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Machine learning algorithm 
improved automated droplet 
classification of ddPCR 
for detection of BRAF V600E 
in paraffin‑embedded samples
Gabriel A. Colozza‑Gama1*, Fabiano Callegari2, Nikola Bešič3, Ana Carolina de J. Paniza1 & 
Janete M. Cerutti1*

Somatic mutations in cancer driver genes can help diagnosis, prognosis and treatment decisions. 
Formalin‑fixed paraffin‑embedded (FFPE) specimen is the main source of DNA for somatic mutation 
detection. To overcome constraints of DNA isolated from FFPE, we compared pyrosequencing and 
ddPCR analysis for absolute quantification of BRAF V600E mutation in the DNA extracted from FFPE 
specimens and compared the results to the qualitative detection information obtained by Sanger 
Sequencing. Sanger sequencing was able to detect BRAF V600E mutation only when it was present in 
more than 15% total alleles. Although the sensitivity of ddPCR is higher than that observed for Sanger, 
it was less consistent than pyrosequencing, likely due to droplet classification bias of FFPE‑derived 
DNA. To address the droplet allocation bias in ddPCR analysis, we have compared different algorithms 
for automated droplet classification and next correlated these findings with those obtained from 
pyrosequencing. By examining the addition of non‑classifiable droplets (rain) in ddPCR, it was possible 
to obtain better qualitative classification of droplets and better quantitative classification compared 
to no rain droplets, when considering pyrosequencing results. Notable, only the Machine learning 
k‑NN algorithm was able to automatically classify the samples, surpassing manual classification based 
on no‑template controls, which shows promise in clinical practice.

Sanger sequencing is still considered the gold standard for detecting mutations when small fragments of DNA 
are analyzed for specific single nucleotide variants (SNVs). Although Sanger can uncover new mutations and is 
affordable, it has specific drawbacks. In the routine cancer histology, tissue biopsies and surgical specimens are 
fixed in formalin-fixed paraffin-embedded (FFPE) sections for diagnostic purposes. This procedure compromises 
the quality of genomic DNA and, therefore, the PCR-based analyses of DNA isolated from FFPE such as Sanger 
Sequencing. Additionally, it does not allow quantitative evaluation of mutated alleles, as well as presents low 
sensitivity for detecting somatic cancer mutations present at very low (< 20%) variant allele frequency (VAF).

In this new era, many methods derived from PCR and sequencing have been developed to detect mutations 
and surpass the limitations of Sanger Sequencing. One such methodology is pyrosequencing, a synthesis-based 
sequencing method that uses small fragments of PCR to initiate the synthesis of a new strand and detect incor-
porated bases by fluorescence. This methodology has vastly improved detection of SNVs, especially in highly 
degraded material derived from FFPE. Another advantage is that, by comparing base incorporation on specific 
locations of the fragment, it is possible to achieve absolute quantification of both mutated and wild-type (Wt) 
 alleles1,2.

One breakthrough technology for detection and quantification of nucleic acid is the droplet digital PCR 
(ddPCR), which measures absolute number of targets present in the samples. One advantage of ddPCR is that it 
is an old technology based on new chemistry and, therefore, the platform shows great potential for advancements, 
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such as the possibility to perform higher multiplexing and the use of machine learning methods to implement 
a more accurate automatic classification of droplets.

This approach is based on the partition of template DNA copies into 10,000–20,000 droplets, and the PCR 
reaction is carried out within each droplet. Therefore, the sample is portioned enabling the measurement of 
thousands of independent amplification events within a single sample, which implicates higher sensitivity. Each 
target is labeled with a specific fluorophore. At the end-point reactions, the droplets are then scored for the 
presence (positive) or absence (negative) fluorescence signals and the ratio of positive or negative droplets are 
then analyzed using Poisson distribution. The limiting dilution strategy and the Poisson distribution allows to 
determine the absolute count of target DNA copies per  sample3,4.

