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Creation of quantum entangled 
states of Rydberg atoms 
via chirped adiabatic passage
Elliot Pachniak & Svetlana A. Malinovskaya*

Entangled states are crucial for modern quantum enabled technology which makes their creation key 
for future developments. In this paper, a robust quantum control methodology is presented to create 
entangled states of two typical classes, the W and the Greenberger–Horne–Zeilinger (GHZ). It was 
developed from the analysis of a chain of alkali atoms 87Rb interaction with laser pulses, which leads 
to the two-photon transitions from the ground to the Rydberg states with a predetermined magnetic 
quantum number. The methodology is based on the mechanism of the two-photon excitation, 
adiabatic for the GHZ and non-adiabatic for the W state, induced by the overlapping chirped pulses 
and governed by the Rabi frequency, the one-photon detuning, and the strength of the Rydberg–
Rydberg interactions.

Trapped Rydberg atoms can be used as viable systems to study collective phenomena in many-body physics. 
The most prominent features of Rydberg atoms are strong long-range interatomic interactions and an extraor-
dinary long lifetime of the Rydberg  states1,2. They make Rydberg atoms an effective platform to simulate inter-
acting spin systems in order to understand and control quantum properties, e.g., magnetism, coherence and 
entanglement. Due to the importance of these properties, the ability to generate entangled states on demand 
is paramount to modern quantum-enabled technology. Typical, complementary classes of entangled states are 
the GHZ  states3–5, important for quantum information processing and quantum metrology, and the W  states6 
relevant for quantum communication and quantum  cryptography7–11. There has been a number of proposals to 
generate the GHZ and the W entangled states with electron or nuclear spin systems in a variety of arrangements. 
 In12 such states are generated on nuclear spins by the global control method implying transverse magnetic fields 
and using an optimization procedure for the spin rotation and free evolution parameters.  In13 a programmable 
quantum simulator is used for a sophisticated manipulation of entanglement in Rydberg qubit states of atomic 
arrays incorporating local effective detunings for higher selectivity of excitation by optimal field shapes. The 
GHZ state was generated using superpositions of the atomic ground state and a Rydberg state in two antiferro-
magnetic configurations in 20 atoms individually trapped in the one-dimensional array. The Rabi frequency was 
less than the interaction strength of two Rydberg atoms on neighboring sites resulting in the Rydberg blockade 
forbidding the excitation of the adjacent atoms to the Rydberg state. Optimal control methods were used to find 
laser pulses that maximize the GHZ state preparation fidelity.  In14,15 a theory of the stimulated Raman adiabatic 
passage scheme (STIRAP) combined with the Rydberg blockade was presented to create the GHZ states (but 
not the W states) in the manifold of low-lying, metastable states of an atomic ensemble. The Rydberg blockade 
created by the control atom excited to the Rydberg state eliminated losses from the transitional Rydberg states 
of the atomic ensemble when STIRAP pulses were applied. In contrast to previous proposals presented, in this 
paper a method is developed to operate on the selective (hyper)fine magnetic sublevels of the ground and the 
Rydberg atoms using µs pulses having MHz chirp rate. Quantum control of population transfer by the pulse 
chirping leads to a desired superposition state of either the GHZ or the W type. A distinguishing feature of our 
quantum control method for creating multipartite entangled states is the use of a simple analytical function for 
the phase of the incident pulses to perform two-photon transitions. Such phase may be robustly produced by 
a liquid crystal pulse shaper. The Rabi frequencies associated with the two incident pulses have to completely 
overlap as this condition is known to aid to two-photon adiabatic  passage16,17. The methodology is applicable to 
a system of N trapped atoms. The limitation on the value of N originates from the resolution of the energy levels 
of the collective states whose gap becomes smaller with the increasing number of atoms. As the density of the 
energy levels rises, avoided crossings in the field-interaction picture become spectrally close, which may cause 
multiple couplings between dressed states. For the GHZ state formation, the limitation is also determined by 
the time of the chirp turn-off to avoid further undesirable crossings of the ground state with transitional states. 
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A conceptual demonstration of the proposed methodology is presented in the framework of a linear chain of 
three individually trapped atoms.

