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Association between alterations 
in plasma metabolome profiles 
and laminitis in intensively finished 
Holstein bulls in a randomized 
controlled study
Sonja Christiane Bäßler1, Ákos Kenéz2, Theresa Scheu3, Christian Koch3, Ulrich Meyer4, 
Sven Dänicke4 & Korinna Huber1*

Metabolic consequences of an energy and protein rich diet can compromise metabolic health of 
cattle by promoting a pro-inflammatory phenotype. Laminitis is a common clinical sign, but affected 
metabolic pathways, underlying pathophysiology and causative relationships of a systemic pro-
inflammatory phenotype are unclear. Therefore, the aim of this study was to elucidate changes in 
metabolome profiles of 20 months old Holstein bulls fed a high energy and protein diet and to identify 
novel metabolites and affected pathways, associated with diet-related laminitis. In a randomized 
controlled feeding trial using bulls fed a high energy and protein diet (HEP; metabolizable energy 
[ME] intake 169.0 ± 1.4 MJ/day; crude protein [CP] intake 2.3 ± 0.02 kg/day; calculated means ± SEM; 
n = 15) versus a low energy and protein diet (LEP; ME intake 92.9 ± 1.3 MJ/day; CP intake 1.0 ± 0.01 kg/
day; n = 15), wide ranging effects of HEP diet on metabolism were demonstrated with a targeted 
metabolomics approach using the AbsoluteIDQ p180 kit (Biocrates Life Sciences). Multivariate 
statistics revealed that lower concentrations of phosphatidylcholines and sphingomyelins and higher 
concentrations of lyso-phosphatidylcholines, branched chain amino acids and aromatic amino acids 
were associated with an inflammatory state of diet-related laminitis in Holstein bulls fed a HEP diet. 
The latter two metabolites share similarities with changes in metabolism of obese humans, indicating 
a conserved pathophysiological role. The observed alterations in the metabolome provide further 
explanation on the underlying metabolic consequences of excessive dietary nutrient intake.

Application of intensive feeding regimens is a common practice in beef cattle production systems, in order to 
promote growth performance. However, chronic excessive dietary nutrient intake (energy via starch and protein) 
is known to increase the risk of developing metabolic disorders in animals, as well as in humans. In humans, these 
disorders, such as insulin resistance and dyslipidemia, are commonly labelled as obesity-related morbidities, or 
as clusters of the human metabolic syndrome1. In companion animals, similar concepts have been established 
for horses, i.e. the equine metabolic syndrome in relation to a starch-rich diet and sedentary lifestyle2. In farm 
animals, fattening lambs developed insulin resistance and metabolic disorders during the fattening period, par-
ticularly when fed restrictively during early life3. In fattening bulls, an energy rich finishing diet before slaughter 
is traditionally accepted as a method to achieve production targets. These diets include protein- and starch-rich 
components. However, excessive intake of starch-rich and low fiber diets are also known to induce proinflam-
matory alterations, such as rumen acidosis, tail tip necrosis or laminitis in cattle4–6. These diseases are commonly 
referred to as production diseases and affect health and performance of the animals and thus also animal welfare.

Dietary interventions such as protein-rich diets and experimental fructose overload were presented as major 
factors for laminitis7–9, which was in the focus of our study. Laminitis is one of the clinically apparent signs of 
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the intensive feeding related metabolic disorders in cattle, with lesions including yellow waxy discolorations, 
hemorrhages of the sole, separation of the white line or erosion of heel10, and ridging of the dorsal claw wall11. 
Laminitis was also identified as a major cause for lameness in dairy cows12. However, it is still poorly understood 
what metabolic pathways might be affected by intensive feeding that eventually lead to clinically apparent inflam-
matory conditions such as laminitis. Laminitis is known to be a multifactorial disease, being a key symptom of 
metabolic disorders. Blood analyses of affected cows showed indications of inflammation and metabolic acidosis8, 
but did not provide more detailed insights into which pathways or metabolites are involved.

Metabolomics technologies provide a snapshot of the concentrations of a wide array of metabolites in a 
biological sample. As these metabolites are intermediary or end products of various metabolic pathways, this 
provides a good indication of the current metabolic condition. With the AbsoluteIDQ p180 Kit (Biocrates Life 
Sciences AG, Innsbruck, Austria), new biomarkers and affected pathways were successfully found in metabolic 
disorders like human diabetes13, insulin dysregulated horses14 and retained placenta in dairy cows15. This kit was 
established to identify metabolites of several pathways associated with changes in energy metabolism, amino 
acid metabolism, pro-inflammatory signaling, dysregulation of glucose and lipid metabolism, obesity-related 
disorders, insulin resistance, and mitochondrial dysfunction.

The major objective of this study was to investigate metabolic consequences of an experimental diet, compris-
ing a chronically increased nutrient (energy, starch and protein) intake delivered by additional dietary concen-
trate feed, in comparison to a feeding regimen only based on forage. Currently, our understanding about how 
these dietary factors modulate metabolic pathways is incomplete. We hypothesized that excessive intake of energy 
and protein provokes alterations of metabolism, reflected by quantifiable changes in the plasma metabolome, 
leading to a pro-inflammatory phenotype, clinically apparent as laminitis. Therefore, the aim of this study was 
to elucidate changes in metabolite profiles of Holstein bulls fed a high energy and protein diet (HEP), based on 
forage and a high level of concentrate versus bulls fed a low energy and protein diet (LEP), based on only for-
age. Further, we aimed to identify novel metabolites and associated metabolic pathways linked to a diet-related 
inflammatory phenotype reflected by laminitis. The outcome of this study allowed us (1) to characterize metabolic 
phenotype determined by a chronic intake of high energy and protein diet and associated with laminitis, and 
(2) to generate new hypothesis about the metabolic relationships between a high energy and protein intake and 
a systemic inflammatory phenotype for further mechanistic studies.

Results
Ingredients and chemical composition of the TMR are given in Tables 1 and 2, respectively. Data of feed intake, 
body weight and average daily gain (ADG) during experimental time is shown in Table 3. Intake of DM, average 
metabolizable energy (ME), crude protein (CP) and starch (CS) were on average greater in HEP than in LEP 
(means ± SEM; DM: 14.8 ± 0.1 kg/day vs 9.2 ± 0.1 kg/day, P < 0.001; ME: 169.0 ± 1.4 MJ ME/day vs 92.9 ± 1.3 MJ 
ME/day, P < 0.001; CP: 2.3 ± 0.02 kg/day vs 1.0 ± 0.01 kg/day, P < 0.001; CS: 4.4 ± 0.04 kg/day vs 1.1 ± 0.02 kg/
day, P < 0.001). Means of ADG during the experimental period were greater in HEP (1474 ± 45 g/day) than LEP 
(957 ± 53 g/day, P < 0.001) and HEP bulls were on average more than 100 kg heavier at slaughter.

To visualize how dietary treatments affected plasma metabolome and clinical status along the experimental 
period, results were presented by principal component analysis to reduce the dimensionality of the data set and 
enhance interpretability (Fig. 1a). Dietary groups had similar profiles at baseline, but a clear time-dependent shift 
along principal component (PC) 1 and strong separation between the feeding groups along PC2 were observed 
by the end of the trial. In order to demonstrate the dietary effects in more detail, Fig. 1b presents a scores plot 
of sparse partial least squares-discriminant analysis (sPLS-DA), showing the results of both feeding groups at 
the time of slaughter. The compounds contributing the most to the overall variance between feeding groups at 
slaughter are shown in Fig. 1c, by the loadings of component 1 of sPLS-DA. Most prominent was the laminitis 
score. Furthermore, 8 phosphatidylcholines (PC) with different length and urea concentration were listed. Clas-
sification error rates (cross validation) of sPLS-DA showed 0% error rates for the first 3 components and 3.3% 
for components 4 and 5, indicating that the fit of the sPLS-DA model was appropriate.

