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Controlling nonlinear dynamical 
systems into arbitrary states using 
machine learning
Alexander Haluszczynski1,2* & Christoph Räth3

Controlling nonlinear dynamical systems is a central task in many different areas of science and 
engineering. Chaotic systems can be stabilized (or chaotified) with small perturbations, yet existing 
approaches either require knowledge about the underlying system equations or large data sets as they 
rely on phase space methods. In this work we propose a novel and fully data driven scheme relying on 
machine learning (ML), which generalizes control techniques of chaotic systems without requiring a 
mathematical model for its dynamics. Exploiting recently developed ML-based prediction capabilities, 
we demonstrate that nonlinear systems can be forced to stay in arbitrary dynamical target states 
coming from any initial state. We outline and validate our approach using the examples of the Lorenz 
and the Rössler system and show how these systems can very accurately be brought not only to 
periodic, but even to intermittent and different chaotic behavior. Having this highly flexible control 
scheme with little demands on the amount of required data on hand, we briefly discuss possible 
applications ranging from engineering to medicine.

The possibility to control nonlinear chaotic systems into stable states has been a remarkable discovery1,2. Based 
on the knowledge of the underlying equations, one can force the system from a chaotic state into a fixed point 
or periodic orbit by applying an external force. This can be achieved based on the pioneering approaches by Ott 
et al.1 or Pyragas3. In the former, a parameter of the system is slightly changed when it is close to an unstable 
periodic orbit in phase space, while the latter continuously applies a force based on time delayed feedback. There 
have been many extensions of those basic approaches (see e.g. Boccaletti et al.4 and references therein) including 
“anti-control” schemes5, that break up periodic or synchronized motion. However, all of them do not allow to 
control the system into well-specified, yet more complex target states such as chaotic or intermittent behavior. 
Further, these methods either require exact knowledge about the system, i.e. the underlying equations of motion, 
or rely on phase space techniques for which very long time series are necessary.

In recent years, tremendous progress has been made in the prediction of nonlinear dynamical systems by 
means of machine learning (ML). It has been demonstrated that not only exact short-term predictions over 
several Lyapunov times become possible, but also the long-term behavior of the system (its “climate”) can be 
reproduced with unexpected accuracy6–12—even for very high-dimensional systems13–15. While several ML tech-
niques have successfully been applied to time series prediction, reservoir computing (RC)16,17 can be considered 
as the so far best approach, as it combines often superior performance with intrinsic advantages like smaller 
network size, higher robustness, fast and comparably transparent learning18 and the prospect of highly efficient 
hardware realizations19–21.

Combining now ML-based predictions of nonlinear systems with manipulation steps, we propose in this study 
a novel, fully data-driven approach for controlling nonlinear dynamical systems. In contrast to previous methods, 
this allows to obtain a variety of target states including periodic, intermittent and chaotic ones. Furthermore, we 
do not require the knowledge of the underlying equations. Instead, it is sufficient to record some history of the 
system that allows the machine learning method to be sufficiently trained. As previously outlined22, an adequate 
learning requires orders of magnitude less data than phase space methods.
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Results
We define the situation that requires to be controlled in the following way: A dynamical system with trajectory 
u is in state X , which may represent e.g. periodic, intermittent or chaotic behavior. Then, the system behavior 
changes into another state Y as a consequence of order parameter changes or some uncontrollable external force. 
The aim of a control mechanism is now to push the system back into its original state X , while the cause for the 
initial change in state is still present. This can be achieved by deriving a suitable control force F(t) which is applied 
while the system is in state Y . Deriving F(t) requires the knowledge of how the trajectory u(t) of the system 
would have evolved if the system was still in state X instead. This ’what if ’ scenario can be obtained by training a 
suitable machine learning technique on past observations of the system while being in state X . In this study, this 
is achieved by using reservoir computing23, which is a recurrent neural network based approach. In principle, 
any other prediction method could be used instead as long as it is able to deliver good predictions. Once trained 
and synchronized, it can create predictions v(t) of arbitrary length from which the control force F(t) is derived as