The W and the GHZ states are generated in a model of a chain of alkali atoms 87Rb trapped in an optical lattice 
with a periodic structure. Each atom is considered as a three-dimensional subsystem with the ground state |g� , 
the transitional, excited state |e� and the Rydberg state |r� . The GHZ state is a quantum superposition of all subsys-
tems in the ground state |g� and all in an excited state, such as |r� . For a three-atomic system, the GHZ state reads

The W state is a quantum superposition of all possible pure states in which one subsystem is in state |g� , while 
all other ones are in state |r� . For the three-atomic system, the W state reads

The energies of these states depend on the pairwise interaction strength between Rydberg atoms Vij determined 
by the location of Rydberg atoms in the optical lattice, which specifies the distance between them rij . The inter-
action strength is proportional to r−6

ij  and r−3
ij  for the van der Waals and the dipole–dipole type of interactions 

respectively.
The repulsive van der Waals interaction between atom pairs is Vij = C6/r

6
ij , where C6 is the van der Waals 

interaction constant. In a linear one-dimensional optical lattice of length s, n atoms are equidistantly separated 
by a lattice spacing a = s/(n− 1) giving the next neighbor interaction equal to Vij = C6/(s/(n− 1))6 . Since Vij 
is distance dependent, it may be used as a control parameter to prepare the target state having a predetermined 
energy by manipulating the optical lattice.

Note that there is a relative phase difference between the components of the W and the GHZ states we discuss 
here. The W state contains two Rydberg excitations in each component |grr� , |rrg� , and |rgr� , resulting in a rela-
tive phase exp (−i(V23 − V13)t) for state |rgr� due to a difference between V23 and V13 associated with different 
locations of Rydberg excitations. Meanwhile, the GHZ state components, |ggg� and |rrr� , have different number 
of the Rydberg excitations (zero vs three) and are different in the energy. Therefore, the GHZ state accumulates 
the relative phase exp (−i(Errr − Eggg )/�t) after it has been created. The specifics of the chosen system requires 
a precise time monitoring to account for this relative phase accumulation and make local correction if necessary 
by applying a single qubit phase gate to any of the qubits. Similar feature was addressed for the two-qubit and 
three-qubit entangled states  in18,19.

In order to generate an entangled state with predetermined properties, we investigated the mechanisms of 
the two-photon excitation of a chain of coupled three-level atoms and revealed the range of parameters of the 
laser fields which induce the desirable transitions. These transitions stir the atomic system into a superposition 
state with predetermined entanglement properties. This is the essence of a quantum control scheme design. 
For generation of the W and the GHZ states, the control scheme makes use of two linearly chirped laser fields. 
The Rabi frequency, the one-photon detuning and the strength of Rydberg–Rydberg interaction are the key ele-
ments in the quantum control scheme, with a specific correlation of values between them leading to a desirable 
superposition state.

In alkali atoms having one valence electron, the spin information is conveniently encoded in the magnetic 
sublevels existing within the hyperfine states ( mF ). For the Rydberg atoms, spin states are the projections of the 
electron spin-angular momentum on the quantization axis ( mJ ). In Fig. 1, a schematic of addressed magnetic 
subevels—the spin states—is shown. These are the ground |g� state |5S1/2, F = 1,mF = 0� , the intermediate |e� 
state |5P1/2, F = 1,mF = 1� and the Rydberg |r� state |43D3/2,mJ = 3/2,mI = 1/2�20; they form a three-level lad-
der subsystem. The Zeeman splitting is made to exceed the collective state energy shift induced by the Rydberg 

(1)|GHZ� = |rrr� + |ggg�√
2

.

(2)|W� = |grr� + |rgr� + |rrg�√
3

.

Figure 1.  The manifold of magnetic sublevels in an ultracold 87Rb , relevant for the studies of the electron 
dynamics.
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blockade to address magnetic sublevels selectively. Here we choose the next-neighbor Rydberg–Rydberg interac-
tion strength to be 60 MHz and the value of B = 102G . In 87Rb such magnetic field induces the Zeeman split of 
the |5S1/2, F = 1� state equal to �E|FmF � = −70 MHz and that of the |5P1/2, F = 1� state equal to �E|FmF � = −23 
MHz. The Rydberg state |Jmj , ImI � gets the Zeeman split �E|JmJ ,ImI � = 158 MHz for J = 3/2, gJ = 1.13 . This 
splitting is within the range of the fine structure, which is a few hundreds MHz (∼ 1/n3) for the Rydberg state 
of n=431. Thus all three chosen magnetic sublevels are within a respective, single (hyper)fine splitting, securing 
no overlap of different (hyper)fine states. These magnetic sublevels are coupled by two σ+

1,2 circularly polar-
ized pulses having carrier frequencies ω1(t) and ω2(t) . The pulse duration is 1 µ s, which satisfies the condition 
1/τ < �EZeeman to resolve Zeeman structure.

