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Structure sampling 
for computational estimation 
of localized DNA interaction rates
Sarika Kumar1, Julian M. Weisburd1 & Matthew R. Lakin1,2,3*

Molecular circuits implemented using molecular components tethered to a DNA tile nanostructure 
have certain advantages over solution-phase circuits. Tethering components in close proximity 
increases the speed of reactions by reducing diffusion and improves scalability by enabling reuse of 
identical DNA sequences at different locations in the circuit. These systems show great potential for 
practical applications including delivery of diagnostic and therapeutic molecular circuits to cells. When 
modeling such systems, molecular geometry plays an important role in determining whether the 
two species interact and at what rate. In this paper, we present an automated method for estimating 
reaction rates in tethered molecular circuits that takes the geometry of the tethered species into 
account. We probabilistically generate samples of structure distributions based on simple biophysical 
models and use these to estimate important parameters for kinetic models. This work provides a basis 
for subsequent enhanced modeling and design tools for localized molecular circuits.

Molecular computing is a promising research area, as autonomous molecular devices could be used to sense 
their environment and activate a response based on complex information processing. They therefore have great 
potential in biomedical diagnostics1 and drug delivery2. These systems can be implemented using solution-phase 
or localized circuits. In solution-phase circuits, molecular components diffuse freely in solution which limits the 
interaction rates of the molecular species and increases the chance of crosstalk. Tethering molecular components 
to a surface accelerates computation as the interacting species do not have to diffuse closer in order to interact3. 
Such systems are also more scalable as identical sequences can be safely reused in different locations4. DNA 
origami5 has proven to be a reliable method for implementing spatially addressable nanostructures6, exploiting 
the sequence specificity of DNA hybridization to assemble strands into programmed nanoscale structures such 
as molecular computing circuits4. In this work, we study the problem of computationally designing tethered 
molecular circuits, in particular, the question of estimating reaction rates from a high-level description of circuit 
geometry.

Toehold-mediated DNA strand displacement (TMSD) reactions are a promising approach for implementing 
enzyme-free molecular circuits7. TMSD is a class of reactions in which an incoming strand of DNA displaces 
another strand that is initially bound to a third strand, with the binding nucleated by a short overhanging “toe-
hold” domain8,9. Various DNA devices have been built using this mechanism like logic circuits10–12, molecular 
motors8,13, neural networks14,15, and catalytic signal amplifiers16. To effectively design such circuits, it is critical 
to understand the relevant reaction kinetics. Previously Zhang et al.17 demonstrated that the kinetics of strand 
displacement reactions can be modulated via the length of the toehold. The hybridization rate constant of an 
unknown sequence has also been predicted using a machine-learning model trained on similar reactions with 
experimentally measured rate constants18. Srinivas et al.19 estimated the kinetics of strand displacement reac-
tions using both secondary structure modeling and also used a coarse-grained molecular model called oxDNA20. 
The oxDNA model incorporates biophysical details such as the geometric and steric effects of single and double 
stranded nucleic acids. However, all of the above work focuses on solution-phase molecular circuits; in this 
paper, we use simple computational modeling techniques to estimate similar rate constants for TMSD reactions 
localized to a surface.

Experimentally determining the kinetics of localized reactions is difficult because the components are not 
freely diffusing in the bulk solution, therefore they occur relatively rapidly. This makes it hard to accurately 
measure the rates of localized reactions. Therefore, in this work we take a computational approach to estimating 
these reaction rates. This approach is complicated by the fact that one cannot make many simplifying assumptions 
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as can be done in the case of solution-phase circuits. In particular, in solution we can assume that interacting 
components can rotate and translate into whatever relative positioning is required for the reaction to proceed, 
and this is reflected in the value of the corresponding bimolecular rate constant. However, in localized circuits the 
conformations and motions of the reactants are restricted and we must therefore consider the molecular geometry 
of the interacting species in our models. In this paper, we probabilistically estimate the rates of localized toehold 
binding reactions by randomly sampling an ensemble of structures for each of the reactants, based on simple 
biophysical models that account for molecular geometry. We choose this approach because of its simplicity, which 
offers the potential for such computations to be run rapidly within an automated system for compiling structural 
models of DNA circuits into kinetic models. Indeed, one of us has previously published such a system21, though 
it lacked the ability to automatically infer rate constants that we demonstrate here.

Early theoretical work proposed DNA architectures for localized circuits22,23. More recently, Dalchau et al.24 
analyzed the behavior of localized logic circuits using the chemical master equation, which can be applied due to 
the low number of total states in a localized system. That work aimed to approximate the kinetics of the studied 
localized reactions via the local concentration approach25. Briefly, this approach aims to scale the rate constant 
values for corresponding reactions in the solution-phase into appropriate rate constant values for the localized 
reaction, by multiplying by a factor which we refer to as the local concentration. We consider the rate constant 
for a localized reaction to be unimolecular because both “reactant” structures are tethered to the same underly-
ing DNA origami nanostructure and therefore are not diffusing independently throughout a bulk solution. To 
see why this scaling is necessary, note that the unit of the rate constant of a bimolecular reaction is M−1s−1 , 
whereas the unit of the rate constant of a unimolecular reaction is s−1 . Therefore, to convert from a bimolecular 
rate constant to a unimolecular one, one must multiply by a concentration. A helpful informal interpretation 
of this concentration is that it represents the apparent concentration of one reactant that would be required in 
bulk solution to produce the same overall rate of the reaction as is observed by the other reaction in the local-
ized version of the reaction. The goal of this work is to computationally determine the local concentration from 
a specific localized reaction of interest, derived from previous work by Chatterjee et al.4.