where K scales the magnitude of the force. Since F(t) only depends on the (measured) coordinates u(t) and the 
ML prediction v(t), no mathematical model is required to control the system and thus the method is generally 
applicable as long as good predictions are available. The definition of the control force being dependent on the 
distance between the actual coordinate and a target coordinate is similar to what has been originally proposed by 
Pyragas3. However, in our case the control is not limited to periodic orbits but can achieve a variety of dynamical 
target states. A step by step description of the method is given in Section 0.2. The control of nonlinear dynamical 
system is studied on the example of the Lorenz system24, which is a model for atmospheric convection. Depending 
on the choice of parameters, the system exhibits e.g. periodic, intermittent or chaotic behavior. The equations read

and π ≡ (σ , ρ,β) are the order parameters that lead to a certain state and the trajectory is thus described by 
u(t) = (x(t), y(t), z(t))T . First, we simulate the Lorenz system with parameters π such that we obtain the desired 
initial state X . Second, we train reservoir computing on the resulting trajectory until time step ttrain . Then, the 
parameters are shifted to π∗ such that the system behavior changes to state Y at time step tshift . If tshift ≥ ttrain , 
the RC system is synchronized accordingly with the trajectory since ttrain . Synchronization means that the scalar 
states of the reservoir (see Eq. 5) are updated but the system is not re-trained. To control the system now back 
into state X , the correction force F(t) is derived in each time step based on the prediction v(t) and applied to the 
system by solving the differential equations of the system for the next time step including F(t)

where ḟ  is defined in Eq. (2). The knowledge of ḟ  is only required for the model system examples in this study but 
not for real world applications. The equations are solved using the 4th order Runge–Kutta method with a time 
resolution �t = 0.02 . Since still the parameters π∗ are used, the system would continue to exhibit the undesired 
state Y if the control force was 0. For the Lorenz system, the scaling constant set to K = 25. We did not optimize 
for K and empirically found that our method works for a wide range of choices. It is important to emphasize 
that a smaller choice for K does not necessarily mean that a smaller force is needed, because smaller values may 
allow for more separation of u(t) and v(t).

Figure  1 shows the results for the Lorenz system originally (left side) being in a chaotic state X 
( π = [σ = 10.0, ρ = 167.2,β = 8/3] ), which then changes to periodic behavior (middle) Y after ρ is changed 
to ρ = 166 . Then, the control mechanism is activated and the resulting attractor again resembles the original 
chaotic state (left). While ‘chaotification’ of periodic states has been achieved in the past, the resulting attrac-
tor generally did not correspond to a certain specified target state but just exhibited some chaotic behavior. 
Since we would like to not only rely on a visual assessment, we characterize the attractors using quantitative 

(1)F(t) = K(u(t)− v(t)),

(2)ẋ = σ(y − x); ẏ = x(ρ − z)− y; ż = xy − βz,

(3)u(t +�t) =

∫ t+�t

t
(ḟ (u(t̃),π∗)+ F(t̃))dt̃,

Figure 1.   Periodic to chaotic control. Top: 2D attractor representation in the x–y plane. Bottom: X coordinate 
time series. Left plots show the original chaotic state which changes to a periodic state (middle) after tuning the 
order parameter. After applying the control mechanism, the system is forced into a chaotic state again (right).
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measures. First, we calculate the largest Lyapunov exponent, which quantifies the temporal complexity of the 
trajectory, where a positive value indicates chaotic behavior. Second, we use the correlation dimension to assess 
the structural complexity of the attractor. Based on the two measures, the dynamical state of the system can be 
sufficiently specified for our analysis. Both techniques are described in the supporting information. Because a 
single example is not sufficiently meaningful, we perform our analysis statistically by evaluating 100 random 
realizations of the system at a time. The term ’random realization’ refers to different random drawings of the 
reservoir A and the input mapping Win , as well as the initial conditions for the Lorenz system. The first line in 
Table 1 shows the respective statistical results for the setup shown in Figure 1. The largest Lyapunov exponent 
of the original chaotic system �orig = 0.851 significantly reduces to �changed = 0.080 when the parameter change 
drives the system into a periodic state. After the control mechanism is switched on, the value for the resulting 
attractor moves back to �controlled = 0.0841 and thus is within one standard deviation from its original value. 
Same applies to the correlation dimension, which resembles its original value after control very well.