A chain of three-level ladder subsystems, coupled via the |r� states to reproduce the van der Waals interac-
tions, is used as a model system to describe atoms in a one-dimensional, periodic, optical lattice and to design 
the W and the GHZ spin entangled states. The total Hamiltonian that describes the interaction with optical fields 
reads Ĥtot = Ĥ0 + V̂�. Here Ĥ0 is the atomic Hamiltonian, which includes the Rydberg–Rydberg interaction 
between atoms, and the V̂� is the atom-field interaction Hamiltonian, which describes the interaction of optical 
pulses with trapped atoms.

A methodology to create the W and the GHZ states
The quantum control methodology to create the entangled, multipartite spin states is deduced from the dressed 
state analysis of Ĥ0 + V̂� , which for N coupled three-level ladder subsystems  reads21

Here σ (i)
km = |k��m| , where k,m = g , e, r, the Vij describes the Rydberg–Rydberg interaction, the � and δ are the 

one-photon and the two-photon detunings, the �01(t) = µegE01(t)/� and the �02(t) = µreE02(t)/� are the 
time-dependent Rabi frequencies that couple the |g� → |e� and |e� → |r� states respectively, shown in Fig. 1, and 
αi , i=1,2 is the linear chirp rate of the applied pulses, which are

having the pulse envelope E0i(t) = E0ie
−(t−tc)

2/(2τ 20 ) with the peak value E0i at the central time tc.
For a three-atomic linear chain, this Hamiltonian was written in the field interaction representation in a col-

lective state basis |k,m, j� , ( k,m, j = g , e, r ), having dimension 3N = 27 . A truncated matrix Hamiltonian reads

 The diagonal elements represent the energy levels of the bare collective states in the field interaction representa-
tion. Out of 27 collective state energies, 12 are unique and read

Here ω1 = 0, ω2(t) = �− α1(t − tc) and ω3(t) = δ − (α1 + α2)(t − tc) , and Vmax = V21 + V32 + V31 . In 
numerical calculations, the values of V21 = V32 = V  and two values of V31 = V/2 and V31 = V/26 giving 
Vmax = 5/2V  and Vmax = 2 1

64V  were used. Other parameters are α1 = α2 = α , �01 = �02 and the value of δ 

(3)

Ĥ(t) = �N
i=1(�− α1(t − tc))σ

(i)
ee +

�N
i=1(δ − (α1 + α2)(t − tc))σ

(i)
rr +

�N
i=1[

�01(t)

2
(σ (i)

ge + σ (i)
eg )+

�02(t)

2
(σ (i)

er + σ (i)
re )] + �N

i,j=1Vijσ
(i)
rr σ

(j)
rr .

(4)Ei(t) = E0i(t) sin (ωi(t − tc)+ αi(t − tc)
2/2),

Ĥ(t) =
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satisfying the condition 3δ = −2Vmax (for the GHZ) and δ = −V  (for the W) to compensate for the collective 
energy shift, (see Errr12 (t) , E

grr,rrg
8 (t) and Ergr9 (t) in Eq.(5) respectively).

The time-dependent Schrödinger equation with this matrix Hamiltonian was used for the numerical analysis 
of the evolution of the collective states which was solved numerically using the Runge–Kutta  method22.

The quantum control scheme was developed by engineering the desirable avoided crossings of the energies 
of the bare states in the field interaction representation leading to a predetermined quantum superposition state 
at the end of the pulse. It implies the following requirements for the field parameters: (i) The one-photon and 
the two-photon detunings � and δ must be negative in sign so that they give the starting negative values of the 
collective state energies; (ii) The chirp rate αi has to be negative so that the energy slope is positive; (iii) The 
detunings must satisfy |�| ≫ |δ| so that the transitional states dependent on � are significantly shifted and do 
not resonate with |ggg� during the pulse duration.