In tethered molecular computing systems, components are attached to a surface and are therefore constrained 
in their physical location and orientation. In particular, the components may not interact if they are positioned 
too far apart or their orientation relative to each other is wrong. In previous work, we have tackled this problem 
by translating a tethered molecular circuit into a constraint problem that represents all the possible physical con-
figurations of the molecular components and used satisfaction modulo theories (SMT) solving to automatically 
determine whether a given structural arrangement of the DNA domains is physically plausible26. However, that 
work only gives a binary “yes/no” answer on whether a given reaction could occur, with no consideration of the 
reaction rate. Recently, Chatterjee et al.4 demonstrated the experimental implementation of tethered molecular 
logic circuits on DNA origami tiles. As outlined in Fig. 1, we use the hairpin-based signal transmission wire from 
that work as our running example to demonstrate our computational approach. Using the same inter-hairpin 
distance and domain lengths as in that paper, we use a number of simple, parameterized biophysical models to 
estimate the ensemble of possible physical conformations of the structures, and use these to estimate the reaction 
rates between tethered molecular species via the local concentration approach. Taking account of domain lengths 
and angles between the domains, we first generate the structures and then we predict the probability that the 
two complementary domains will be colocated, given the biophysical constraints. Then we use this information 
to estimate the local concentration for the reaction system and compare it to a valued inferred from previous 
experimental work4. This work therefore develops a system that uses simple biophysical models to automatically 
derive estimates of this parameter via a “bottom-up” approach.

Results
Parameterized biophysical model.  We made some assumptions to simplify our biophysical model. 
First, we model the structures under study as DNA domains connected by joints. Each domain is either double-
stranded or single-stranded. We model double-stranded domains as rigid rods and single-stranded domains 
as freely-jointed chains. The domains are connected by a joint which may be infinitely flexible or may be con-
strained, depending on the type of domains that it connects. We assume that the length of the bonds between the 
complementary bases is zero. This keeps the biophysical model simple, although parameterizing the model with 
distinct distributions for the lengths of, and angles between, domains allows us to investigate a range of models 
using this overarching framework, as outlined below. The choice made for the distributions of the biophysical 
parameters affects the structures generated. We consider four different models, termed UU, UN, WU, and WN, 
which are summarized in Table 1 and outlined in more detail in the “Methods” section. The key distinctions are 
the distributions used to model the lengths of the single-stranded domains and the possible angles between adja-
cent double-stranded domains. Briefly, the UU and UN models draw single-stranded DNA (ssDNA) domain 
lengths from a uniform distribution, whereas the WU and WN models draw ssDNA domain lengths from a 
worm-like chain distribution. Similarly, the UU and WU models draw angles between double-stranded DNA 
(dsDNA) domains from a uniform distribution, whereas the UN and WN models draw angles between dsDNA 
domains from a distribution derived empirically from previously reported computational modeling work4.

Structure sampling to analyze a localized hairpin interaction.  We used the structure sampling 
approach (outlined in “Methods”) to analyze the intramolecular step in a hairpin-based signal transmission 
wire of the kind developed by Chatterjee et al.4 The whole reaction scheme is shown in Fig. 1 and the particular 
structures under investigation in this work are illustrated in Fig. 2. Structure H0 represents an input hairpin that 
has been opened by an input strand via toehold-mediated strand displacement and subsequent binding to a 
freely diffusing fuel hairpin, and is composed of both single-stranded and double-stranded domains. Structure 
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Figure 1.   Outline of this work and the system under study. (a) Boolean logic circuits can be converted into 
localized DNA strand displacement cascades on the surface of a DNA origami tile, as previously demonstrated4. 
This paper concerns the automated conversion of such circuit designs into kinetic models by estimating reaction 
rate constants. (b) Cartoon of a two-hairpin signal transmission wire4. Binding of an input strand opens the first 
hairpin ( H0 ), enabling a fuel hairpin to bind to it. The opened fuel hairpin can then interact with the second 
hairpin ( H1 ), opening that too. The opened H1 hairpin can then activate the reporter, producing a fluorescent 
output. The shaded blue area indicates the specific transition under study in this paper. Also shown are the 
directions of the axes that will be used throughout this paper.

Table 1.   Summary of the different biophysical model parameterizations investigated in this work. All four 
models use identical distributions for dsDNA domain lengths, ssDNA-ssDNA domain angles, ssDNA-sdDNA 
domain angles and tether angles. They differ only in the choices made for ssDNA domain lengths and dsDNS-
dsDNA domain angles, highlighted in boldface in the table. “WLC dist.” refers to the worm-like chain model 
of length distributions of jointed chains. “Nicked dist.” refers to a distribution of inter-domain angles at a nick 
“joint between two dsDNA domains linked only on one strand” that was previously reported4. All distributions 
are described in detail in the main text.

UU model UN model WU model WN model

dsDNA length Fixed Fixed Fixed Fixed

ssDNA length Uniform dist. Uniform dist. WLC dist. WLC dist.

ssDNA-ssDNA angle Uniform dist. Uniform dist. Uniform dist. Uniform dist.

ssDNA-dsDNA angle Uniform dist. Uniform dist. Uniform dist. Uniform dist.

dsDNA-dsDNA angle Uniform dist. Nicked dist. Uniform dist. Nicked dist.