Claw disease.  Prevalence of claw disease at baseline and slaughter is presented in Table  4. None of the 
animals had digital dermatitis, tyloma, or interdigital phlegmon during the feeding trial. In both groups, occur-
rence of sole ulcers at typical and atypical localizations was less frequent at slaughter, while heel horn erosion and 
interdigital dermatitis occurred more frequently at slaughter. Only laminitis was highly influenced by dietary 

Table 1.   Ingredients of total mixed rations (TMR) fed during the experimental period. a DM dry matter, HEP 
high energy and protein diet, LEP low energy and protein diet.

Ingredients of TMRa

Feeding group

Component, % of DM HEP LEP

Grass silage 40.33 69.99

Corn silage 13.68 29.92

Concentrate feed (including minerals) 45.99 0

Salt 0 0.09
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treatment, all HEP animals, but none of LEP, had laminitis at slaughter. Evaluating the grade of the most fre-
quently occurred disease, score points of laminitis and heel horn erosion are shown in Fig. 2. Occurrence and 
severity of laminitis (Fig. 2a) increased over time only in HEP. Occurrence and severity of heel horn erosion 
(Fig. 2b) increased over time with no diet effects. Length of the dorsal claw wall was influenced by the diet, HEP 
having longer claw walls than LEP at slaughter (Table 4). The average thickness of the sole horn was reduced over 
time in both groups (Table 4). 

Carcass performance.  Carcasses of HEP showed higher fat and conformation classes than of LEP 
(Fig. 3a,b). Fat class was higher by 1.3 classes, and conformation class was higher by 0.4 classes in HEP.

Insulin and glucose profiles.  The effect on circulating insulin and glucose concentration is presented 
in Fig. 4. Insulin concentration was influenced by diet and interaction of time × diet. At slaughter, HEP had 2 
times greater insulin concentration than LEP (Fig. 4a). At the same time, glucose concentration was not influ-
enced by the diet (Fig. 4b, P = 0.794). Consequently, glucose-to-insulin ratio at slaughter was lower in HEP bulls, 
1.22 ± 0.08 mmol/10−3 g, compared to LEP, 2.95 ± 0.31 mmol/10−3 g (mean ± SEM; P < 0.001).

Metabolome profiles.  Figure 5 presents an overview of the metabolites of interest significantly differen-
tiating between HEP and LEP fed bulls, calculated by Euclidean cluster analysis and visualized in a heatmap. 
Features were grouped according to their substrate class. In all features, feeding groups expressed a specific 

Table 2.   Chemical composition of total mixed rations (TMR) fed during the experimental period. a DM dry 
matter, ME metabolizable energy, aNDFom neutral detergent fibre assayed with a heat stable amylase and 
expressed exclusive of residual ash, ADFom acid detergent fibre expressed exclusive of residual ash, HEP high 
energy and protein diet, LEP low energy and protein diet.

Chemical composition of TMRa

Feeding group

Item, g/kg of DM unless noted otherwise HEP LEP

DM, g/kg 510 369

ME, MJ/kg of DM 11.4 10.2

Crude protein 155.0 110.0

Crude fat 40.0 37.0

Crude fiber 171.0 239.0

aNDFom 356.0 428.0

ADFom 174.0 232.0

Ash 82.0 85.0

Total sugar 31.0 20.0

Total starch 297.0 123.0

Ca 6.6 5.2

P 3.6 2.7

Na 1.4 1.0

K 18.8 24.1

Mg 2.2 2.1

Table 3.   Feed intake, body weight and average daily gain during experimental period. A Means ± SD; 
a,b,c,d,e,f,g,h,ilevels not connected by the same letter are significantly different (P < 0.05). Effect of time P < 0.001, 
group P < 0.001, time × group P < 0.001; with the exception of body weight: effect of time × group P < 0.01.

Means per group/monthA
Feed intake
kg dry matter/day/animal

Body weight
kg

Average daily gain
g/day

Month of life HEP LEP HEP LEP HEP LEP

14 13.9 ± 0.7h,i 7.2 ± 0.51,i 527 ± 10.1h,i 501 ± 7.9i 1040 ± 424d 134 ± 407f

15 15.4 ± 0.6f,g 9.4 ± 0.5h,i 579 ± 11.1f,g 518 ± 8h,i 1883 ± 353a 590 ± 435e

16 15.5 ± 0.5d,e 9.4 ± 0.5g,h 633 ± 10.6d,e 552 ± 8.4g,h 1841 ± 229a 1198 ± 384b,c,d

17 15.6 ± 0.8c,d 9.9 ± 0.5f,g 676 ± 10.2c,d 581 ± 9f,g 1620 ± 228a 1077 ± 236d

18 14.1 ± 1.2b,c 9.4 ± 0.6e,f 710 ± 10.3bc 609 ± 9.5e,f 1149 ± 285d 970 ± 234d,e

19 13.9 ± 0.3b 10.3 ± 0.1d,e 753 ± 11.5b 652 ± 11d,e 1615 ± 471a,b 1573 ± 372a,b,c

20 13.1 ± 1.0a 10.2 ± 0.6bc 807 ± 9.4a 712 ± 11.5bc 1168 ± 338c,d 1156 ± 194c,d
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Figure 1.   Exploratory data analysis. (a) Principal component analyses (PCA) of the combined data set of blood 
metabolome, body weight, insulin concentration, laminitis score, heel horn erosion and interdigital dermatitis 
score. Group fed low energy and protein diet (LEP): baseline n = 11, slaughter n = 15. Group fed high energy and 
protein diet (HEP): baseline n = 13, slaughter n = 15. Each dot represents the data of one bull at one sampling 
day. (b) Scores plot of sparse partial least squares-discriminant analysis (sPLS-DA) between components 1 and 
2 applied to the dataset only at slaughter, n = 15 (blood metabolome, blood biochemistry, insulin concentration, 
body weight, laminitis score, heel horn erosion and interdigital dermatitis score). (c) Loadings of component 
1 calculated by sPLS-DA of the dataset at slaughter. The variables listed on the left were ranked by the absolute 
values of their loadings, the color scheme on the right shows relative differences of the compounds between the 
feeding groups at slaughter. PC x:y = Phosphatidylcholine with total length of x carbon atoms and y unsaturated 
bonds in its acyl chains, aa = diacyl, ae = acyl-alkyl.
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metabolite profile with high inter-individual variation. Figure 5a shows the distribution of claw diseases and 
growth performance. Figure 5b presents insulin and blood biochemistry. Only 5 out of 14 analyzed parameters 
of blood biochemistry showed a diet effect; namely urea, beta-hydroxybutyrate (BHB), glutamate dehydrogenase 
(GLDH) and phosphate, which were greater in HEP, and creatinine, which was lower in HEP. Concentrations of 
glucose, lactate, total protein, albumin, gamma-glutamyltransferase, aspartate aminotransferase, creatine kinase 
and non-esterified fatty acids did not differ between the feeding groups. A complete set of all blood biochemistry 
variables is listed in Supplementary Table S1. The substrate class of amino acids is demonstrated in Fig. 5c, 11 of 
them were greater in HEP including the 3 branched chain amino acids (BCAA) valine, leucine and isoleucine, 
the 3 aromatic amino acids (AAA) phenylalanine, tyrosine and tryptophan, as well as arginine, asparagine, thre-
onine and lysine. Figure 5d shows the non-proteinogenic amino acid ornithine, which was greater in HEP, and 3 
amino acid derivates acetylornithine, creatinine and trans-4-hydroxyproline, which were lower in HEP. Further-
more, 6 acylcarnitines were influenced by the diet (Fig. 5e), 5 short-chain acylcarnitines were lower in HEP, only 
dodecenoylcarnitine (C12:1) was greater in HEP. Figure 5f presents 7 sphingomyelins (SM), which were all lower 

Table 4.   Claw disease and size at the beginning of the trial (baseline, 13 months of age) and at slaughter 
(20 months of age). A Means ± SD, n = 15. Values in cm; a,b,cLevels not connected by the same letter are 
significantly different (P < 0.05).