In order to generate the GHZ state, the collective Rydberg state |rrr� energy has to perform the only avoided 
crossing with the energy of the ground state |ggg� during the pulse duration. The time of the crossing of the 
Rydberg state with the ground state—the resonance time—is obtained from the condition Errr12 (t) = E

ggg
1 (t). It 

is equal to tres = (δ/2+ (V21 + V32 + V31)/3)/α + tc , here tc is the time of the peak value of the Gaussian pulse 
envelope. If 2(V21 + V32 + V31) = 3δ , the resonance occurs at the peak intensity of the field. At the resonance, 
the chirp of both pulses gets turned off to prevent further population transfer and to preserve a superposition 
state with equal probability amplitudes till the end of the pulse duration. The field amplitude varies according 
to the Gaussian function. Thus, for the GHZ state formation the condition on the chirp rate in Eq.(4) is α  = 0 
for times t ≤ tres and α = 0 for times t > tres . For an experimental realization in a three-atomic spin chain using 
field parameters presented in this paper, the chirp may be turned off faster than ∼ 0.1µ s to avoid an undesirable 
crossing with the energy of the adjacent double degenerate collective state |rrg�, |grr� . The energies of a subset 
of the bare states having avoided crossings close to |ggg� state and dependent on the two-photon detuning are 
shown in Fig. 2a as a function of time, (the states dependent on the one-photon detuning are evolving essentially 
below due to a large value of the � and, thus, are selected out from the dynamics and the figure). The magnitude 
of the chirp α is chosen such that the effective two-photon detuning is zero. Then, the energies of states change 
from a slope to horizontal lines at the peak Rabi frequency when chirp is turned to zero to provide a half of 

Figure 2.  The quantum control scheme was deduced from the mathematical analysis of the Hamiltonian in the 
field-interaction representation. The energies of the required bare states were equated to derive the time of the 
resonance, (see below). From the consideration of the Hamiltonian matrix elements it follows that since Vij > 0 
in the expressions of the bare state energies, in order to achieve an avoided crossing with the ground collective 
state having zero energy, the detunings have to be negative and the chirp rate has to be negative to provide a 
positive slope. (a) The energies of a subset of the bare states dependent on the two-photon detuning δ and the 
chirp in the field interaction representation as a function of time obtained using the control parameters designed 
to generate the GHZ state: α = − 150 MHz/µ s for t ≤ tres and α = 0 for t > tres ; δ = − 100 MHz=− 2/3 Vmax , 
V21 = V32 = 2V31 = V = 60 MHz, the pulse duration is τ0 = 1µ s; (b) The energies of a subset of the bare 
states dependent on the two-photon detuning and the chirp in the field interaction representation as a function 
of time for the control parameters designed to generate the W state: α = − 60 MHz/µ s, τ0 = 1µ s, δ = −60 MHz, 
V21 = V32 = 2V31 = V = 60 MHz.
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the population transfer from the ground to the collective Rydberg state and to generate the three-atomic GHZ 
state. The dynamics of population transfer occurs essentially within a single dressed state consisting of the |ggg� 
and the |rrr� state. This is due to the fastest dynamics of the |rrr� state leading to the first avoided crossing. Since 
at the time of avoided crossing, tres = tc , the chirp is turned off, an equal population distribution is achieved.

We demonstrate adiabatic passage from the |ggg� , having energy Eggg1  to the |rrr� , having energy Errr12  leading 
to the creation of the GHZ state on an approximate analytical solution of the two-level system. All transitional 
states with energies from Ekmj

2  to Ekmj
11  were adiabatically eliminated assuming their contribution to dynamics 

may be neglected according to the time-dependence of their energies shown in Fig. 2a. Then we obtain an effec-
tive two-level system described by the field-interaction Hamiltonian with the Rabi frequency �eff (t) , which read

Here the effective Rabi frequency is �eff (t) ∼ �6
0/(�

2V3) . A numerical calculation of populations of |ggg� and 
|rrr� using the Hamiltonian in Eq.(7), correlates with the exact solution. Within this two-level model, we demon-
strate adiabatic passage leading to a coherent superposition of two states, |ggg� and |rrr� , having equal populations. 
We diagonalize the effective field-interaction Hamiltonian (7) Ĥd(t) = T(t)Ĥeff (t)T