However, one limitation of ddPCR is that the PCR reaction that occurs within each droplet still depends on 
the quality of the DNA. Although ddPCR requires smaller amount of input DNA and a smaller amplicon size, 
the DNA isolated from FFPE sections is highly degraded and contain PCR inhibitors. Therefore, not all partitions 
with the target DNA will amplify at the same rate and some droplets that contain the target sequences may exhibit 
reduced fluorescence and will be considered negative. When duplex ddPCR is used, i.e., two fluorescence probes 
are used, droplets can be classified as positive for both fluorescence (PP), positive for just one fluorescence (NP or 
PN), containing no fluorescence (NN) and those with fluorescence ranging between those of unequivocal posi-
tive and negative droplets (rain effect). The origin of rain droplets could be a result of damaged positive droplets 
with diminished fluorescence, damaged negative droplets with increased background fluorescence, partial PCR 
inhibition in same droplets and delayed PCR start. The drawback is that presence of rain can interfere in the 
analysis and the correct measurement of droplets. This is particularly true for quantification of somatic mutations 
in cancer. Regarding the Biorad’s ddPCR software, it is unfeasible to classify FFPE samples droplets automatically. 
The main indication in this case is to classify manually the droplets based on a negative control without DNA.

Many algorithms have been developed to help automatically classify these droplets as positive, negative, or 
unclassifiable “rain” droplet. Perhaps one of the very first proposed algorithms is “definetherain”5, which can 
be used for uniplex analysis. Several other algorithms, which seek to automatically classify these droplets, but 
for duplex or even higher order of multiplex reactions, are now available. To verify which methodology would 
be the best suited for absolute quantification of BRAF Wt and mutant V600E alleles in the DNA isolated from 
FFPE specimens, in this manuscript we initially employed pyrosequencing and ddPCR analysis and compared 
the results to the qualitative detection information obtained by Sanger Sequencing. Next, to overcome the droplet 
allocation bias in ddPCR analysis, we compared different algorithms for automated droplet classification and 
correlated these findings with those obtained from pyrosequencing. We selected the k-NN machine-learning 
algorithm as the best to automatically classify the droplets.

Results
Pyrosequencing is a reliable method to detect BRAF V600E point mutation in DNA isolated 
from FFPE sections. As controls, we used DNA isolated from FFPE sections of a papillary thyroid carci-
noma (PTC) and a follicular thyroid adenoma (FTA) known as positive and negative for BRAF V600E, respec-
tively. To classify a sample as positive or negative, allele percentage threshold of BRAF V600E was established 
in positive and negative controls. Based on results obtained in negative control, a cut-off of 9.82% was estab-
lished (Fig. S1). Any value above this threshold was then considered positive for the BRAF V600E mutation. 
Next, all papillary thyroid microcarcinoma (microPTC) and lymph node metastases samples were screened for 
BRAF V600E mutation by pyrosequencing. Using the threshold of 9.82%, 103/115 (89%) samples were positive 
for BRAF V600E. To measure the precision of the results we randomly selected 23 samples and repeated the 
pyrosequencing analysis. The result was consistent for all re-sequenced samples, demonstrating accuracy and 
reproducibility of pyrosequencing.

Limits of detection of BRAF V600E allele by Sanger and pyrosequencing. Consistent with the 
findings in the literature, all samples positive for BRAF V600E by Sanger presented at least 15% of mutant allele 
(red line), in the background of Wt allele (Fig. 1). The limit of detection of BRAF mutant allele by pyrosequenc-
ing (doted blue line) was superior (> 9.82%). Hence, all samples considered positive for BRAF V600E mutation 
by Sanger were also positive by pyrosequencing.

Discordant results were observed for 14 samples, which were negative for BRAF V600E mutation by Sanger 
but were classified as positive by pyrosequencing (Fig. 1). Remarkable, in 4 samples that were positive by pyrose-
quencing but were negative by Sanger (red dots), the percentage of mutant allele was greater than 15%, which 
would be expected to be detectable by Sanger as it is above the limit of detection of that technique. These findings 
suggested that Sanger was suboptimal not only when low frequencies of mutant alleles were observed. As the 
DNA was isolated from FFPE and some times it can be highly degraded, Sanger sequencing failure is probably 
related to the large size of PCR products. The remaining 10 samples that were negative by Sanger (blue dots), 
in fact were under the limited detection of Sanger but within the limit of detection by pyrosequencing. These 
findings confirmed that pyrosequencing has a higher detection rate than Sanger.