Timepoint Baseline Slaughter Effect summary P values

Dietary treatment group HEP LEP HEP LEP Time Diet Time × diet

Affected animals per group %

Sole ulcer, atypical 33a 40a 0b 0b < 0.001 1.000 1.000

Sole ulcer, typical 47a 60a 7b 0b < 0.001 0.347 0.175

Laminitis 40a 13ab 100c 0b 1.000 < 0.001 < 0.001

Heel horn erosion 67a 60a 100b 100b < 0.001 1.000 1.000

Dermatitis interdigitalis 0a 0a 27ab 47b < 0.001 1.000 1.000

Dermatitis digitalis 0 0 0 0

Tyloma 0 0 0 0

Interdigital phlegmon 0 0 0 0

Length of the dorsal claw wallA

Digit cranial medial 8.1 ± 0.7b 8.3 ± 0.7a,b 8.9 ± 0.9a 7.7 ± 0.6b 0.650 < 0.05 < 0.001

Digit cranial lateral 8.2 ± 0.6a,b 8.2 ± 0.5a,b 8.7 ± 0.7a 7.8 ± 0.8b 0.922 < 0.01 < 0.05

Digit caudal medial 8.3 ± 0.6a,b 8.3 ± 0.5a,b 8.6 ± 1.0a 7.7 ± 0.7b 0.340 < 0.05 < 0.05

Digit caudal lateral 7.9 ± 0.5b 8 ± 0.6a,b 8.5 ± 0.8a 7.5 ± 0.6b 0.801 < 0.01 < 0.001

Thickness of the sole hornA (average of all digits) 0.7 ± 0.1 0.7 ± 0.1 0.6 ± 0.1 0.6 ± 0.2 < 0.05 0.611 0.279

Figure 2.   Claw disease. (a) Score points of laminitis and (b) score points of heel horn erosion at baseline 
and slaughter. Data shown as means ± SEM, n = 15, different letters indicate significant difference (P < 0.05). 
HEP = group fed high energy and protein diet, LEP = group fed low energy and protein diet.
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in the HEP group. Especially the substrate class of glycerophospholipids (Fig. 5g) was strongly influenced by the 
diet. Sixty of 76 measured PCs were significantly different between the feeding groups: the majority of them was 
lower in HEP, while the concentrations of PC aa 34:2 and of 3 lyso-PCs were greater in HEP (Fig. 5g). Diacyl 
(aa) and acyl-alkyl (ae) PCs showed an overall homogeneous pattern, so in Fig. 5g only 6 PCs are presented, 
representing the majority of PCs. All significantly different metabolites are listed in Supplementary Table S1.

Discussion
Our study demonstrated clear differences in metabolite profiles of Holstein fattening bulls, associated with an 
intensive feeding regimen consisting of increased starch and protein supply and with laminitis. Intensive fattening 
translates into promotion of daily weight gain and muscle fullness of carcass by chronic and excessive nutrient 
intake. However, in the present study the two feeding levels (HEP vs LEP) were chosen at experimentally high 
and experimentally low levels in order to provoke clear changes in metabolism. According to the guidelines of 
the Bavarian State Research Center for Agriculture (LfL)16, the protein and starch content of the HEP diet was 
above the recommended level, while metabolizable energy was still within the recommended range. In contrast, 
the metabolizable energy and protein and starch levels were below the recommended range in the LEP ration. 

Figure 3.   Carcass performance. (a) Fat class and (b) conformation class at slaughter. Data shown as 
means ± SEM, n = 15, different letters indicate significant difference (P < 0.05). HEP = group fed high energy and 
protein diet, LEP = group fed low energy and protein diet.

Figure 4.   Insulin and glucose profile. (a) Insulin concentration in serum at baseline and slaughter. (b) Glucose 
concentration in plasma at slaughter. Data shown as means ± SEM, n = 15, different letters indicate significant 
difference (P < 0.05). HEP = group fed high energy and protein diet, LEP = group fed low energy and protein diet.
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The effects of the dietary regimens can only be evaluated as a whole, and testing interactions between feed 
components was not possible.

The HEP bulls showed higher daily weight gains and final live weights than the LEP group, consistent with 
other studies which compared different fattening intensities4,17. The increased energy and protein intake led 
to a greater muscle fullness, but even more clearly to an adiposity of the animals. This could indicate that the 
20 months old animals reached nearly the limit of their protein accretion capacity and excess energy has been 
used mainly to increase fat depots. As a dairy breed, Holstein bulls have a lower ability of muscle accretion 
and a higher preference for fat deposition in comparison to beef breeds18. A shortened fattening period to 
compensate for this breed-related feature was not implemented, which possibly increased the negative effects 
of the HEP diet on the animals. A changed body mass composition with higher fat content is often associated 
with negative metabolic consequences. Summarized in various reviews, nutrient excess and obesity can lead to 
mitochondrial dysfunction, oxidative stress and also membrane and ER stress, which promotes impaired insulin 
signaling and increased inflammatory cytokine production19. Obesity in humans can lead to increased inflam-
matory mediators20, reduced insulin sensitivity or insulin resistance and type 2 diabetes21,22. This is similar to 

Figure 5.   Heatmap visualizing all differentiating metabolites of interest at slaughter of bulls fed high energy and 
protein (HEP) and low energy and protein (LEP) diet, including (a) claw disease and growth performance, (b) 
insulin and blood biochemistry, (c) amino acids, (d) amino acids related, (e) acylcarnitines, (f) sphingomyelins 
(SM), (g) lyso-phosphatidylcholines (PC), PC aa 34:2 and 6 representative diacyl (aa) and acyl-alkyl (ae) 
PC. Each column represents one animal’s metabolite profile. All significantly different results are shown in 
Supplementary Table S1, n = 15, *P < 0.05, **P < 0.01, ***P < 0.001.
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observations in horses, where increased body condition score is a predisposition factor for insulin dysregulation 
and laminitis23. Also, overweight cows struggled more to adapt their metabolism to the onset of lactation than 
lean ones24,25.

These associations are consistent with our result that HEP bulls had twice as high insulin concentrations than 
LEP bulls. In dairy heifers, hyperinsulinemia was defined as > 37.20 µIU/ml26. Mean concentration of insulin of 
IN bulls was 63.59 µIU/ml, and of MO bulls was 30.12 µIU/ml. The results of the studies are consistent, although 
different assays were used to analyze insulin. However, plasma glucose concentration was not different between 
feeding groups, which could therefore be termed as compensated insulin resistance. The glucose-to-insulin 
ratio, as a well-known marker for disturbances in insulin-glucose homeostasis in humans27,28, was indicating a 
decreased insulin sensitivity in HEP bulls. Reduced insulin sensitivity was also observed in heavy veal calves, 
determined by an euglycemic-hyperinsulinemic clamp29 due to intensive feeding.

Blood biochemistry of HEP bulls showed first indications of a potentially tensed metabolic situation due to 
greater concentrations of urea, phosphate, BHB and the enzyme GLDH. These alterations could indicate higher 
intake of protein, phosphate and higher production of butyrate in the rumen, which was metabolized to BHB30 
and a greater protein turn over. Interestingly, there was a remarkable inter-individual variation within the HEP 
group, especially concentrations of GLDH and BHB were very high in some HEP bulls. Greater concentrations 
of GLDH could be associated with liver cell damage31. Liver abscesses are often observed in feedlot cattle32, but 
were not observed during the routine meat inspection of these bulls. In the rumen of dairy cows, grain-rich 
diets led to increased concentrations of various potentially toxic metabolites, like methylamines and N-nitros-
odimethylamines33, which could lead to liver cell damage after absorption. Hence, increased concentrations of 
GLDH could indicate a higher metabolic stress level of the liver in HEP, compared to LEP.