†(t) and get to the dressed 
state basis, in which adiabatic transition from |ggg� to |rrr� takes place within a single dressed state. Here, T(t) is a 
unitary transformation matrix T(t) = I cos�(t)− iσ y sin�(t). The probability amplitudes of the dressed states 
cd and the bare states a are related as cd(t) = T(t)a(t) . Within the adiabatic approximation, population dynamics 
in the two-level system occurs within a dressed state having lower energy |�(t)� = cos�(t)|ggg� − sin�(t)|rrr� . 
Note, that the global dynamic phase is omitted here. The coefficients are matrix elements of T(t) , which read

The control scheme, which implies α ≤ 0 for times t ≤ tc before the peak of the Gaussian pulse and α = 0 for 
t > tc till the end of the Gaussian pulse duration, provides at the initial time t=0 the value of cos�(0) = 1, and 
sin�(0) = 0, meaning that the population is initially in the ground |ggg� state. Then at t = tc , the probability 
amplitudes of two states change to become the same in magnitude: cos�(tc) = 1√

2
 and sin�(tc) = 1√

2
 . At later 

times, t > tc , the chirp is set to zero, and the field remains in the resonance with the transition frequency of the 
system till the end of the pulse duration, therefore any changes of the population are suppressed (the applied 
field changes only the global dynamical phase), preserving the created superposition state. Thus, at the end of 
the pulse the probability amplitudes of the |ggg� and the |rrr� states are cos�(t∞) = 1√

2
 and sin�(t∞) = 1√

2
 . If 

to maintain the constant chirp rate till the end of the pulse duration such that the same α ≤ 0 is applied for t ≤ tc 
and t > tc , the population transfers 100% from the ground to the excited state because cos�(t∞) = 0 and 
sin�(t∞) = 1 . Such a control approach was implemented in the case of the W state creation. Specifically, two 
applied pulses were chirped with the same constant chirp during the whole pulse duration, which resulted in 
the population transfer from the ground |ggg� state to an effective excited state, which is a superposition of |rrg� , 
|grr� , and |rgr� states.

However, in contrast to the GHZ state generation scheme, the W state preparation is principally non-adiaba-
tic. A subset of states relevant for the dynamics to generate the W state and their energies as a function of time 
are shown in Fig. 2b. Since only the |ggg� state is populated initially, and the target |W� state, Eq. (2), is the equal 
superposition of three bare states, |rrg�, |grr� , and |rgr� , at least two more dressed stated have to be involved to 
achieve the goal of reaching the |W� state at the final time. The initially populated dressed state correlates with 
the |ggg� state at t=0. However, this dressed state correlates with |rrr� state at final time, thus it must be empty at 
the end of the pulse. Therefore, two other dressed states must be involved, which correlate with the |grr� , |rrg� and 
|rgr� states at the final time. To achieve the target |W� state, the crossing between the |ggg� and |rrr� states must be 
diabatic, meaning that no population is transferred from the |ggg� state to the |rrr� state. Next crossing between 
the |ggg� and the degenerate |grr� and |rrg� states must be partially adiabatic, such that 2/3 of the population goes 
to those states and 1/3 stays in the |ggg� state. This 1/3 of the population goes to the |rgr� state at the next crossing 
between |ggg� and |rgr� state. Note, that the time evolution of the energies of the states shown in Fig. 2a,b for the 
strength of Rydberg–Rydberg interactions V21 = V32 = V  and V31 = V/26 is qualitatively the same.

The GHZ and the W state generation is demonstrated below using the numerical solution of the Schödinger 
equation. In calculations to generate the GHZ state the following values of the parameters of the fields were used: 
the pulse duration τ0 = 1µ s, the one-photon detuning � = −1.5 GHz, the peak Rabi frequency of both applied 
pulses �01(2) in the range from 0 to 300 MHz, the chirp rate α1,2 in the range from 0 to − 600 MHz / µ s, and the 
two-photon detuning δ = −2/3Vmax , which has two values, δ = −100MHz for V31 = V/2 and δ = −80.63 MHz 

(6)ȧggg = i�eff (t)arrr

(7)
ȧrrr = i6α(t − tc)arrr + i�eff (t)aggg

Ĥeff = �

(

0 −�eff (t)
−�eff (t) − 6α(t − tc)

)

.