Since there is a clear distinction between the chaotic- and the periodic state, with the latter being simple in 
terms of its dynamics, the next step is to control the system between more complex dynamics. Therefore, we start 
simulate the Lorenz system again with parameters π = [σ = 10.0, ρ = 166.15,β = 8/3] that lead to intermittent 
behavior25. This is shown in Fig. 2 on the left. Now ρ is changed to ρ = 167.2 , which results in a chaotic state 
(middle plots). The control mechanism is turned on and the resulting state shows again the intermittent behavior 
(right plots) as in the initial state. This is particularly visible in the lower plots where only the X coordinate is 
shown. While the trajectory mostly follows a periodic path, it is interrupted by irregular burst that occur from 
time to time. It is remarkable that bursts do not seem to occur more often given the chaotic dynamics of the 
underlying equations and parameter setup. However, the control works so well that it exactly enforces the desired 
dynamics. This observation can again be confirmed by looking at the statistical results in Table 1.

Just like in the first two examples, it was not possible before to control a system from one chaotic state to 
another particular chaotic state. To do this, we start with the parameter set ( π = [σ = 10.0, ρ = 28.0,β = 8/3] ) 
leading to a chaotic attractor which we call ChaoticA . When changing ρ to rho = 50.0 we obtain a different chaotic 
attractor ChaoticB . This time we use a different range of values for ρ compared to the previous examples in order 
to present a situation where not only the chaotic dynamics change, but also the size of the attractor significantly 

Table 1.   Statistical simulation over N = 100 random realizations of the systems evaluated in terms of the 
mean values of the largest Lyapunov exponent and the correlation dimension with corresponding standard 
deviations. The subscript orig denotes the initial state of the system, while changed refers to the new state after 
parameters changed and controlled means the system controlled back into the original state. The description 
left to the arrow is the original state that also will be achieved again after controlling the system whereas the 
state written right to the arrow corresponds to the changed condition.

Largest Lyapunov exponent � Correlation dimension ν

�orig �changed �controlled νorig νchanged νcontrolled

Periodic → Chaotic 0.851 ± 0.070 0.080 ± 0.075 0.841 ± 0.074 1.700 ± 0.065 1.052 ± 0.071 1.700 ± 0.061

Chaotic → Intermittent 0.571 ± 0.096 0.853 ± 0.053 0.614 ± 0.101 1.321 ± 0.086 1.678 ± 0.055 1.351 ± 0.091

ChaoticB → ChaoticA 0.479 ± 0.060 0.643 ± 0.075 0.478 ± 0.067 1.941 ± 0.038 1.948 ± 0.047 1.933 ± 0.040

ChaoticD → ChaoticC 0.819 ± 0.092 0.884 ± 0.058 0.822 ± 0.052 1.855 ± 0.069 1.959 ± 0.037 1.866 ± 0.050

Periodic ← Chaotic - 0.003 ± 0.012 0.844 ± 0.059 0.028 ± 0.110 1.001 ± 0.065 1.700 ± 0.071 1.001 ± 0.061

Chaotic ← Intermittent 0.851 ± 0.070 0.550 ± 0.094 0.828 ± 0.067 1.700 ± 0.086 1.326 ± 0.055 1.698 ± 0.091