To investigate metabolic pathways in more detail, and in an attempt to understand mechanisms and to gener-
ate new hypotheses, we also used a targeted metabolomics approach. The AbsoluteIDQ p180 Kit of Biocrates is 
specified, inter alia, for inflammation and type 2 diabetes in humans. It quantifies 21 amino acids, 21 biogenic 
amines, 1 hexose, 40 acylcarnitines, 15 sphingolipids, 14 lyso-PCs and 76 PCs. Especially the last three classes of 
metabolites seem to be important in the context of inflammation34–36. Although the kit was originally developed 
for human research, it was successfully used in various studies of cattle15,37–41.

In line with the results of blood biochemistry, concentrations of arginine, ornithine, and urea were greater 
in HEP. These metabolites take part in the urea cycle. Protein-rich diets can lead to increased ammonia concen-
trations in the rumen42, excess nitrogen has to be bound in urea during the urea cycle mainly in the liver, to be 
recycled to the digestive tract or excreted by the kidney43. Increased concentrations of these metabolites could 
also indicate a higher metabolic burden for the liver of HEP bulls.

Glycerophospholipids were found to be the metabolites with the greatest differences between the dietary 
groups. The class of PC was nearly in total (59 of 76 analyzed PC) lower in HEP. As components of mammalian 
cell membranes, these lipids influence fluidity of membranes and cell signaling35,44. This clear result highlighted 
the different metabolic states of the dietary groups. Decreased blood concentration of PCs could reflect increased 
remodeling or degradation of tissues and cells. Various signaling molecules can be generated from different 
PCs, like diacylglycerol, lyso-PCs, phosphatidic acid and arachidonic acid36. As an example, from PC aa/ae 40:4 
and chain length above, arachidonic acid (C20:4) and palmitate (C16:0) can be generated. These PCs with long 
chains were also lower in HEP bulls (Fig. 5g and Supplementary Table S1). So far, there are almost no studies 
on the individual and exact function of these lipids, but there are several studies which showed alterations of 
glycerophospholipids in diseases like diabetes45 and obesity21. Supporting the hypothesis that PCs are needed 
in case of cell damage and oxidative stress, it was observed in dairy cows around parturition that PC concentra-
tions in blood dramatically decreased and slowly increased again over weeks of early lactation38,46. Cell culture 
studies also showed anti-inflammatory effects35 and protective effects of PCs on ethanol-injured hepatocytes, 
by inhibition of lipid peroxidation47.

As mentioned above, PCs can be hydrolyzed by phospholipase A2 to arachidonic acid and lyso-PC. This 
pathway is activated by inflammatory signals48. Decreased concentrations of PCs and increased concentrations of 
lyso-PCs appeared to be associated with a proinflammatory status. Three lyso-PCs showed higher concentrations 
in HEP, particularly lyso-PC acyl C18:2 and lyso-PC acyl 14:0 seemed to be firmly associated with inflammation 
(Fig. 5g). Increased concentrations of these lyso-PCs were also observed as predictive biomarker in diseased 
cows 4 weeks before parturition in comparison to healthy cows. Diseased cows suffered from mastitis, metritis, 
retained placenta or laminitis or even combinations of these diseases after parturition40. Furthermore, lyso-PC 
acyl 18:2 was also correlated with insulin resistance in veal calves29.

Lower concentrations of SM observed in HEP bulls could reflect a higher consumption for repairing cell 
damage and can also be linked to a proinflammatory status. Decreased plasma levels of SM were also found in 
dairy cows around parturition38,49, in times of the highest metabolic stress. The enzyme sphingomyelinase can 
degrade sphingomyelin to ceramide and then to other bioactive lipids, like sphingosine or ceramide-1-phosphate. 
This pathway can be activated by inflammatory stimuli, like LPS, TNFα or oxidative stress and activates further 
cytokine production and increased permeability of endothelium34,50. Potentially generated ceramides could cause 
insulin resistance by inhibiting protein kinase B (Akt)34,51,52, which was also shown in bovine adipocytes53, linking 
decreased SM and impaired insulin sensitivity. This hypothesis is supported by lower plasma concentrations of 
some SM in insulin resistant veal calves29. Results of the mentioned study was not that clear, but the feeding trial 
only lasted for 13 weeks and animals were much younger than the animals in this study.

In the compound class of amino acids, especially concentrations of the BCAA and AAA were greater in HEP. 
Increased plasma concentrations of these amino acids have been associated with obesity, insulin resistance and 
type 2 diabetes in humans21,54,55. Interestingly, increased BCAA concentrations can act as predictive biomarker 
years before the occurrence of diabetes mellitus56. Further, it is known that in case of obesity, gene expression of 
BCAA catabolic pathway enzymes can be decreased. This could lead to accumulation of toxic amounts of BCAA 
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and their corresponding alpha-ketoacids, further resulting in mitochondrial dysfunction and stress signaling57. 
Reduced activity of BCAA degradation pathway could also be indicated by the result of lower concentration of 
propionylcarnitine (C3) and other short-chain acylcarnitines in HEP bulls. Short chain acylcarnitines can be 
derived from the oxidation products of BCAAs58. Another aspect is that BCAA can influence innate and adap-
tive immune system directly and indirectly through activation of mTOR by leucine. BCAA showed effects of 
upregulation of pro-inflammatory cytokines, immune function of neutrophils and can be taken as fuel sources 
for immune cells59. This could support a proinflammatory status suspected in HEP bulls. Further studies are 
warranted to confirm all these hypotheses.

All alterations in the metabolic profile of HEP bulls have in common that they indicate a metabolically 
tensed or even pathophysiological status of the animals. This is also reflected in the occurrence of the metabolic 
disorder laminitis, at slaughter only observed in HEP. The chronic excessive nutrient intake likely disturbed 
metabolic pathways in different ways to such an extent that biological balances could no longer be maintained. 
A hypothetical connection between the metabolite profiles and laminitis was shown in Fig. 6. There could be 
two major pathways towards laminitis, which are triggered by excessive nutrient intake and obesity. The first 
pathway is associated with inflammatory stimuli (Fig. 6a). Starch-rich diet could lead to rumen acidosis with 
leaky epithelium and increased concentrations of lipopolysaccharides in rumen and blood. Local and systemic 
inflammation is the consequence. A proinflammatory status is also triggered by obesity-related consequences 
mentioned above. Inflammation influences activity of many enzymes and transcript abundance of metabolic 
genes in the liver and thus affects energy metabolism as a whole60. Furthermore, inflammation influences vas-
cularization directly and could trigger laminitis through impaired vascularization in the blood vessels of the 
claws. The second pathway is related to a reduced insulin sensitivity resulting in compensatory hyperinsulinemia 
(Fig. 6b). Hyperinsulinemia can trigger laminitis in horses, histopathologically shown as dyskeratosis, increased 
apoptosis and proliferation of the epidermal lamellae in the corium of the hooves61. Particularly the combination 
of obesity, insulin dysregulation and glucose challenge combined are high risk factors for laminitis in horses62. 
This connection is not described in cattle yet. Further research is warranted to verify these hypotheses of laminitis 
pathogenesis, including time dependent metabolic changes in cattle.