(8)cos�(t) =





1

2
+ 3α(t − tc)

2
�

�2
eff (t)+ (3α(t − tc))2





1/2

(9)sin�(t) =





1

2
− 3α(t − tc)

2
�

�2
eff (t)+ (3α(t − tc))2





1/2
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for V31 = V/26 for nearest neighbor interaction V = 60 MHz. The numerical analysis demonstrates that the 
generation of the GHZ state is possible via two-photon adiabatic passage with the same chirp rate α1,2 = α on 
two pulses and the same overlapping Rabi frequencies �01(2)(t) . The fidelity of the GHZ state was calculated as

The fidelity of the GHZ state is shown in Fig. 3a,c as a function of the chirp rate and the strength of the peak 
Rabi frequency for V31 = V/2 (a) and V31 = V/26 (c). The optimal values of the fidelity within 0.995 range are 
highlighted by the contour plots. Figure 3b,d shows the density plot of the difference between the populations 
of the |ggg� and the |rrr� states and brings an additional information for a complete picture of the GHZ state 
formation. The zero values of the population difference indicate upon equal populations of these states, while 
the fidelity of about 0.995 in the same region of the field parameters carries the information about a high phase 
correlation between atoms. A comparison of the results for V31 = V/2 (a),(b) and V31 = V/26 (c),(d) suggests 
that for the generation the GHZ state with high fidelity, a wider choice of the field parameters is possible for a 
smaller value of the interaction between terminal atoms V31 . For V31 = V/26 , the results are more robust for 
experimental realization, but at the expense of a higher field amplitude.

The time dependence of the population of the |ggg� and |rrr� states leading to the formation of the GHZ state 
at the end of the pulse duration is shown in Fig. 4 demonstrating adiabatic passage for parameters of the field 
� = −1.5 GHz, δ = −100 MHz, �01(2) = 158 MHz, α = −176MHz/µ s, and Vmax = 150 MHz.

In numerical calculations of the W state generation the following values of the parameters of the fields 
were used: The pulse duration τ0 = 1µ s, the chirp rate α1,2 in the range from 0 to −300MHz/µ s, the two-
photon detuning δ = −4.5MHz , the one-photon detuning � = −1.4 GHz, and the peak Rabi frequency of both 
applied pulses �01(2) in the range from 0 to 300 MHz. Two values of the parameter V31 were used, V31 = V/2 
and V31 = V/26 , which provide Vmax = 150 MHz and Vmax = 120.94 MHz for nearest neighbor interaction 
V = 60MHz.

The fidelity of the W state was calculated as

Figure 5a,c show the fidelity of the W state as a function of the chirp rate and the peak Rabi frequency for 
V31 = V/2 (a) and V31 = V/26 (c). Strong dependence on α1,2 and �01(2) is observed indicating upon nonadi-
abatic regime of light-matter interaction. The black curve draws the contour where three contributing states have 
equal population. The blue regions of the fidelity through which this curve passes manifest the highest values 
owing to equal population of the contributing states and the same phase between them. Figure 5b,d show the 
density plots of the sum of populations of the |rrg�, |grr� , and the |rgr� states for V31 = V/2 (b) and V31 = V/26 

(10)F = 1/2(| aggg |2 + | arrr |2 +2Re(aggga
†
rrr)).

(11)
F = 1/2(| arrg |2 + | agrr |2 + | argr |2 +
2Re(arrga

†
grr)+ 2Re(arrg a

†
rgr)+ 2Re(agrra

†
rgr)).

Figure 3.  (a) The fidelity of the GHZ state as a function of the chirp rate and the peak Rabi frequency for 
V31 = V/2 , Vmax = 150 MHz; (b) The population difference of states |ggg� and |rrr� as a function of the 
chirp rate and the peak Rabi frequency for V31 = V/2 , Vmax = 150 MHz. (c) The fidelity of the GHZ state 
as a function of the chirp rate and the peak Rabi frequency for V31 = V/26 , Vmax = 120.94 MHz; (d) The 
population difference of states |ggg� and |rrr� as a function of the chirp rate and the peak Rabi frequency 
for V31 = V/26 , Vmax = 120.94 MHz. The parameters used in the calculation are V = 60 MHz, τ0 = 1µ s, 
� = −1.5 GHz, and δ = −2/3Vmax ..
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(d). Together with the density plots of the difference of populations between the |rrg� and the |rgr�, (not shown 
here), they provided sufficient information to draw the contours of equal populations.

