transfection onto collagen-coated glass coverslips at a density of 2.5 ×  104 viable (trypan blue exclusion) 
cells/cm2 and allowed to adhere for 1 h. Non-adhered cells were washed away and adhered cells were fixed for 
10 min in 10% formalin. Nuclei were stained with DRAQ7 (Biostatus Ltd., Shepshed, UK), imaged and counted 
(see below).

RNA isolation and quantitative real‑time PCR (qRT‑PCR). Total RNA was extracted using PeqGOLD 
TriFast (Peqlab Biotechnologie, Erlangen, Germany) and reverse-transcribed into cDNA. Myog (myogenin) and 
Tnni2 mRNAs, as well as the transcript of the large ribosomal subunit P0 gene (Rplp0) used for normalization, 
were quantified by real-time PCR using the ABI Prism Sequence Detection System 7000 (Applied Biosystems, 
Foster City, CA). The primers (Invitrogen) are described in Supplementary Table S2.

Western blotting. Western blot analyses were performed using a custom-made rabbit anti-TRIP6 mono-
clonal  antibody16, a rabbit anti-mCherry antibody (ab167453, abcam, Cambridge, UK), a rabbit anti-MYOG 
antibody (ab124800, abcam), a Goat anti-TNNI2 antibody (EB12036, Everest Biotech, Upper Heyford, UK), a 
mouse anti-beta-actin (AC-15, Sigma-Aldrich) and a rabbit anti-glucocorticoid receptor (GR) antibody (sc1002, 
Santa Cruz, Heidelberg, Germany) which was used as a loading control. Signals were detected by enhanced 
chemoluminescence using the ChemiDoc Touch Imaging System (BioRad laboratories, Munich, Germany). Sig-
nal quantification was performed within the linear range of detection using the Image Lab software (Bio-Rad 
laboratories). Linear brightness and contrast adjustments were made for illustration purposes only after the 
analysis had been made.
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Animals. Mice were housed and maintained under specific pathogen-free conditions in facilities approved 
by the Regierungspräsidium Karlsruhe. All animals were handled according to German regulations for ani-
mal experimentation and experiments were authorized by the Regierungspräsidium Karlsruhe (authorizations 
35-9185.81/G-181/09 and 35-9185.81/G-261/15). C57BL/6 J-Pax7tm1(Cre-ERT2)Gaka mice, hereafter referred to as 
Pax7Cre-ERT2, in which the tamoxifen-inducible version of Cre-recombinase (Cre-ERT2) was knocked in the Pax7 
 locus35 were kindly provided by Gabrielle Kardon (University of Utah, Salt Lake City, UT) and Daniel Metzger 
(IGBMC, Strasbourg, France). The generation of the Trip6 floxed mouse line (C57BL/6 J-Trip6Tm(loxP) hereaf-
ter referred to as Trip6fl/fl) has been  described34. Trip6fl/fl were crossed to Pax7Cre-ERT2 and Trip6fl/fl and Trip6fl/fl; 
Pax7Cre-ERT2/wt offspring were identified by PCR genotyping on tail DNA. The genotyping primers (Invitrogen) 
are described in Supplementary Table S3. Experiments were performed using 6- to 8-week-old male animals. 
To selectively knock out Trip6 in satellite cells, mice were injected intraperitoneally on 5 consecutive days with 
5 μl/g body weight Tamoxifen (Sigma-Aldrich) from a 10 mg/ml stock solution in peanut oil. Three days after 
the last injection, soleus muscle degeneration was induced by notexin injection as  described36. Briefly, animals 
were anesthetized by an intraperitoneal injection of Ketamin (100 mg/kg body weight) and Xylasin (16 mg/kg 
body weight). Notexin (10 μl of a 5 ng/μl solution in PBS) was injected unilaterally in the soleus muscle exposed 
through a small cutaneous incision. Animals were sacrificed by cervical dislocation 7, 14, 28 and 45 days post-
injury and both the regenerating and contralateral soleus muscles were dissected. Group size (5 animals) was 
determined by power analysis based on effect sizes reported in the literature. No randomization was performed 
given that our aim was to compare mice with a deletion of Trip6 in satellite cells (Trip6scko) with control animals 
(Trip6fl/fl). Although these experiments were not blinded sensu stricto, for the analyses the samples were labelled 
only with a code number.

For myofibre isolation, Extensor digitorum longus muscles were dissected and digested for 1 h at 37 °C in 
DMEM containing 0.2% collagenase II (Sigma-Aldrich). Myofibres were then dissociated by trituration through 
a Pasteur pipette and isolated manually under a stereomicroscope.