Tether angle Uniform dist. Uniform dist. Uniform dist. Uniform dist.
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H1 represents the first hairpin in a signal transmission wire, which is waiting to be opened via a localized inter-
action with structure H0 . Our goal is to determine the rate of interaction between these structures, which will 
interact initially via binding of the x∧ toehold on H0 to the complementary toehold x∧∗ on H1 . Therefore, we just 
need to determine the probability that these two domains are positioned close enough to each other to interact. 
To simplify the sampling process, we remove those domains that are further from the tether than the toehold 
in question, as these will not affect the position of the toehold in each case (see Fig. 2a,b). We also condense 
adjacent domains of the same type (either single-stranded domains or double-stranded domains that are con-
nected on both strands, i.e., not separated by a nick) into a single domains whose length is the sum of the two 
condensed domains. Specifically, in this example, domains a0∧ and s are condensed into d0 and domains f ∧ and 
s are condensed into d1 , as shown in Fig. 2c. This not only simplifies the model but also means that the only coor-
dinates sampled are the tethers, the strand termini, and the joints at which the DNA would actually flex. Note, 
however, that we do not condense the x∧ domain with the tether spacer on the H1 structure as it takes part in the 
interaction of interest and therefore we need to sample coordinates for the two ends of this domain specifically.

Using the procedure outlined above and presented in detail in the “Methods” section, we generated five 
datasets of randomly sampled structures for the H0 and H1 structures. Each individual sample consists of (x, y, z)
-coordinates for each of the points labeled in Fig. 2c: tethers, junctions between contiguous domains, and strand 
termini. By convention, H0 is tethered at (0, 0, 0) , and the directions of the axes are as specified in Fig. 1. We 
used an inter-hairpin distance of 10.88 nm, as this was the distance used by Chatterjee et al. to achieve localized 
signal transduction in their work4. The only exception to this is one dataset that uses a doubled inter-hairpin 
distance of 21.76 nm, which serves as a negative control dataset in which the rate of interaction between H0 and 
H1 should be negligible. An example of a pair of sampled structures is shown in Fig. 3. To compare the effects of 
changing between our different biophysical models on the generated structures, we generated structures for all 
four models (UU, UN, WU, and WN). To study the effects of sampling error on our results, we generated datasets 
of size 103 , 104 , 105 , and 106 for each model.

To present aggregated information on the sampled structures, we define the reactive point of a structure 
as the specific coordinate that we will consider when calculating the probability of a particular interaction 
involving that structure. In this example, the DNA domains of interest are the x∧ toehold on the H0 structure 
and the complementary toehold x∧∗ on the H1 structure, as these are exposed complementary domains that 
can undergo a hybridization reaction (that would lead to a subsequent toehold-mediated strand displacement 
reaction, although we do not consider that reaction in this paper). Therefore, the reactive points for the two 
structures under consideration here will be the midpoints of the two toehold domains x∧ and x∧∗ , which we 
calculate by finding the midpoint of a straight line between the coordinates sampled for the two ends of each of 
these toehold domains. To clarify this definition, the reactive points on the two structures used in this study are 
annotated as small yellow stars in Fig. 2.

A summary of 106 sampled locations of the reactive points of structures H0 and H1 generated using the WN 
model are shown in Fig. 4. In each panel, the samples of the location of the reactive point are projected onto 
either the (y, z) or (x, y) plane. Fig. 4a and b show (the reactive point of) H0 projected into the x = 0 and z = 0 
planes, respectively. Similarly, Fig. 4c and d show (the reactive point of) H1 projected into the x = 0 and z = 0 
planes, respectively. The H0 structures were generated with their tether at the origin, whereas the H1 structures 
were generated with their tether at (0,10.88,0), thereby providing the 10.88 nm inter-tether distance outlined 
above. The x = 0 projections may be thought of as “side views” of the spatial distribution of the reactive point 
in each case, and the z = 0 projections may be thought of as “views from above”. Similar summaries of reactive 
point structure samples for the other biophysical models with 106 samples are provided in Supplementary Figs. S1 
(UU model), S2 (WU model), and S3 (UN model).

These sampling results exhibit some clear differences depending on which of our four biophysical models 
was chosen. The shorter structure, H1 , contains only single-stranded domains. Therefore, the choice between 

Figure 2.   The specific tethered structures investigated in this paper, after Chatterjee et al.4 Small yellow 
stars indicated the reactive points defined for each structure. (a) The hairpins H0 and H1 , with input and fuel 
molecules having bound to H0 and opened it. (b) To simplify the analysis, we remove all domains further from 
the tether than the complementary x∧ toeholds, producing these minimized structures. (c) Classification of the 
different kinds of junction between domains that occur in these structures. Each of the labeled junctions, plus 
the strand terminus, will be assigned random coordinates via our sampling algorithm. In addition, this image 
shows the condensing of multiple adjacent double-stranded domains of the same type into a single domain, 
which further simplifies the model.
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the uniform and nicked distributions for the angle between two dsDNA domains separated by a nick (i.e., UU/
WU models versus UN/WN models) has no affect on the structures that are sampled. For the longer structure, 
H0 , however, this choice makes a significant difference. The structure samples generated by the UN/WN models 
show a well-defined “shell” of maximal probability for the location of the reactive point, ∼ 10 nm from the ori-
gin. These can be seen clearly in both the “top” and “side” views shown in Fig. 4. The structures generated by the 
UU/WU models, on the other hand, have reactive points clustered around the origin within a radius of around 
4 nm. These differences are likely due to the fact that the nicked angle distribution produces H0 structures in 

Figure 3.   An example of a pair of sampled tethered structures. The H0 structure is shown in blue and the H1 
structure is shown in red.