Conclusion
A wide range of metabolic effects of a chronically increased nutrient (energy, starch and protein) intake was 
demonstrated by this metabolomics analysis, in an approach to better understand how blood metabolites change 
due to extreme feeding regimens. Most changes in metabolite profiles of HEP bulls were associated with negative 

Figure 6.   Proposed pathways from intensive finishing towards laminitis. (a) Possible alterations related 
to rumen acidosis, (b) possible alterations due to insulin resistance; both potentially causing metabolic 
inflammation and impaired vascularization which could provoke laminitis. Highlighted factors were 
observed in Holstein bulls fed high energy and protein diet. Arrows indicate direction of significantly 
different concentrations in comparison to the group fed low levels of energy and protein. Obesity refers to 
the documented fat class at slaughter. ROS reactive oxygen species, GLDH glutamate dehydrogenase, PC 
phosphatidylcholines, SM sphingomyelins, AA amino acids.



10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12735  | https://doi.org/10.1038/s41598-021-92163-6

www.nature.com/scientificreports/

alterations of the metabolism and are a reason for or the consequence of an enhanced metabolic risk to develop 
inflammatory metabolic disorders, such as laminitis. It can be concluded as a novel hypothesis, that especially 
lower concentrations of PC and SM and higher concentrations of lyso-PC, BCAA and AAA are associated with an 
inflammatory state of diet-related laminitis in Holstein fattening bulls. The latter two behave similarly to changes 
in metabolism of obese humans, indicating a conserved pathophysiological role across different species. Further 
research is needed to confirm these hypotheses, to understand the pathogenesis of laminitis and connections 
of metabolic pathways and individual metabolites. These considerations are of great importance not only for 
the optimal keeping and feeding of fattening bulls and other cattle, but also for nutritional physiology of other 
species affected by excessive nutrient intake.

Materials and methods
Experimental design.  The animal experiment was conducted from December 2017 to July 2018 at the 
Educational and Research Centre for Animal Husbandry, Hofgut Neumuehle, Germany. All experimental pro-
cedures were approved by the Animal Ethics Committee of the Department for Animal Welfare Affairs (Landes-
untersuchungsamt Rheinland-Pfalz, Koblenz, Germany) in agreement with the German Animal Welfare Act 
(permit number: G-17-20-070). All procedures were performed in accordance with the approved protocols, 
relevant guidelines, and regulations. The study was carried out in compliance with the ARRIVE guidelines.

Thirty-two Holstein Friesian bulls were raised with an identical rearing protocol at the Institute of Animal 
Nutrition, Federal Research Institute for Animal Health (Friedrich-Loeffler-Institut, Braunschweig, Germany). 
For the feeding trial, bulls were relocated to the Educational and Research Centre for Animal Husbandry (Hof-
gut Neumuehle, Muenchweiler a.d. Alsenz, Germany). Until the beginning of the experimental trial, bulls were 
further raised with a total mixed ration (TMR) based on forage and 15% concentrate of DM. Bulls were then 
randomly assigned to a high energy and protein (HEP) or a low energy and protein (LEP) nutritional regimen, at 
an average age of 13 months and average body weight of 500 kg (mean ± SD; HEP 506 ± 35 kg, LEP 499 ± 35 kg). 
They remained on their assigned nutritional regimen for the rest of the study period, 7 months, until slaughter. 
The diets were formulated according to the highest (HEP) and lowest (LEP) recommendations of the Bavarian 
State Research Center for Agriculture (LfL)16 including ME recommendations for Simmental fattening bulls. Dry 
matter of the LEP TMR consisted of 100% grass- and corn silage, and the HEP TMR consisted of 54% grass- and 
corn silage and 46% concentrate. The concentrate feed consisted of ground corn, rapeseed meal, ground wheat, 
palm kernel meal, wheat bran, molasses, and soybean meal, accounting for an elevated total sugar, total starch and 
crude protein, as well as a decreased fiber content of the HEP diet, relative to the LEP diet. The exact ingredients 
and chemical composition of the TMR are given in Tables 1 and 2, respectively. The nutrient composition of the 
TMR were analyzed by an accredited external laboratory (Landwirtschaftliche Untersuchungs- und Forschun-
gsanstalt, Speyer, Germany) according to the protocols of the Association of German Agricultural Analytic and 
Research Institutes63. The TMR was mixed every 2 days and bulls were fed at 7:30 a.m. daily. Provided feed and 
remaining feed was weighed and documented group-wise to calculate individual mean feed intake. Bulls were 
housed on slatted floor with rubber mats, in groups of 4 bulls with a space allowance of 2.9 m2/bull.

Collection of data and blood samples.  Live weight was recorded monthly. ADG was calculated from 
body weight with the exact number of days between weighing. At the beginning of the trial (13 months of age; 
“baseline”) and at the end (20 months of age; “slaughter) blood samples were taken and health of the claws were 
documented. Bulls were captured in a hoof trimming chute and health and size of all 4 claws of each animal were 
documented by trained personnel, using a scoring system according to Sohrt64. Length of the dorsal claw wall 
and thickness of the sole horn of all digits were measured. The following parameters were evaluated as signs of 
laminitis on the outer and inner digits: (a) concave dorsal claw wall: none = 0¸ low-grade = 1, high-grade = 2; (b) 
presence of ridging on the dorsal wall of the claw: absent = 0, present = 1; (c) wall defects: none = 0, low-grade = 1, 
high-grade = 2; (d) double sole: absent = 0, present = 1; (e) discolorations of the sole horn: absent = 0, yellow-
ish = 1, reddish = 2, black-red = 3. Score points were added to one value and maximum score points per foot were 
18, and per animal 72. Heel horn erosions were classified and scored on a scale of 0–4 per foot: occurrence on 
the inner and outer digit: none = 0, low-grade = 1, high-grade = 2. Scoring of interdigital dermatitis was classified 
as none = 0, superficial = 1, deep = 2. Sole ulcers at typical or atypical localizations were classified as none = 0, 
discoloration = 1, superficial = 2, deep = 3, perforating = 4. The presence of digital dermatitis, digital phlegmon 
and tyloma was also evaluated.

Blood samples were collected between 10 a.m. and 2 p.m., by jugular venipuncture into plain tubes for serum, 
and EDTA tubes and NaF tubes (S-Monovette, Sarstedt AG, Nümbrecht, Germany). The EDTA and NaF samples 
were centrifuged immediately after sampling at 3000 × g for 15 min. Serum samples were allowed to clot for 
45 min at 20 °C and then centrifuged at 3000 × g for 10 min. Plasma and serum samples were frozen at − 80 °C 
within 20 min after centrifugation and then continuously stored at − 80 °C until analysis.

A total of 30 animals completed the study; one bull was lost due to sudden death of unidentified cause and one 
other bull had to be culled before the end of experimental period due to tibial paralysis. Data and already taken 
samples were not excluded from the study. The 30 bulls that completed the study were slaughtered at an age of 
20 months. One day before slaughtering, blood samples were collected from all animals (second, post-treatment 
samples labeled as “slaughter”), using the same protocol as at baseline. Post mortem measurement and health 
score of the claws were documented again, with the same protocol which was used at baseline. Conformation and 
fat class was classified by a trained and experienced member of the slaughterhouse according to the European 
beef carcass classification system EUROP, where E is Excellent, U is Very Good, R is Good, O is Fair and P is 
Poor muscle development. Fat class is differentiated into 5 classes, where 1 is Low, 2 is Slight, 3 is Average, 4 is 
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High, and 5 is Very High amount of fat covering. Making the scoring blinded was not possible. Conformation 
classes were transformed to class numbers (Poor = 1—Excellent = 5) for statistical analyses.

Blood metabolite, hormone, and metabolome analyses.  At the time of slaughter, glucose and 
l-lactate in NaF plasma and urea, creatinine, total protein, albumin, aspartate aminotransferase, gamma-gluta-
myl transferase, glutamate dehydrogenase, creatine kinase, phosphate, beta-hydroxybutyrate and non-esterified 
fatty acids in serum were analyzed with UV or visible colorimetric spectroscopy based enzymatic assays on an 
automated analyzer (cobas c311 Analyzer, ROCHE, Mannheim, Germany). Insulin was measured in serum by a 
sandwich-ELISA (Bovine Insulin ELISA, 10-1201-01, Mercodia AB, Uppsala, Sweden) according to the manu-
facturer’s protocol at baseline and slaughter timepoints.