Immunofluorescence, microscopy and image analysis. Immunofluorescence analysis was per-
formed on C2C12 cells grown and differentiated on glass coverslips coated with collagen Type I (Sigma-
Aldrich), fixed for 10 min in 10% formalin, permeabilized for 10 min in 0.5% Triton X-100 in PBS and blocked 
for 1 h in 5% BSA in PBS, as well as on 10 µm thick cryosections in the mid-belly of the soleus muscle fixed 
for 5 min in 2% paraformaldehyde, permeabilized for 10 min in 0.5% Triton X-100 in PBS and blocked for 1 h 
in 5% BSA in PBS. The same procedure was used for isolated myofibres. The primary antibodies were a rab-
bit anti-mCherry (ab167453, abcam, Cambridge, UK), a mouse anti-MYH3 (F1.652-b, Developmental Studies 
Hybridoma Bank, deposited by Blau H.M.), a rat anti-laminin (ab11576, abcam), a rabbit anti-MYOD (PA5-
23078, ThermoFisher Scientific), an Alexa Fluor 647-conjugated rabbit anti-Ki67 (12075, Cell Signaling), a rab-
bit anti-TRIP6/nTRIP616, a mouse anti-MYHC1 (BA-D5, Developmental Studies Hybridoma Bank, deposited 
by Schiaffino S.), a mouse anti-MYHC2a (SC-71, Developmental Studies Hybridoma Bank, deposited by Schiaf-
fino S.) and a mouse anti-PAX7 (Developmental Studies Hybridoma Bank, deposited by Kawakami, A.). The 
secondary antibodies were an Alexa Fluor 488-conjugated anti-rabbit, an Alexa Fluor 546-conjugated anti-rat, 
an Alexa Fluor 546-conjugated anti-mouse and an Alexa Fluor 488-conjugated anti-mouse antibodies (Invit-
rogen). Nuclei were counter-stained with either DAPI (Sigma-Aldrich) or DRAQ5 (Biostatus Ltd., Shepshed, 
UK). EdU (5-ethynyl-2′-deoxyuridine) staining was performed using the EdU Click-488 kit (Roth, Karlsruhe, 
Germany). Briefly, C2C12 myoblasts transfected with either the nTRIP6 blocking peptide (BP) or the control 
peptide (cBP) and grown on coverslips were pulsed for 1 h with 10 µM EdU and then fixed for 15 min with 2% 
paraformaldehyde, permeabilized for 20 min with 0.5% Triton X-100 in PBS and blocked for 1 h in 5% BSA in 
PBS. Incorporated EdU was reacted with 6-FAM-Azide as recommended by the manufacturer. Cells were then 
stained with a rabbit anti-mCherry antibody (ab167453, abcam) and an Alexa Fluor 546-conjugated anti-rabbit 
secondary antibody. Nuclei were counterstained with DAPI. Cells and muscle sections were imaged by confo-
cal microscopy on a Zeiss LSM 800 (Zeiss, Jena, Germany). Cells images were acquired in tiling mode using a 
10×/0.3 Plan-Neofluar objective resulting in 3 × 2   mm2 images. Muscle sections were imaged using a 20×/0.8 
Plan-Apochromat objective in order to image the entire section. Images were analysed using  Fiji47. For the cell 
experiments, the number of transfected cell nuclei (mCherry positive) and the number of MYH3 or of EdU 
positive cells were determined by a combination of automated segmentation and manual counting in order 
to calculate the number of positive cells among transfected cells. The total number of counted cells was in the 
range of 700–3000 per sample. The fusion index was calculated as the percentage of mCherry positive nuclei 
within fused myotubes. For muscle sections, the regenerated myofibres (central nuclei) were segmented using 
the Laminin staining in order to determine their number and minimum Feret’s diameter as a measure of muscle 
fibre cross-sectional  size48. The number of Ki67 positive nuclei and the total number of nuclei were determined 
by automated segmentation whereas the number of nuclei within myofibres was determined by manual count-
ing, in order to calculate the percentage of non-myofibre nuclei expressing Ki67. The number of MYOD positive 
cells normalized to the number of myofibres was determined by manually counting the MYOD positive nuclei, 
excluding those within myofibres. Linear brightness and contrast adjustments were made for illustration pur-
poses, but only after the analysis had been made.

Statistical analysis. Statistical analyses were performed using R. Where indicated, significant differences 
were assessed by two-sided t-test analysis, with values of P < 0.05 sufficient to reject the null hypothesis. A Bon-
ferroni correction was applied when multiple comparisons were performed.
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Data availability
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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