Figure 4.   2-dimensional heat maps of the reactive point of 106 samples of the H0 and H1 structures generated 
using the WN model. (a) (y, z) projection of reactive point of H0 structures into the x = 0 plane. (b) (x, y) 
projection of H0 structures into the z = 0 plane. (c) Similar (y, z) projection of H1 structures. (d) Similar (x, y) 
projection of H1 structures. See Fig. 1 for the directions of the x, y, and z axes.
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which neighboring nicked domains are more likely to be oriented in roughly the same direction (see Supple-
mentary Fig. S24). Thus, the initial direction selected for the first domain adjacent to the tether is likely to be 
very important in determining the overall direction of the structure and thus the location of its endpoint. On the 
other hand, the uniform angle distribution will tend to produce far more structures in which the domains fold 
back on each other at extreme angles, creating the observed concentration of reactive points around the origin.

The distribution from which to sample the lengths of ssDNA domains (i.e., UU/UN models versus WU/WN 
models) does not significantly impact the overall shape of the distribution of sampled structures. It does seem to 
slightly impact its spread, for example, the WN model produces a slightly more compact distribution for H0 than 
the UN model, however, this is reversed for H1 . The WU model seems to produce more spread-out distributions 
for both H0 and H1 than the UU model.

Based on the above considerations, we determined that the WN biophysical model seems to provide the 
most reasonable and realistic model of the structures under study. This is perhaps not a surprise given that it 
incorporates more detailed biophysical data than any of the other options. As we discuss below, there are also 
reasons to favor the WN model based on how it predicts the system of Chatterjee et al.4. Therefore, the analyses 
presented in the main text below all use the WN model as the starting point. We have, however, carried out all 
analyses on all four models of the system, and the results from those analyses are presented in the Supplementary 
Information for comparison.

Local concentration results for the localized hairpin interaction.  After generating the hairpin 
structures, we used these generated structure distributions to estimate the probability that the two reactive 
points on the two tethered strands would be colocated in 3D space at any given moment. We then used this 
probability to estimate the local concentration; the details of these calculations are presented in the “Methods” 
section below. Briefly, we consider any pair of structures whose reactive points are within a threshold distance of 
2 nm (the justification for this value is presented in the Discussion below) to interact. Then, for each sampled H1 
structure, we calculate the fraction of the H0 structures that put the reactive points within this threshold distance. 
We interpret this fraction as a probability, and from this we arrive at a local concentration observed by H1 at each 
point by scaling by the volume enclosed by the threshold distance around the reactive point of H1 . We then aver-
age across all these values to produce a single value for the local concentration associated with this reaction. This 
can be interpreted as the equivalent concentration of one of the localized reactants as observed by the other, and 
allows us to scale kinetic rate constants for these interactions from their observed values for bimolecular interac-
tions in bulk solution to produce equivalent rate constants for the localized interactions.

To decide whether two strands are in close enough proximity to interact, we use 2 nm as our default threshold 
size. This means that the sphere of potential interaction has diameter 4 nm. Given that we assume that the length 
per nucleotide in single-stranded DNA is 0.68 nm, this sphere diameter is ∼ 6 nucleotides, the same length as 
the toehold domains used by Chatterjee et al.4. We did study the effect of changing the size of the threshold for 
the WN model, and these data are presented in Supplementary Fig. S21. From that plot, we observe that with 
an increase in the threshold size, there is a minor decrease in the local concentration values; this effect is signifi-
cantly smaller than the effects of other possible changes such as changing to a different model. As the threshold 
size increases, the volume of the region in which we search for the colocation of the reactive points of the two 
structures, increases as the cube of the radius. This volume is the denominator in the calculation used to convert 
colocation probabilities into localized concentrations (see “Methods”), and the volume seems to increase slightly 
faster than the associated probability, thereby causing a slight decrease in the resulting calculated overall value 
for the local concentration.

Figure 5 presents a heatmap of the estimated local concentration values observed at different sampled posi-
tions of the reactive point of the H1 structure, using the WN model. The colored area shows the volume of 

Figure 5.   A (y, z) hexbin plot of local concentrations computed at sampled locations of the reactive point of the 
H1 structure, for one dataset of 106 sampled structures.
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overlap between 106 sampled location distributions for the reactive points of the H0 and H1 structure, projected 
into the x = 0 plane, as before. The striking feature of this plot is the region of maximal local concentration 
calculated at y ≈ 11 nm , which is located almost directly above the tether position for the H1 structure, located 
at y = 10.88 nm . As expected, this corresponds to the region of maximal overlap of the H0 and H1 structures 
as plotted in Fig. 4. The corresponding plot for the UN distribution is similar (Supplementary Fig. S18). These 
contrast with similar plots for the WU model (Supplementary Fig. S17) and the UU model (Supplementary 
Fig. S16), which show the largest local concentration observed in the region of overlap that is closest to the H0 
structure, at y ≈ 6 nm . These plots may be thought of as identifying the region of space in which the interaction 
between the x∧ toehold on H0 and the complementary toehold x∧∗ on H1 is most likely to occur. As we observed 
in the distributions of the reactive points, the choice between the uniform and nicked distributions for the angle 
between two dsDNA domains separated by a nick (i.e., UU/WU models versus UN/WN models) has the most 
impact on the resulting area. The difference in the distribution of the areas of highest local concentration is of 
practical interest, as outlined in the Discussion below.