Metabolomics analysis was performed using EDTA plasma at baseline and slaughter. The metabolome analy-
sis was carried out using the AbsoluteIDQ p180 Kit (Biocrates Life Science AG, Innsbruck, Austria) according 
to the manufacturer´s protocol with modifications pointed out below. This kit identifies and quantifies up to 
188 metabolites from 5 compound classes: acylcarnitines (40), proteinogenic and modified amino acids (19), 
glycerophospho- and sphingolipids (76 phosphatidylcholines, 14 lysophosphatidylcholines, 15 sphingomyelins), 
biogenic amines (19) and hexoses (1). The amino acids and biogenic amines were analyzed by liquid chroma-
tography–mass spectrometry (LC–MS/MS) and the substance classes of acylcarnitines, phosphatidylcholines 
(including lyso-phosphatidylcholines), sphingomyelins and hexoses were analyzed by flow injection analysis—
mass spectrometry (FIA-MS/MS) at the Core Facility of the University of Hohenheim (Stuttgart, Germany). 
Internal standard, PBS (phosphate buffer saline), calibration standards (“Cal 0.25”, “Cal 0.5”, Cal 1–6), quality 
control samples (QC 1–3) and EDTA plasma samples (10 µL) were applied and dried onto the matrix of the 
multititer plate provided in the kit under nitrogen flow (nitrogen evaporator 96 well plate, VLM GmbH, Biele-
feld, Germany) for 30 min. “Cal 0.25” and “Cal 0.5” were 4 × and 2 × dilutions of the lowest calibrator solution 
included in the kit, respectively. These were used to enhance accuracy in the lower detection range, according to 
consultation with the manufacturer. The rest of the analytical procedures were carried out analogously to previous 
measurements described in Kenéz et al.38. Dried samples were derivatized with 5% phenylisothiocyanate (PITC) 
for 20 min at room temperature and subsequently dried for another 60 min under nitrogen flow. Samples were 
extracted in 300 µL of extraction solvent (5 mM ammonium acetate in methanol) with shaking at 450 rpm for 
30 min at room temperature. Eluted extracts were 10 × diluted in 40% HPLC grade methanol for LC–MS analysis 
and 50 × diluted in the provided mobile phase solvent for FIA-MS/MS analysis. Both types of measurements were 
performed on a QTRAP mass spectrometer applying electrospray ionization (ESI) (ABI Sciex API 5500Q-TRAP). 
The MS was coupled to an ultra-performance liquid chromatography (UPLC) (Agilent 1290, Agilent, Waldbronn, 
Germany). In case of LC–MS the metabolites were separated by a hyphenated reverse phase column (Waters, 
ACQUITY BEH C18, 2.1 × 75 mm, 1.7 µm; Waters, Milford, United States) preceded with a precolumn (Security 
Guard, Phenomenex, C18, 4 9 3 mm; Phenomenex, Aschaffenburg, Germany) applying a gradient of solvent A 
(formic acid 0.2% in water) and solvent B (formic acid 0.2% in acetonitrile) over 7.3 min (0.45 min 0% B, 3.3 min 
15% B, 5.9 min 70% B, 0.15 min 70% B, 0.5 min 0% B) at a flow rate of 800 µL/min. Oven temperature was 50 °C. 
For LC–MS analysis 5 µL, and for FIA 20 µl were subjected for measurements in both positive and negative 
mode. Identification and quantification were achieved by multiple reaction monitoring (MRM) standardized by 
applying spiked-in isotopically labelled standards in both positive and negative mode. A calibrator mix consist-
ing of eight different concentrations was used for calibration. Quality controls deriving from lyophilized human 
plasma samples were included for 3 different concentration levels. For FIA an isocratic method was used (100% 
organic running solvent) with varying flow conditions (0 min, 30 µL/min; 1.6 min 30 µL/min; 2.4 min, 200 µL/
min; 2.8 min, 200 µL/min; 3 min 30 µL/min), and the MS settings were as follows: scan time 0.5 s, IS voltage for 
positive mode 5500 V, for negative mode − 4500 V, source temperature 200 °C, nitrogen as collision gas medium; 
the corresponding parameters for LC–MS were: scan time 0.5 s, source temperature 500 °C, nitrogen as collision 
gas medium). All reagents used in the processing and analysis were of LC–MS grade, unless otherwise stated. 
Milli-Q Water ultrapure was used fresh after being prepared by the high-purity water system by Merck KGaA 
(Darmstadt, Germany). LC–MS grade acetonitrile (83640.3201, VWR), Water (83645.320, VWR) and methanol 
(1.000971.500), as well as pyridine for analysis (1.09728.0100) and formic acid (98–100%; 1.000263.1000) were 
purchased by Merck KGaA. PITC (P10034-10) and ammoniumacetate (81.7838-50) were purchased by Sigma 
Aldrich Chemie GmbH (Steinheim, Germany). Raw data of the Analyst software (AB Sciex, Framingham, MA, 
USA) were processed by the MetIDQ software which is an integrated part of the p180 Kit (Biocrates Life Sciences 
AG). This streamlines data analysis by automated calculation of metabolite concentrations providing quality 
measures and quantification38. Before integrating LC–MS data in MetIDQ, it was validated in Analyst software. 
For fully quantitative measurements of the p180 Kit, the lower limit of quantification (LLOQ) was determined 
in plasma experimentally by the manufacturer.

Data analysis and visualization.  Metabolites were excluded from the analyses if ≥ 70% of samples were 
0  µmol/L. Following metabolites were excluded: spermine, phenylethylamine, dopamine, dihydroxyphenyla-
lanine, cis-4-hydroxyproline and sphingomyelin 22:3. Data of the remaining 182 plasma metabolites [absolute 
concentrations (µmol/L) of compounds] were analyzed in MetaboAnalyst 4.065 after normalization by log trans-
formation and Pareto scaling. The functions used were: principal component analysis (PCA), to depict how vari-
ation in the data was distributed across the sampling days and to show the variation between the animals, and 
sparse partial least squares discriminant analysis (sPLS-DA) to identify which compounds were most account-
able for the variation between the dietary treatment groups. The sPLS-DA model was quality checked by cross 
validation. Furthermore, a heatmap was created to visualize differences between the dietary groups at slaugh-
ter. In addition, JMP.Pro 15 (SAS Institute, Cary, NC, USA) was used to detect significant differences between 
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the groups by unpaired Student’s t-test of fat class, conformation class and metabolites [including glucose and 
glucose-to-insulin (G:I) ratio] at slaughter. The G:I ratio was calculated according to Legro27. Repeated measure 
two-way ANOVA was performed to detect effects of time, diet and time × diet interaction on concentration of 
insulin and score points of laminitis and heel horn erosion, length and thickness of the claws, feed intake, body 
weight and ADG. Significant interactions were afterwards checked by HSD Tukey post-hoc test. Data of lami-
nitis and heel horn erosion were normalized by log transformation before performing the ANOVA. Nominal 
logistic regression was used to detect effects of time, group and time × group interaction on prevalence of claw 
diseases, tested by Likelihood ratio tests. Differences in prevalence of claw diseases between groups and time-
points were tested by Fisher’s exact test. Level of significance was set at P < 0.05. Important findings were visual-
ized with bar charts performed in JMP.Pro 15.

Data availability
Original data are available from the corresponding author upon reasonable request.