ChaoticB ← ChaoticA 0.629 ± 0.069 0.446 ± 0.068 0.629 ± 0.066 1.948 ± 0.037 1.939 ± 0.049 1.956 ± 0.037

ChaoticD ← ChaoticC 0.881 ± 0.092 0.836 ± 0.058 0.880 ± 0.052 1.958 ± 0.069 1.864 ± 0.038 1.951 ± 0.050

Figure 2.   Chaotic to intermittent control. Top: 2D attractor representation in the x–y plane. Bottom: X 
coordinate time series. Left plots show the original intermittent state which changes to a chaotic state (middle) 
after tuning the order parameter. After applying the control mechanism, the system is forced into an intermittent 
state again (right).
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varies between the two states. The goal of the control procedure now is to not only force the dynamics of the 
system back to the behavior of the initial state ChaoticA , but also to return the attractor to its original size. Fig-
ure 3 shows that both goals succeed. This is also confirmed by the statistical results, indicating that the largest 
Lyapunov exponent of the controlled system is perfectly close to the one of the uncontrolled original state. For 
the correlation dimension, however, there are no significant deviations between the two chaotic states. To give a 
more striking illustration of the statistical analysis, we show the results for each of the 100 random realizations in 
Fig. 4. The main plot scatters the largest Lyapunov exponents as measured for the original parameter set π against 
those measured after the parameters have been changed to π∗ . While the blue dots represent the situation where 
the control mechanism is not active, the control has been switched on for the black dots. Furthermore, each pair 
of points is connected with a line that belongs to the same random realization. It is clearly visible that the control 
leads to a downwards shift of the cloud of points towards the diagonal, which is consistent to the respective aver-
age values of the largest Lyapunov exponent shown in Table 1. In addition, the inlay plot shows the same logic 
but for the volume of the attractors being measured in terms of the smallest cuboid that covers the attractor. 
The control mechanism consistently works for every single realization and reduces the volume of the attractor 
back towards the initially desired state. We successfully applied our approach to other examples of controlling a 
chaotic state to another chaotic state, e.g. by varying the parameter σ as shown in the supporting information.

The bottom half of Table 1 proves that our statements are also valid if one reverses the direction in the 
examples. For example, Periodic → Chaotic in the upper half of the table means, that an initially chaotic 
system changed into a periodic state and then gets controlled back into its initial chaotic state. In contrast, 
Periodic ← Chaotic in the lower half now means that the system initially is in the periodic state. It then shows 
chaotic behavior after the parameter change and finally is controlled back into the original periodic state—thus 
the opposite direction as above. It is evident that all examples also succeed in the opposite direction. This sup-
ports our claim that the prediction based control mechanism works for arbitrary states.

Figure 3.   Chaotic to chaotic control. Top: 2D attractor representation in the x–y plane. Bottom: X coordinate 
time series. Left plots show the original chaotic state which changes to a different chaotic state (middle) after 
tuning the order parameter. After applying the control mechanism, the system is forced into the initial chaotic 
state again (right).

Figure 4.   Chaotic to chaotic control ( ρ changed). Values on the x-axis denote the largest Lyapunov exponent 
�max of the original system state before parameter change for N = 100 random realizations. Y-axis reflects the 
values for �max after parameters changed from ρ = 28 to ρ = 50 . The blue dots correspond to the uncontrolled 
systems, while the black dots represent the controlled systems. Inlay plot shows the same for the volume of the 
attractor.
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In addition to the Lorenz system we also applied the method to another popular chaotic attractor: the Roessler 
system26. The equations read

and we use parameters π = [a = 0.5, b = 2.0, c = 4.0] leading to a chaotic behavior. This serves as 
our initial state and the dynamics change to another chaotic state after the parameters are changed to 
π
∗ = [a = 0.55, b = 2.0, c = 4.0] . For the Roessler system, we use a time resolution of �t = 0.05 and K = 20. It 