Adding rain to droplets classification of ddPCR increase accuracy of BRAF V600E detec‑
tion. To compare the ddPCR sequencing results to both Sanger and pyrosequencing, we first classified the 
droplets. Although there are many ways of classifying droplets, it mostly consists in detecting clusters of droplets 
that are positive for Wt, positive for BRAF V600E mutation, positive for both alleles or negative for the target 
DNA. There are regions between clusters where the classification of the droplets is ambiguous, as they are not 
empty but the ddPCR reader did not detect enough fluorescence emitted from them. Additionally, there are 
droplets under the limit of no DNA detection that might be broken/damaged droplets and droplets which have 
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unusually high fluorescence. All these droplets can be termed “rain”, which are particularly prevalent in experi-
ments conducted on DNA isolated from  FFPE5 and should be removed from the analysis. For this reason, the 
parameters should be adjusted in order to remove those from the droplet counts in each of the clusters (Fig. 2). 
To investigate if adding rain to droplets classification of ddPCR improves the data, some assumptions are needed: 
droplets with high values can contain more than two molecules of DNA and should be removed; droplets with 
values that are too low might be broken droplets, which also should be removed; droplets which are too close to 
other clusters cannot be classified with confidence and should be removed. As shown in Fig. 2, the exclusion of 
droplets that are hard to classify in panel b (rain droplets), which influence on the qualitative results, increased 
the value of classification based in all the previous assumptions.

Additionally, the percentage of BRAF V600E alleles obtained via ddPCR and manual classification of drop-
lets were compared with those values obtained from pyrosequencing analysis (Fig. 3). Based on its sensitivity, 
accuracy and reproducibility, pyrosequencing was chosen as the gold standard method to detect BRAF V600E 
mutation.

The results show that excluding rain droplets increases the correlation between ddPCR and pyrosequencing, as 
observed by increased spearman correlation values. These findings suggest that excluding rain droplets increases 
the accuracy of ddPCR when absolute quantification is taken into account, as it minimizes variation of samples.

The k‑NN algorithm is better than manual classification of droplets. Of note, the automatic anal-
ysis of the droplets failed with ddPCRclust  package6 and ddPCR  package7 for all our samples (results not shown). 
On the other hand, the k-Nearest Neighbors (k-NN) algorithm in twoddPCR package, which is based on lazy 
machine learning, was the only one that successfully classified the droplets.

Therefore, we next compared the percentage of BRAF V600E mutation measured by pyrosequencing and 
ddPCR with manual selection of droplets or automatic classification of droplets using the k-NN algorithm. As 
is recommend with most machine-learning methodologies, we removed the training dataset consisting of 18 
samples from all comparative analysis, where the results are shown in Fig. 4.

Remarkable, the outcome of the ddPCR followed by supervised machine-learning algorithm showed a bet-
ter correlation with those results from pyrosequencing than the results of the ddPCR with manual gating, even 
when rain analysis was made. While manual selection obtained a statistically significant correlation (R = 0.55, 
p = 4.4−07), this score was improved with k-NN (R = 0.66, p = 3.2−10). Using pyrosequencing as our gold standard, 
this correlation shows that better results can be obtained with k-NN. Moreover, the automatic detection must 
improve user selection bias drastically, as there is no need for manual selection of clusters of droplets after the 
training dataset for k-NN is classified and used.

Figure 1.  Limits of detection of BRAF V600E allele for pyrosequencing and Sanger (n = 35). The red line 
represents the observed limits of detection of BRAF mutated allele by Sanger (> 15%). The doted blue 
line represents the threshold (> 9.82%) used to define a sample as positive for BRAF V600E mutation by 
pyrosequencing. Pyrosequencing detected BRAF V600E mutation in 10 samples (blue dots) that were negative 
by Sanger. Four samples were positive by pyrosequencing (red dots) but were negative by Sanger, even if the 
percentage of mutant allele was greater than 15%.
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Figure 2.  Manual classification of ddPCR overlooking rain droplets or excluding rain droplets. Representative 
results of the analysis of 21 samples and the negative and the positive controls. All droplets are combined into 
a single plot. The channel 1 axis represents mutation-specific Taqman probe (VIC fluorescence) and channel 
2 axis represents a wild-type Taqman probe (FAM fluorescence). (a) Plot with classification of the droplets 
without exclusion of “rain droplets”. It is possible to observe that all droplets are classified in four groups. (b) 
Plot with classification of the droplets after exclusion of “rain droplets”. It is possible to observe that extreme 
droplets were removed, including broken droplets, which have very low fluorescence in both axes. Droplets 
that were hard to classify, as they are very close to one or more clusters, were also removed. NN = No DNA; 
NP = positive for wild type BRAF; PN = positive for BRAF V600E; PP = positive for both wild type and mutated 
BRAF; Rain = droplets hard to classify, excluded from the analysis.