To highlight the effects of sample size on the resulting distributions of local concentration, similar plots 
are presented in the Supplementary Information for each of our five generated datasets consisting of either 103 
samples (Supplementary Figs. S4–S7), 104 samples (Supplementary Figs. S8–S11), 105 samples (Supplementary 
Figs. S12–S15), or 106 samples (Supplementary Figs. S16–S19). As expected, we observe greater similarity between 
the five replicate plots when the number of samples is greater; as the number of samples drops to 104 or even 
103 we observe significant differences due to sampling error. Therefore, we must be careful to use a large enough 
number of samples to produce reliable estimates: hence we have used the values calculated from 106 samples 
throughout, unless otherwise stated.

The overall calculated values for the local concentration are shown in Table 2, for the WN model with a thresh-
old size of 2 nm. The calculated values are the averages across five different datasets containing 104 , 105 , and 106 
samples. The values computed for an inter-hairpin distance of 10.88 nm are ∼ 132µM . This is within roughly a 
factor of two of the value inferred from experimental results by Chatterjee et al.4 which was ∼ 60µM . This shows 
that our simple model can give results that are comparable to experimentally derived values. (A plot comparing 
these values to similar values calculated for the other three models is presented as Supplementary Fig. S20). To 
study the effect of the inter-hairpin distance on the local concentration, we carried out a similar computation 
for a double-spaced 21.76 nm inter-hairpin distance (see Table 2 and Supplementary Fig. S22). That data shows 
a local concentration of ∼ 24 nM , which is roughly 10,000 times lower than the value for the 10.88 nm spacing. 
This corresponds to data from previous work4 that used the 21.76 nm double-spaced hairpin as a negative control 
reaction that did not produce viable signal propagation. Therefore, the results from our calculations reproduce 
observed behavior of localized circuits both qualitatively and, within roughly a factor of two, quantitatively.

To investigate the effect of sampling on our final calculated values of the overall local concentration, Table 2 
shows the calculated local concentration against the total number of structure samples for the WN model. Similar 
results for the other three model variants are presented in Supplementary Fig. S20. These results show that, even 
for just 104 samples, the mean calculated local concentration is very similar to that obtained with significantly 
more samples ( 105 or 106 ). In particular, 105 samples seems to offer a good compromise between a good estimate 
of the final local concentration value and requiring less computation time to produce the ensemble of samples 
and analyze the results. In addition, as shown in Supplementary Fig. S20, our different models predict slightly 
different values for the local concentration. The UU, WU, and WN models produce local concentration values 
that are comparable ( ∼ 130µM ), while the values from the UN model are somewhat higher ( ∼ 200µM ). The 
UN model seems to produce a somewhat larger volume with high local concentration, closer to the z = 0 plane 
of the DNA origami tile. This may be because the uniform angle distribution allows more flexibility at nicks, 
enabling more structures to be sampled nearer to the plane of the tile.

Table 2.   Summary of local concentration values obtained for WN model for different sample sizes for inter-
hairpin distances of 10.88 nm and 21.76 nm. A threshold distance of 2 nm between the reactive points was 
used to determine whether two particular structures may interact. Unimolecular rate constants were computed 
from multiplying the local concentration values by the bimolecular rate constant of the corresponding species 
if they were freely diffusing in solution. This bimolecular rate constant is the value k{0,6} = 5× 105M−1

s
−1 

estimated by Zhang and Winfree17,27, which is chosen because the system reported by Chatterjee et al.4 
employed a 6-nucleotide toehold on the invader with no distal toehold on the incumbent. Local concentration 
and unimolecular rate constant values are expressed as mean ± standard deviation of five sampled datasets of 
each size.

Sample size Inter-hairpin distance (nm) Local concentration (nM) Unimolecular rate constant ( s−1)

104 10.88 131083.60± 15659.65 ∼ 655± 78.29

105 10.88 130535.49± 3088.38 ∼ 652± 15.44

106 10.88 132587.14± 1183.33 ∼ 662± 5.91

104 21.76 44.49± 20.5 0.222± 0.102

105 21.76 21.34± 10.43 0.106± 0.052

106 21.76 24.25± 3.02 0.121± 0.0151
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Discussion
In this paper, we have studied the role that molecular geometry plays in the dynamics of the localized molecular 
circuits. Our results show that the orientation of structures generated in 3D space are dependent on the choice 
of the parameters made when we incorporated geometrical constraints into our biophysical model of the system. 
The local concentration values obtained from our WN model are ∼ 130µM . Importantly, this is within the range 
of previously reported values. In particular, for the specific experimental system that we study here, Chatterjee 
et al.4 inferred a value of ∼ 60µM by Bayesian parameter fitting based on bulk fluorescence data. In addition, the 
value obtained for hairpins placed twice as far apart was significantly smaller ( ∼ 20 nM), which agrees with the 
experimental result that a system containing double-spaced hairpins did not exhibit significant interactions4. In 
earlier work, Dalchau et al.24 had used the worm-like chain biopolymer model to determine the total length of 
both of the single stranded DNA and double stranded DNA in a similar hairpin system, and estimated a higher 
local concentration value of 1000µM . The results obtained from our model are therefore comparable to those esti-
mated in previous work. Localized reaction rates, and hence local concentration values, are notoriously difficult 
to measure accurately due to the high speed of the interactions. Therefore, computational modeling is expected 
to remain an important aspect of modeling these systems and our work contributes to this effort. These local 
concentrations can then be multiplied by rate constants derived for corresponding solution-phase reactions12,17 
to produce unimolecular rate constants for kinetic modeling of the localized reactions.