Received: 16 December 2020; Accepted: 3 June 2021

References
	 1.	 Volek, J. S. & Feinman, R. D. Carbohydrate restriction improves the features of metabolic syndrome. Metabolic syndrome may be 

defined by the response to carbohydrate restriction. Nutr. Metab. 2, 1–17 (2005).
	 2.	 Frank, N., Geor, R. J., Bailey, S. R., Durham, A. E. & Johnson, P. J. Equine metabolic syndrome. J. Vet. Intern. Med. 24, 467–475 

(2010).
	 3.	 Frutos, J. et al. Early feed restriction programs metabolic disorders in fattening merino lambs. Animals 8, 83 (2018).
	 4.	 Liu, J. et al. Effects of the acid-base treatment of corn on rumen fermentation and microbiota, inflammatory response and growth 

performance in beef cattle fed high-concentrate diet. Animal 14, 1876–1884 (2020).
	 5.	 Kroll, L. K. et al. Effects of tail docking on health and performance of beef cattle in confined, slatted-floor feedlots. J. Anim. Sci. 

92, 4108–4114 (2014).
	 6.	 Magrin, L. et al. Risk factors for claw disorders in intensively finished charolais beef cattle. Prev. Vet. Med. 175, 104864 (2020).
	 7.	 Bargai, U., Shamir, I., Lublin, A. & Bogin, E. Winter outbreaks of laminitis in dairy calves: Aetiology and laboratory, radiological 

and pathological findings. Vet. Rec. 131, 411–414 (1992).
	 8.	 Thoefner, M. B. et al. Acute bovine laminitis: A new induction model using alimentary oligofructose overload. J. Dairy Sci. 87, 

2932–2940 (2004).
	 9.	 Danscher, A. M. et al. Oligofructose overload induces lameness in cattle. J. Dairy Sci. 92, 607–616 (2009).
	10.	 Smilie, R. H. et al. Prevalence of lesions associated with subclinical laminitis in first-lactation cows from herds with high milk 

production. J. Am. Vet. Med. Assoc. 208, 1445–1451 (1996).
	11.	 Greenough, P. R. et al. Laminitis-like changes in the claws of feedlot cattle. Can. Vet. J. 31, 202–208 (1990).
	12.	 Sagliyan, A., Gunay, C. & Han, M. C. Prevalence of lesions associated with subclinical laminitis in dairy cattle. Isr. J. Vet. Med. 65, 

27–33 (2010).
	13.	 Lotta, L. A. et al. Genetic predisposition to an impaired metabolism of the branched-chain amino acids and risk of type 2 diabetes: 

A mendelian randomisation analysis. PLoS Med. 13, E1002179 (2016).
	14.	 Kenéz, Á., Warnken, T., Feige, K. & Huber, K. Lower plasma trans-4-hydroxyproline and methionine sulfoxide levels are associated 

with insulin dysregulation in horses. BMC Vet. Res. 14, 146 (2018).
	15.	 Dervishi, E., Zhang, G., Mandal, R., Wishart, D. S. & Ametaj, B. N. Targeted metabolomics: New insights into pathobiology of 

retained placenta in dairy cows and potential risk biomarkers. Animal 12, 1050–1059 (2018).
	16.	 Bayerische Landesanstalt Für Landwirtschaft. Gruber Tabelle Zur Fütterung In Der Rindermast. 19th Ed. (Medienhaus Kastner Ag, 

2014).
	17.	 Nogalski, Z. et al. The effect of slaughter weight and fattening intensity on changes in carcass fatness in young Holstein-Friesian 

bulls. Ital. J. Anim. Sci. 13, 2824 (2014).
	18.	 Pfuhl, R. et al. Beef versus dairy cattle: A comparison of feed conversion, carcass composition, and meat quality. Arch. Tierz. 50, 

59–70 (2007).
	19.	 Odegaard, J. I. & Chawla, A. Pleiotropic actions of insulin resistance and inflammation in metabolic homeostasis. Science 339, 

166–172 (2013).
	20.	 Monteiro, R. & Azevedo, I. Chronic inflammation in obesity and the metabolic syndrome. Mediat. Inflamm. 2010, 289645 (2010).
	21.	 Carayol, M. et al. Blood metabolic signatures of body mass index: A targeted metabolomics study in the epic cohort. J. Proteome 

Res. 16, 3137–3146 (2017).
	22.	 Després, J.-P. & Lemieux, I. Abdominal obesity and metabolic syndrome. Nature 444, 881–887 (2006).
	23.	 Treiber, K. H. et al. Evaluation of genetic and metabolic predispositions and nutritional risk factors for pasture-associated laminitis 

in ponies. J. Am. Vet. Med. Assoc. 228, 1538–1545 (2006).
	24.	 Rukkwamsuk, T., Kruip, T. A. & Wensing, T. Relationship between overfeeding and overconditioning in the dry period and the 

problems of high producing dairy cows during the postparturient period. Vet. Q. 21, 71–77 (1999).
	25.	 Ametaj, B. N. et al. Strong relationships between mediators of the acute phase response and fatty liver in dairy cows. Can. J. Anim. 

Sci. 85, 165–175 (2005).
	26.	 Adamiak, S. J., Mackie, K., Watt, R. G., Webb, R. & Sinclair, K. D. Impact of nutrition on oocyte quality: Cumulative effects of body 

composition and diet leading to hyperinsulinemia in cattle. Biol. Reprod. 73, 918–926 (2005).
	27.	 Legro, R. S., Finegood, D. & Dunaif, A. A fasting glucose to insulin ratio is a useful measure of insulin sensitivity in women with 

polycystic ovary syndrome. J. Clin. Endocrinol. Metab. 83, 2694–2698 (1998).
	28.	 Silfen, M. E. et al. Comparison of simple measures of insulin sensitivity in young girls with premature adrenarche: The fasting 

glucose to insulin ratio may be a simple and useful measure. J. Clin. Endocrinol. Metab. 86, 2863–2868 (2001).
	29.	 Pantophlet, A. J. et al. The use of metabolic profiling to identify insulin resistance in veal calves. PLoS ONE 12, E0179612 (2017).
	30.	 Quigley, J. D., Smith, Z. P. & Heitmann, R. N. Changes in plasma volatile fatty acids in response to weaning and feed intake in 

young calves. J. Dairy Sci. 74, 258–263 (1991).
	31.	 West, H. J. Clinical and pathological studies in cattle with hepatic disease. Vet. Res. Commun. 21, 169–185 (1977).
	32.	 Nagaraja, T. G. & Chengappa, M. M. Liver abscesses in feedlot cattle: A review. J. Anim. Sci. 76, 287–298 (1998).
	33.	 Ametaj, B. N. et al. Metabolomics reveals unhealthy alterations in rumen metabolism with increased proportion of cereal grain 

in the diet of dairy cows. Metabolomics 6, 583–594 (2010).
	34.	 Maceyka, M. & Spiegel, S. Sphingolipid metabolites in inflammatory disease. Nature 510, 58–67 (2014).
	35.	 Treede, I. et al. Anti-inflammatory effects of phosphatidylcholine. J. Biol. Chem. 282, 27155–27164 (2007).