Figure 3.  Comparison of the percentage of BRAF V600E mutated allele by ddPCR following manual 
classification of rain droplets or pyrosequencing. (a) Comparison of pyrosequencing with ddPCR following 
inclusion of rain droplets. This graph shows that some samples have different percentages of BRAF V600E 
mutated allele if the rain droplets (non-classifiable droplets) were included. (b) Comparison of pyrosequencing 
with ddPCR excluding rain droplets. In this analysis, the confidence interval is squeezed and less extreme values 
are present, showing that the exclusion of rain droplets soothes lightly the distribution of values. The exclusion 
of the rain droplets increases the correlation between ddPCR and pyrosequencing. The blue line shows the 
result of LOESS regression and the gray area shows the 95% confidence interval of the regression. R, N and P are 
calculated for Spearman correlation test.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12648  | https://doi.org/10.1038/s41598-021-92014-4

www.nature.com/scientificreports/

Evaluation of ddPCR with k‑NN algorithm for qualitative BRAF V600E detection. When com-
paring ddPCR with k-NN classification algorithm, BRAF V600E was detected in two samples that were negative 
for pyrosequencing and Sanger, even after multiple tests, suggesting that ddPCR can be more sensitive than 
conventional Sanger and pyrosequencing (Fig. 5). All samples detected by Sanger were also detected by ddPCR 
with k-NN and pyrosequencing.

Unexpectedly, 10 samples considered positive by pyrosequencing were negative by ddPCR (Table 1). Although 
the ddPCR has unique features that make its superior to conventional PCR and Sanger Sequencing and it is robust 
to many of the factors that can negatively influence conventional PCR, one reasonable explanation for the nega-
tive samples is that FFPE tissue-derived DNA is highly degraded and can contain PCR inhibitors.

It has been reported that ddPCR is less prone to “allelic drop out” phenomenon commonly observed in 
conventional PCR and Sanger Sequencing because it requires lower input of DNA and smaller amplicon sizes. 
Although we do not have a definitive explanation for this, the PCR failure in these samples is probably related to 
the longer PCR amplicon size for ddPCR (130pb) than the PCR amplicon length for pyrosequencing (119pb). 
Additionally, 8 out of 10 negative samples by ddPCR showed the percentage of mutated alleles very close to the 
threshold of 9.82% determined for pyrosequencing. As the ddPCR product was larger than the PCR product 
used for pyrosequencing and the percentage of BRAF mutated allele was low we presumed that the target DNA 
molecule might be degraded, which could explain our results.

The remaining two samples showed 68% and 40% percentage of mutated allele by pyrosequencing. Although 
the proportion of mutated allele was high, these two samples had lower initial DNA concentration and were 
not further diluted, as the volume of DNA template for ddPCR reaction cannot exceed 8.5 µL. Because for these 
two samples more starting material was needed to achieve the required total DNA and the PCR reaction was 
performed in a smaller final volume than the final volume of the PCR reaction used for the pyrosequencing, we 
hinted to the hypothesis that contaminants originating from the FFPE process were present in these samples, 
low yield or low quality DNA could have affected the sensitivity of the methodology as isolated fragment size 
and residual crosslinks are key determinants of downstream assays.

All together, these could explain, at least in part, why we had larger variability to detect the mutation by 
ddPCR with k-NN algorithm (Fig. 5). Therefore, we emphasise that very short amplicon sizes are recommended 
for FFPE-derived DNA.