We have presented four models, which we call UU, WU, UN and WN. Each of these incorporates some bio-
physical assumptions, and we used all four to generate structures subject to the geometric constraints imposed 
by the biophysical assumptions. Among these models, the WN model appears to be a fairly realistic model that 
is also consistent with previous experimental work, as outlined below. In our example system, in the WN model 
we observe the greatest overlap between two structures. In the WN model, the use of the worm-like chain dis-
tribution for the lengths of single-stranded domains biases toward elongation of the DNA strands compared to 
models in which the lengths are uniformly distributed. The WN model’s use of the “nicked” distribution for the 
angles between double-stranded domains separated by a nick, which was derived from the molecular dynamics 
simulation of oxDNA and in which most of the angles lie between roughly 20◦ and 30◦ , produces structures that 
are less inclined to fold back on themselves than those models that choose such angles from a uniform distribu-
tion. The interplay of these two parameters means that the generated structures, as shown in Fig. 4, line up well 
with the experimentally chosen distance of 10.88 nm between neighboring hairpins in this localized reaction 
system4. This lends credence to our choice of this model as a reasonable one for subsequently determining the 
corresponding local concentration.

The experimental work that served as the basis for our study4 used DNA origami as a tethered surface. In 
practice, electrostatic repulsion between the DNA surface and the tethered DNA circuit components could impact 
the distribution of the structures. In this work, we modeled the initial tethered angle as a uniform distribution. 
However, this could be easily changed to a different, non-uniform distribution that is biased against angles that 
produce directionality vectors for the initial domain that are parallel, or almost parallel, to the surface. This 
would provide a simple mechanism to model some aspects of this repulsion effect. In addition, another simple 
mechanism to incorporate broader effects of electrostatic repulsion would be to modify our rejection sampling 
procedure so that, rather than eliminating all samples with z < 0 , we could reject all samples with z < ǫ , for 
some positive constant ǫ , thereby preventing any part of the structure from coming too close to the surface. 
Simulation results demonstrating the effect of this change on the overall local concentration value are presented 
in Supplementary Fig. S25, showing that adding some element of repulsion does decrease the estimated local 
concentration value, making it closer to the inferred value from prior work4.

The estimations of local concentrations for localized interactions from our work could be used as part of 
an automated system to enumerate localized reactions and generate kinetic models of localized DNA strand 
displacement systems, building on previous work to model and simulate such systems4,21. This would sim-
plify the expansion of our work to model other localized reaction systems3,28, including an interesting, recently 
published system for localized signaling induced by conformational changes in the underlying DNA origami 
nanostructure29. In addition, our approach could be used to model other kinds of localized system such as 
DNA-based molecular walkers30–32. This will also require further extensions of this work to model more larger 
structures, in particular, those in which the conformational ensemble is constrained by multiple tethers rather 
than just one. In addition, incorporating more detailed experimental data should help us to parameterize our 
biophysical model more realistically, enabling more accurate estimates of the localized reaction rates. This would 
help in building more accurate kinetic models of these localized systems. However, we expect that direct experi-
mental validation of our models may be challenging because these reactions are very fast and therefore hard to 
observe directly.

Methods
In this section, we explain in detail the procedure which we used to generate five datasets of sampled structures 
for the H0 and H1 structures and use these sampled structures to compute the local concentration. We have 
proposed four different models (UU, UN, WU, WN) which incorporate different geometrical constraints. First, 
we describe the parameters that distinguish these models. We then describe algorithm for generating popula-
tions of distinct structures given these parameters. Finally, we describe the method used to compute the local 
concentration.

Domain length distributions.  Each double-stranded domain is assumed to be of fixed length, calculated 
by multiplying the number of nucleotides in the domain sequence by the length per nucleotide in dsDNA, 
which we take to be 0.34 nm as previously reported24. As outlined in Table 1, the length of each single-stranded 
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domain is calculated depending on the model in question. In the UU and UN models, the length of each domain 
is sampled from a uniform distribution over the interval [0, m], where m is the maximum possible length in 
nanometers, calculated by multiplying the number of nucleotides in the domain sequence by the length per 
nucleotide in ssDNA, which we take to be 0.68 nm as previously reported24. Here we effectively assume that 
ssDNA is infinitely flexible. In the WU and WN models, the degree of flexibility of the internucleotide linkage 
is modeled more reliably using the distribution derived from a “worm-like chain” model, which constrains the 
angle between neighboring nucleotides. A plot of this distribution is presented as Supplementary Fig. S23. We 
calculate the maximum possible length L of the ssDNA domain as before; we then sample domain lengths from 
the probability density function for a worm-like chain of length L and persistence length s, which is defined33 as:

where R is the length to which the worm like chain is extended within a range dR, with

where t = L/s and r = R/L . We use s = 2 nm for the persistence length of ssDNA24.

Angle distribution between domains.  In addition to sampling domain lengths, we must also sample 
the angles of the “joints” between those domains to create a full structure for each tethered component under 
consideration. The distribution from which we sample the relative angle in each case depends on the particular 
model parameterization and on the types of domain (double-stranded or single-stranded) on either side of the 
joint whose angle is being sampled. In all models, we assume that the angles between two ssDNA domains, and 
between an ssDNA domain and a dsDNA domain, are sampled to produce directionality unit vectors that are 
uniformly distributed in 3D space. However, to do this, we cannot just pick angles directly from the uniform 
distribution, as points picked this way will be clustered non-uniformly: this is effectively the polar angle in a 
spherical polar coordinate system, and if chosen uniformly from the interval [0, 2π) , these angles would cluster 
around the poles. Therefore, to generate uniformly distributed polar angles we must scale as follows: we sample a 
value x from the uniform distribution over (0, 1) and calculate the resulting angle34 as cos−1(2x − 1) . The initial 
orientation of a domain that is directly attached to a tether is sampled similarly, with the exception that we only 
sample from the hemisphere that is “above” the tile surface.