can be seen in Fig. 5 that the control mechanism is successful. Again, the left plots represent the initial attractor 
resulting from the parameter set π . Switching to π∗ (middle plots) not only increases the size of the attractor in 
the x–z plane, but also significantly changes the pattern of the x-coordinate time series. Both, the appearance of 
the attractor and its x-coordinate pattern become similar to the initial attractor again after the control mechanism 
is active (right plots). The initial state with parameters π has properties [�max = 0.13, ν = 1.59] , which become 
[�max = 0.14, ν = 1.75] after parameters have been changed to π∗ . Turning on the control mechanism leads to 
[�max = 0.12, ν = 1.64].

Discussion
Our method has a wide range of potential applications in various areas. For example, in nonlinear technical sys-
tems such as rocket engines it can be used to prevent the engine from critical combustion instabilities27,28. This 
could be achieved by detecting them based on the reservoir computing predictions (or any other suitable ML 
technique) and subsequently controlling the system into a more stable state. Here, the control force can be applied 
to the engine via its pressure valves. Another example would be medical devices such as pacemakers. The heart 
of a healthy human does not beat in a purely periodic fashion but rather shows features being typical for chaotic 
systems like multifractality29 that vary significantly among individuals. While pacing protocols developed so far 
aim at keeping the diastolic interval constant30, our general control scheme will emulate the patient-specific full 
behavior of the heart in healthy conditions. The control scheme could therefore be used to develop personalized 
pacemakers that do not just stabilize the heartbeat to periodic behavior31–33, but may rather adjust the heartbeat 
to the individual needs of the patients.

In conclusion, our machine learning enhanced method allows for an unprecedented flexible control of dynam-
ical systems and has thus the potential to extend the range of applications of chaos inspired control schemes to 
a plethora of new real-world problems.

Methods
Reservoir computing.  RC or echo state networks17,34,35 is an artificial recurrent neural network based 
approach, which builds on a static internal network called reservoir A . Static means that the nodes and edges are 
kept fixed once the network has been initially created. This property makes RC computationally very efficient, as 
only its linear output layer is being optimized in the training process. The reservoir A is constructed as a sparse 
Erdös–Renyi random network36 with Dr = 300 nodes that are connected with a probability p = 0.02. In order to 
feed the D = 3 dimensional input data u(t) into the reservoir A , we set up an Dr × D input mapping matrix Win , 
which defines how strongly each input dimension influences every single node. The dynamics of the network are 
represented by its Dr × 1 dimensional scalar states r(t) evolving according to the recurrent equation

Output v(t +�t) is created by mapping back r(t) using a linear output function Wout such that

(4)ẋ = −(y + z); ẏ = x + ay; ż = b+ (x − c)z

(5)r(t +�t) = tanh(Ar(t)+Winu(t)).

(6)v(t) = Wout(r̃(t),P) = Pr̃(t),

Figure 5.   Chaotic to chaotic control for the Roessler system. Top: 2D attractor representation in the x–z plane. 
Bottom: X coordinate time series. Left plots show the original chaotic state which changes to a different chaotic 
state (middle) after tuning the order parameter. After applying the control mechanism, the system is forced into 
the initial chaotic state again (right).



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12991  | https://doi.org/10.1038/s41598-021-92244-6

www.nature.com/scientificreports/

where r̃ = {r, r2} . The matrix P is determined in the training process. This is done by acquiring a sufficient num-
ber of reservoir states r(tw . . . tw + tT ) and then choosing P such that the output v of the reservoir is as close as 
possible to the known real data v(tw . . . tw + tT ) . For this we use Ridge regression, which minimizes

where β is the regularization constant that prevents from overfitting by penalizing large values of the fitting 
parameters. The training process only involves the linear output layer and therefore is fast compared to other ML 
methods. Replacing u(t) in the tanh activation function above by Pr̃(t) allows to create predictions of arbitrary 
length due to the recursive equation for the reservoir states r(t):

Further details including the choices for the hyperparameters are presented in the supporting information. 
We use a washout phase of 1000 time steps, a training period of 5000 time steps and let the parameter change 
of the dynamical system from π to π∗ happen immediately after the training period and thus the prediction is 
needed from this moment on. However, it is not necessary that the network is trained on the full history until 
the parameter change happened. In general, it needs to be sufficiently trained and can then be synchronized 
based on the recorded trajectory after the training ended. The prediction is carried out for 10,000 time steps.