By comparing the results for V31 = V/2 (a),(b) and V31 = V/26 (c),(d) we conclude that a smaller value of 
the interaction between terminal atoms somewhat improves the results for the generation the W state, mean-
ing that the target area of the field parameters providing higher fidelity states is increased. However, since the 
process of the W state generation is principally non-adiabatic with at least three dressed states populated, the 
considered change in the value of V31 does not substantially change the non-adiabatic coupling between the 
important dressed states, (one of which correlates with the |ggg� state at t = 0, while the other correlate with the 
|grr�, |rrg� and the  |rgr� at the final time).

The dynamics of the population of the |rrg�, |grr� , and |rgr� states, forming the W state is shown in Fig. 6 for 
� = − 1.4 GHz, δ = − 4.5 MHz, �01(2)=262 MHz, α = − 32 MHz/ µ s, and V21 = V32 = 2V31 = V=60 MHz. 
The Rabi oscillations between the mostly populated states |rrg�, |grr� , and |rgr� are clearly shown at the intermedi-
ate times. These oscillations can be explained by the non-adiabatic coupling between states in the dressed state 
picture indicating upon the non-adiabatic nature of the W state formation. The fidelity of such state formation is 

Figure 4.  The time dependence of the population of the |ggg� and |rrr� states leading to the formation of the 
GHZ state at the end of the pulse duration for parameters of the field τ0 = 1µ s, � = −1.5 GHz, δ = −100 MHz, 
�01(2) = 158 MHz, α = −176MHz/µ s, and Vmax = 150MHz. Dashed curves show an approximate solution 
using Eqs.(6).

Figure 5.  (a) The fidelity of the W state as a function of the chirp rate and the peak Rabi frequency for 
V31 = V/2 , Vmax = 150 MHz; (b) The density plot of the sum of populations of the |rrg�, |grr� , and the |rgr� 
states for V31 = V/2 , Vmax = 150 MHz. (c) The fidelity of the W state as a function of the chirp rate and the 
peak Rabi frequency for V31 = V/26, Vmax = 120.94 MHz; (d) The density plot of the sum of populations of the 
|rrg�, |grr� , and the |rgr� states for V31 = V/26, Vmax = 120.94 MHz. The parameters used in the calculation are 
V = 60THz , τ0 = 1µ s, � = −1.4 GHz, and δ = −4.5 MHz. The black curves draw the contour where three 
contributing states have equal population.
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0.999 and is among the highest values in the provided numerical results. Parameters used in the time-dependent 
calculations of Figs. 4 and 6 may be used to explore the experimental realizations of the GHZ and the W states.

The lifetime of the Rydberg states is on the order of 100 µ s, while the pulse duration used in our method is 
1 µ s. Two orders of magnitude difference permits us to neglect the decoherence effects in the systems during 
the control operations with the applied fields. Besides, the one-photon detuning from the intermediate state of 1.5 
GHz is about an order of magnitude larger than the natural bandwidth of these states known to be ∼ 10  ns1,23. 
Such detuning results in a negligible population of the transitional states minimizing decoherence. In principle, 
a one-photon excitation, which would need a photon in the ultraviolet  range24, may be used to excite atoms to a 
predetermined magnetic sublevel of the Rydberg state. However, the two-photon excitation scheme is more robust 
because it requires a visible light; it is commonly used in the Rydberg experiments with trapped alkali atoms. 
Besides, it offers a broader range of control parameters including the one-photon and the two-photon detuning, 
which brings a flexibility to the control scheme to perform adiabatic passage on large atomic systems. Strong 
Rydberg–Rydberg interactions provide significant collective energy shifts beneficial for controllable excitations of 
predetermined collective states. Meanwhile, a long lifetime of Rydberg states is efficient for quantum operations.

Conclusion
The quantum control of the multipartite entangled states generation involving coherent superpositions of ultra-
cold Rydberg atoms is presented based on the two-photon passage on the selected state manifold using circularly 
polarized and linearly chirped pulses. The selectivity of states is achieved through the choice of the one-photon 
detuning, the ratio of the Rabi frequency to the collective coupling strength and the chirp rate. The methodology 
is simple in experimental realization implying equal a.c. Stark shifts and linearly chirped pulses. It is assumed 
for a generation of entangled states of different classes in various configurations of atoms, e.g., spin chains and 
arrays. While quantum optimization  algorithms25,26 are beneficial for large systems with vanishing spectral gaps, 
our analytical method is more practical for systems of tens of atoms.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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