Junctions between two neighboring double-stranded domains that are joined via only one of the two strands 
are called nicks. In the UU and WU models, angles at nicks are also sampled from a uniform distribution, as 
outlined above. In the UN and WN models, these angles are sampled from a non-uniform distribution that more 
accurately represents the behavior of nicks, in which base-stacking between the ends of the two neighboring 
duplexes may be expected to favor configurations in which the two duplexes are pointing in similar directions. 
We call this the “nicked” angle distribution, and this derives from computational modeling carried out by Chat-
terjee et al.4 In that paper, the oxDNA tool20 was used to compute an estimate of this particular distribution. 
In this work, we sample from a histogram generated using the raw data calculated for that model in that paper, 
which we present as Supplementary Fig. S24.

Structure sampling.  Before sampling the structures, we first condense neighboring domains in the struc-
ture, as outlined in Fig. 2c. This ensures that the joints for which we sample angles are either at double-stranded 
nicks, or between single-stranded and double-stranded domains, or at either end of a single-stranded toehold 
domain that is involved in the particular interaction under study. Then, we use a simple algorithm to generate 
structures, as summarized in Algorithm 1, which describes the steps used in generating both the H0 and H1 
structures. As both structures under study are linear, the inputs can be represented as a sequence of domains that 
are defined by their length in nucleotides and their type (single-stranded or double-stranded). The initial angle 
of the domain directly tethered to the tile surface is sampled as outlined above. From this, a unit vector is cal-
culated that represents the direction from the end of that domain closest to the tether to the end of that domain 
furthest from the tether. The length of the domain is sampled as outlined above. For the directions of subsequent 
domains, we generate an angle that represents how much the next domain deviates from the directionality vector 
of the previous domain and use this to calculate the next directionality vector, as follows.

We first set up the 3D parametric equation of the circle which represents the rim of the cone of all points in 
3D space that deviate by angle φ from the previous directionality vector −→v  , as shown by the red circle in Fig. 6. 
Given the previous domain’s unit vector −→v = (v1, v2, v3) , we orient −→v  to start at the origin. Thus, the “far end” 
of −→v  is at (v1, v2, v3) . Then, since the sampled angle is φ , the centre of the red circle is c = (c1, c2, c3) , where:

Now, to set up the parametric equations of the circle we must find two unit vectors −→a  and 
−→
b  which are per-

pendicular to each other and to −→v  . This means that they are in the plane of the circle, and are thus suitable to be 
used as orthonormal basis vectors for the parametric equations of the circle. To do this, we find a suitable vector 

p(R, s, L) =
1

L

4πAr2

(1− r2)9/2
exp

(

−
3t

4(1− r2)

)

A =
4(3t/4)3/2 exp(3t/4)

π3/2
(

4+ 12
3t/4 + 15

(3t/4)2

)

c1 = v1 + (v1 cos(φ))

c2 = v2 + (v2 cos(φ))

c3 = v3 + (v3 cos(φ))
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for −→a  , and then take cross product of that vector with −→v  to obtain 
−→
b  . We observe that −→a  must be perpendicular 

to −→v  , i.e., the inner product −→a ·
−→v  must equal zero. This gives us:

We note that at least one element of −→v  must be non-zero, as the unit vector cannot have length zero. Without 
loss of generality, here we let vi stand for a non-zero element and let vj and vk stand for the other two elements 
of −→v  . Then, again without loss of generality, we fix the corresponding elements of −→a  such that aj = ak = 1 and 
solve for ai based on the following, which is derived from the above equation for the inner product:

By assumption, this equation will not involve division by zero since we picked vi to be a non-zero component 
of −→v  . We normalize −→a = (a1, a2, a3) to be a unit vector, then compute 

−→
b =

−→a ×
−→v  . Since −→a  and −→v  are per-

pendicular unit vectors, 
−→
b  will also be a unit vector, which we write as 

−→
b = (b1, b2, b3) . The parametric equation 

of the red circle that represents the rim of the cone in Fig. 6 is then given by:

where r = sin(φ) is the radius of the circle. We then just need to sample a value for θ from the uniform distri-
bution between 0 and 2π radians: this is essentially the azimuthal angle from spherical polar coordinates. We 
evaluate the parametric equations above for that value of θ to produce a uniformly-sampled point p = (p1, p2, p3) 
on the circle. Finally, we obtain the next directionality unit vector −→u = (u1, u2, u3) from

and normalize −→u  into the directionality unit vector for the next domain. We repeat this process until lengths 
and directionality unit vectors have been generated for all domains in the structure. (Note that the coordinates 
of all joints between domains can be reconstructed from the tether coordinates plus the lengths and unit vectors 
of all of the domains.)