13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12735  | https://doi.org/10.1038/s41598-021-92163-6

www.nature.com/scientificreports/

	36.	 Cui, Z. & Houweling, M. Phosphatidylcholine and cell death. Biochim. Biophys. Acta 1585, 87–96 (2002).
	37.	 Huber, K. et al. Metabotypes with properly functioning mitochondria and anti-inflammation predict extended productive life 

span in dairy cows. Sci. Rep. 6, 24642 (2016).
	38.	 Kenéz, Á., Dänicke, S., Rolle-Kampczyk, U., Bergen, M. V. & Huber, K. A metabolomics approach to characterize phenotypes of 

metabolic transition from late pregnancy to early lactation in dairy cows. Metabolomics 12, 165 (2016).
	39.	 Humer, E. et al. Supplementing phytogenic compounds or autolyzed yeast modulates ruminal biogenic amines and plasma metabo-

lome in dry cows experiencing subacute ruminal acidosis. J. Dairy Sci. 101, 9559–9574 (2018).
	40.	 Hailemariam, D. et al. Identification of predictive biomarkers of disease state in transition dairy cows. J. Dairy Sci. 97, 2680–2693 

(2014).
	41.	 Ghaffari, M. H. et al. Metabolomics meets machine learning: Longitudinal metabolite profiling in serum of normal versus over-

conditioned cows and pathway analysis. J. Dairy Sci. 102, 11561–11585 (2019).
	42.	 Bunting, L. D., Boling, J. A., Mackown, C. T. & Davenport, G. M. Effect of dietary protein level on nitrogen metabolism in the 

growing Bovine: II. Diffusion into and utilization of endogenous urea nitrogen in the rumen. J. Anim. Sci. 67, 820–826 (1989).
	43.	 Marini, J. C. & Van Amburgh, M. E. Nitrogen metabolism and recycling in holstein heifers. J. Anim. Sci. 81, 545–552 (2003).
	44.	 Van Der Veen, J. N. et al. The critical role of phosphatidylcholine and phosphatidylethanolamine metabolism in health and disease. 

Biochim. Biophys. Acta 1859, 1558–1572 (2017).
	45.	 Suhre, K. et al. Metabolic footprint of diabetes: A multiplatform metabolomics study in an epidemiological setting. PLoS ONE 5, 

E13953 (2010).
	46.	 Imhasly, S. et al. Blood plasma lipidome profile of dairy cows during the transition period. BMC Vet. Res. 11, 252 (2015).
	47.	 Zhang, Y. et al. Protective effect of phosphatidylcholine on restoration of ethanol-injured hepatocytes related with Caveolin-1. J. 

Membr. Biol. 247, 73–80 (2014).
	48.	 Kabarowskia, J. H., Xu, Y. & Witte, O. N. Lysophosphatidylcholine as a ligand for immunoregulation. Biochem. Pharmacol. 64, 

161–167 (2002).
	49.	 Rico, J. E. et al. Temporal changes in sphingolipids and systemic insulin sensitivity during the transition from gestation to lactation. 

PLoS ONE 12, E0176787 (2017).
	50.	 Hannun, Y. A. & Obeid, L. M. Principles of bioactive lipid signalling: Lessons from sphingolipids. Nat. Rev. Mol. Biol. 9, 139–150 

(2008).
	51.	 Larsen, P. J. & Tennagels, N. On ceramides, other sphingolipids and impaired glucose homeostasis. Mol. Metab. 3, 252–260 (2014).
	52.	 Holland, W. L. & Summers, S. A. Sphingolipids, insulin resistance, and metabolic disease: New insights from in vivo manipulation 

of sphingolipid metabolism. Endocr. Rev. 29, 381–402 (2008).
	53.	 Rico, J. E. et al. Hot topic: Ceramide inhibits insulin sensitivity in primary bovine adipocytes. J. Dairy Sci. 101, 3428–3432 (2018).
	54.	 Newgard, C. B. et al. A branched-chain amino acid-related metabolic signature that differentiates obese and lean humans and 

contributes to insulin resistance. Cell Metab. 9, 311–326 (2009).
	55.	 Ahola-Olli, A. V. et al. Circulating metabolites and the risk of type 2 diabetes: A prospective study of 11,896 young adults from 

four finnish cohorts. Diabetologia 62, 2298–2309 (2019).
	56.	 Wang, T. J. et al. Metabolite profiles and the risk of developing diabetes. Nat. Med. 17, 448–453 (2011).
	57.	 Lynch, C. J. & Adams, S. H. Branched-chain amino acids in metabolic signalling and insulin resistance. Nat. Rev. Endocrinol. 10, 

723–736 (2014).
	58.	 Bieber, L. L. & Choi, Y. R. Isolation and identification of aliphatic short-chain acylcarnitines from beef heart: Possible role for 

carnitine in branched-chain amino acid metabolism. Proc. Natl. Acad. Sci. U. S. A. 74, 2795–2798 (1977).
	59.	 Zhang, S., Zeng, X., Ren, M., Mao, X. & Qiao, S. Novel metabolic and physiological functions of branched chain amino acids: A 

review. J. Anim. Sci. Biotechnol. 8, 10 (2017).
	60.	 Bradford, B. J., Mamedova, L. K., Minton, J. E., Drouillard, J. S. & Johnson, B. J. Daily injection of tumor necrosis factor-{Alpha} 

increases hepatic triglycerides and alters transcript abundance of metabolic genes in lactating dairy cattle. J. Nutr. 139, 1451–1456 
(2009).

	61.	 Asplin, K. E., Patterson-Kane, J. C., Sillence, M. N., Pollitt, C. C. & Mc Gowan, C. M. Histopathology of insulin-induced laminitis 
in ponies. Equine Vet. J. 42, 700–706 (2010).

	62.	 De Laat, M. A., Mcgowan, C. M., Sillence, M. N. & Pollitt, C. C. Hyperinsulinemic laminitis. Vet. Clin. N. Am. Equine Pract. 26, 
257–264 (2010).

	63.	 Verband Deutscher Landwirtschaftlicher Untersuchungs- Und Forschungsanstalten. Handbuch Der Landwirtschaftlichen Versuchs- 
Und Untersuchungsmethodik (Vdlufa-Methodenbuch). Bd. Iii. Die Chemische Untersuchung Von Futtermitteln (Vdlufa-Verlag, 2007).

	64.	 Sohrt, J. T. Determination of Standard Measurements For Claw Trimming by Investigations of the Relation Between the Internal 
Anatomical Structure and the Horn Capsule of Claws from Hind Legs of German Black Pied Cattle with Consideration of Laminitis 
Lesions. Phd Thesis (Tierärztliche Hochschule Hannover, 1999).

	65.	 Chong, J., Wishart, D. S. & Xia, J. Using metaboanalyst 4.0 for comprehensive and integrative metabolomics data analysis. Curr. 
Protoc. Bioinform. 68, E86 (2019).

Acknowledgements
We gratefully acknowledge the financial support by the H. Wilhelm Schaumann Stiftung supporting the PhD 
study of the first author. We also thank Gabriela Knubben-Schweizer (Klinik für Wiederkäuer, Ludwig-Max-
imilian University of Munich, Germany), Iris Klaiber (Core Facility Hohenheim, University of Hohenheim, 
Stuttgart, Germany) and the staff, especially Günter Backhaus, of the Educational and Research Center of Animal 
Husbandry, Hofgut Neumuehle (Muenchweiler a.d. Alsenz, Germany).

Author contributions
C.K., T.S., K.H., U.M., and S.D. designed and supervised the entire study. T.S., C.K. and S.C.B. were responsible 
for performing the underlying animal experiment and the generation of all non-metabolomics data. S.C.B., K.H. 
and Á.K. prepared statistical and bioinformatics analyses of the animal performance and metabolomics data, 
wrote the manuscript and prepared the figures. All authors revised and approved the manuscript.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12735  | https://doi.org/10.1038/s41598-021-92163-6

www.nature.com/scientificreports/

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​92163-6.

Correspondence and requests for materials should be addressed to K.H.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

https://doi.org/10.1038/s41598-021-92163-6
https://doi.org/10.1038/s41598-021-92163-6
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Association between alterations in plasma metabolome profiles and laminitis in intensively finished Holstein bulls in a randomized controlled study
	Results
	Claw disease. 
	Carcass performance. 
	Insulin and glucose profiles. 
	Metabolome profiles. 

	Discussion
	Conclusion
	Materials and methods
	Experimental design. 
	Collection of data and blood samples. 
	Blood metabolite, hormone, and metabolome analyses. 
	Data analysis and visualization. 

	References
	Acknowledgements