It has been shown by Bompas et al.18 that the performance of reservoir computing does not strongly depend 
on the precision of the data. Hence, measurement noise and sensitive dependence on initial conditions for chaotic 
systems is not a problem when it comes to real world applications of the proposed method.

Control mechanism.  The concrete steps of the application of the control mechanism to the examples in 
our study are shown in Algorithm 1. This is the simplest setup possible, where only one long prediction for v(t) 
is performed before the control force is activated. We also successfully tested multiple more complicated setups, 
e.g. where the control force is not immediately switched on and the system is running on the new parameters π∗ 
(and thus state Y ) for a while, where the reservoir computing prediction is updated after synchronizing the RC 
model with the realized trajectory since the last training or where the force is not applied in every time step. The 
control phase is run for 10,000 time steps.

These steps also apply for real world systems, where no mathematical model is available. The only requirement 
is sufficient data of the system recorded while being in the desired dynamical state X.

Correlation dimension.  To characterize the attractor and therefore its dynamical state we rely on quanti-
tative measures. For this, we are looking at the long-term properties of the attractor rather than its short-term 
trajectory. One important aspect of the long-term behavior is the structural complexity. This can be assessed by 
calculating the correlation dimension of the attractor, where we measure the dimensionality of the space popu-
lated by the trajectory37. The correlation dimension is based on the correlation integral

(7)
∑

−T≤t≤0

� Wout(r̃(t),P)− vR(t) �
2 − β� P �2,

(8)
r(t +�t) = tanh(Ar(t)+WinWout(r̃(t),P))

= tanh(Ar(t)+WinPr̃(t)).
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where θ is the Heaviside function and c(r′) denotes the standard correlation function. The correlation integral 
represents the mean probability that two states in phase space are close to each other at different time steps. This 
is the case if the distance between the two states is less than the threshold distance r. The correlation dimension 
ν is then defined by the power-law relationship

For self-similar strange attractors, this relationship holds for a certain range of r, which therefore needs to be 
properly calibrated. As we are finally only interested in comparisons, precision with regards to absolute values is 
not essential here. We use the Grassberger Procaccia algorithm38 to calculate the correlation dimension.

Lypunov exponents.  The temporal complexity of a system can be measured by its Lyapunov exponents �i , 
which describe the average rate of divergence of nearby points in phase space, and thus measure sensitivity to 
initial conditions. There is one exponent for each dimension in phase space. If the system exhibits at least one 
positive Lyapunov exponent, it is classified as chaotic. The magnitudes of �i quantify the time scale on which the 
system becomes unpredictable39,40. Since at least one positive exponent is the requirement for being classified as 
chaotic, it is sufficient for our analysis to calculate only the largest Lyapunov exponent �max

This makes the task computationally much easier than determining the full Lyapunov spectrum. We use the 
Rosenstein algorithm41 to obtain it. In essence, we track the distance d(t) of two initially nearby states in phase 
space. The constant C normalizes the initial separation. As for the correlation dimension, we are interested in a 
relative comparison that characterizes states of the system rather than the exact absolute values. It is important 
to point out that both measures—the correlation dimension and the largest Lyapunov exponent—are calculated 
purely based on data and do not require any knowledge of the underlying equations.

Data availability
The data that support the findings of this study are available from the corresponding author upon reasonable 
request.
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