In addition, while generating the structures we need to impose the constraint that no part of the structure 
should be “below” the underlying tile surface. In other words, we require that z > 0 for all generated (x, y, z) 
coordinates in the structures. We could accomplish this in two ways. One way would be to compute the range 
of angles at each step of generating individual structures that would give rise to coordinates with z > 0 and only 
generate angles within that set. The second way would be to reject the structure when a coordinate with z ≤ 0 

(a1 · v1)+ (a2 · v2)+ (a3 · v3) = 0.

ai =
−aj · vj − ak · vk

vi

x(θ) = c1 + (a1 r cos(θ))+ (b1 r sin(θ))

y(θ) = c2 + (a2 r cos(θ))+ (b2 r sin(θ))

z(θ) = c3 + (a3 r cos(θ))+ (b3 r sin(θ))

u1 = p1 − v1

u2 = p2 − v2

u3 = p3 − v3

Figure 6.   Vector diagram of the method used to generate structures. Briefly, we find the center c of a circle 
(shown in red) of possible locations from the previously generated parts of the structure along with the newly 
sampled length L and deviation angle φ for the current domain. We then obtain orthogonal unit vectors −→a  and 
−→
b  in the plane of the circle and construct the parametric equation of the circle in 3D space in terms of c, −→a  , and 
−→
b  . Finally, we randomly generate another angle θ to pick a point on that circle which we take as the sampled 

location of the distal end of the current domain.
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is generated and redo the sampling. The latter “rejection sampling” approach is far simpler from an algorithmic 
standpoint. We therefore adopt this approach in our structure sampling algorithm (Algorithm 1), with the excep-
tion that we only sample initial angles of domains directly adjacent to a tether from the hemisphere with positive 
z-coordinates. We estimated the fraction of the structure that we have to discard while sampling structures: these 
values are reported in Supplementary Table S1. For each valid structure generated, we estimate that an average of 
4 structures must be discarded for the UU model, 3 structures for the UN model, 6 structures for the WU model, 
and 5 structures to be discarded for the WN model. This slows down the sampling process but is not prohibitive.

Estimating local concentrations.  Inspired by previous work that used the “local” or “effective” concen-
tration approach to estimate the rate of reactions influenced by molecular geometry25, here we use a similar 
approach to estimate reaction rates. Thus, a key aspect of our method is the calculation of estimated local con-
centration. Then, to get the overall rate of the reaction, one could simply multiply this estimated local con-
centration with the rate constant of the corresponding solution-phase bimolecular interaction, e.g., those rate 
constants for toehold-mediated strand displacement reactions previously estimated by Zhang and Winfree17.

Based on our biophysical models, we produced ensembles of sampled tethered structures as outlined above. 
We now describe how we used these to produce an estimate of the corresponding local concentration for each 
model. The formula that we used to calculate local concentrations, or the effective concentration that one of the 
two toeholds may see of the other is:

where C is in nm3 , because our unit of length is the nanometer (see Supporting Information from Genot et al.25). 
Here, P is the probability that the reactive points of the two tethered structures H0 and H1 would colocate in 
3D space and V is the reactive volume in nm3 or the volume where two reactive points have to colocate to be 
considered reacting. In most of our calculations, the reactive volume was a sphere of 4 nm diameter centered on 
the midpoint of one of the reactive toeholds, although we have also studied the effect of changing the size of this 
volume (see Supplementary Fig. S21). Our justification for using the 4 nm diameter sphere is that this length 
is roughly the same as 6 nucleotides, which is the length of the toehold domains used by Chatterjee et al.4 In 
any case, we know the volume of this sphere, and it just remains to calculate the probability of the two “reactive 
points” (midpoints of the two complementary toeholds) colocating within this volume.

To calculate the probability that the reactive point of the hairpin H1 structure colocates with the reactive point 
of the another hairpin H0 (or vice versa), we need to determine how many pairs of reactive points from H0 and H1 
fall within the specified threshold distance. A naïve approach to this approach would be to calculate the distance 
between each of the sampled reactive points for H1 and each of the reactive points for H0 . However, to speed up 
the process we use a binning technique. First, we categorize the individual samples into bins: cubes whose side 
length is the the same as our threshold distance for determining colocation of the samples. Therefore, in order 
to check which sampled locations for the reactive point of H0 are within the threshold distance of a particular 
sampled location for the reactive point of H1 , we need only consider those sampled locations for H0 that are 
either in the same bin as the point for H1 or in one of the adjacent bins. Since the bins are cubes in 3D space, this 
means that we only need to search 27 bins, significantly reducing the search time. We then check the distance 

C =
P

V
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between each possible pair of sampled locations for the reactive points of H1 and H0 within those 27 bins to see if 
they are separated by a distance less than equal to the threshold distance. If so, they are counted as a reactive pair.

Algorithm 2 presents pseudocode for our algorithm to estimate the local concentration. First, a threshold 
distance is set which serves as the maximum distance a hairpin H1 reactive point can be from a hairpin H0 reac-
tive point, for the two to be considered colocating in space. Then we read in every sampled reactive point from 
the sampled structures. We put these sampled points in bins based on the set bin width (threshold distance). 
For every sampled point from structure H1 , we look into the same bin and neighboring bins for the number of 
reactive point from structure H0 that are within the threshold distance. For a given sampled point from H1 , the 
probability of any structure from H0 being colocated with the H1 point is just the count of data points within 
the threshold divided by the total number of points in the dataset. (Note that the choice of calculating the local 
concentration of H0 as viewed from H1 is arbitrary: we could have just as well done the calculation from the 
opposite perspective). We compute this probability for each point in the sampled dataset, and convert each to a 
local concentration using the above equation. We compute the local concentration of H0 observed from every 
sampled location of H1 . Then, finally, we average these values to obtain an overall estimate of the local concentra-
tion value for the particular interaction under study.

Given that our unit of length in this work is the nanometer, this calculation produces a concentration value 
in particles/nm3 , as outlined above. Our final task is therefore to convert this into a molar concentration. To do 
this, we multiply the concentration in particles/nm3 produced by the above equation by the following scale factor:

This scaling factor produces a concentration in mol/L, i.e., in molar (M) concentration units. We can then 
straightforwardly scale this to other, more convenient, concentration units, such as µM or nM, as required.
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