Comparison of digital PCR and pyrosequencing for quantitative BRAF V600E detection. As 
both ddPCR and pyrosequencing have high sensitivity to detect single nucleotide variants, one of our goals was 
to evaluate if the techniques had any difference in terms of specificity. A total of 23 samples were repeated at least 
twice for pyrosequencing and 24 samples were repeated at least twice for ddPCR.

For DNA isolated from FFPE tissue, the repetition of assays showed that pyrosequencing had less variability 
than ddPCR. The maximum difference between repetitions of the same sample for pyrosequencing was 7.9% and 
the mean difference was 2.7%. However, for ddPCR and the k-NN algorithm, the difference was up to 72.69% 
with a mean difference of 26.59% (Fig. 5).
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Figure 4.  Comparison of the percentage of BRAF V600E mutated allele by pyrosequencing and ddPCR 
following manual droplet selection or automatic classification using k-NN algorithm. (a) Comparison of 
ddPCR with manual classification excluding rain droplets and pyrosequencing. (b) Comparison of ddPCR 
with automatic classification using the k-NN algorithm excluding rain droplets and pyrosequencing. All 18 
samples used in the training of k-NN algorithm were removed from the analyses of both panels. The spearman 
correlation test in panel (b) (R = 0.66, p < 0.05) shows that k-NN algorithm values are closer to the values 
of pyrosequencing, even though the droplets were classified automatically based on the training dataset. 
When compared to manual selection on panel a (R = 0.55, p < 0.05), the results of automatic classification are 
satisfactory.
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Figure 5.  Comparison of digital PCR and pyrosequencing repetitions. Each black dot consists of one repetition, 
the red dot is the mean value of repetitions and the red line represents the standard deviation. (a) Digital PCR 
percentage of BRAF V600E when using k-NN classification method with rain. The repetitions, in general, have a 
high variability. The mean of the standard deviation of each repetition is 10.62. Adopting the threshold of 9.82% 
mutated alleles, some samples are considered positive or negative depending on the repetition. This is true 
for samples 52, 2, 42 for example. (b) Pyrosequencing BRAF V600E percentage. Overall, any sample repeated 
in pyrosequencing was very close to one another in terms of BRAF V600E VAF. The mean of the standard 
deviation of each repetition is 1.32, which is very low. Additionally, only one sample, with the highest value of 
the repetition being 9.9%, changed classification of positive or negative based on the threshold of 9.82%.

Table 1.  Discordant BRAF V600E status relative to the pyrosequencing data.

ddPCR k-NN algorithm Sanger sequencing

Discordant 12 14

Positive 2 0

Negative 10 14
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Another important point is that the mean standard deviation for repetitions was 12.72 for ddPCR with manual 
classification and exclusion of the droplets labeled as rain, 10.72 for ddPCR with k-NN algorithm and exclusion 
of rain droplets, and only 1.32 for pyrosequencing. This result shows that k-NN reduces standard deviation in 
replicates, while pyrosequencing have a very low standard deviation from replicates in general. Thus, selecting 
pyrosequencing as our gold standard seemed the most appropriate, even though both techniques showed similar 
sensitivity.

To further explore how the different ddPCR droplet analysis compares to pyrosequencing, a full description 
on the distribution of BRAF V600E percentage was obtained and it is shown in Fig. 6.
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Figure 6.  Distribution of percentage of BRAF V600E by using different techniques. The density plot represents 
the distribution of BRAF V600E percentage across all samples. It uses a kernel density estimate to show a 
fitted density curve. Not only, but it also shows the histogram of this distribution. (a) Percentage obtained 
through pyrosequencing. There is the formation of two populations, one with lower percentage (< 20%) with 
the center close to 10% and one with higher percentage (> 20%) with the center close to 34%. (b) Percentage 
obtained through manual selection excluding rain droplets in ddPCR. (c) Percentage obtained through k-NN 
selection excluding rain droplets in ddPCR. It is possible to check that for both ddPCR graphs, only one curve 
of distribution seems to be clearly visible. Not only, but the density curve is smoothed in k-NN values, with less 
extreme values close to 100% BRAF V600E.
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If we assume that there are, in general, one population of tumors without BRAF V600E and one population 
with BRAF V600E, we should expect at least two clearly separated populations when analysing the VAF of sam-
ples given the presence of the mutation in homozygosis or heterozygosis.

In fact, it is possible to observe that for pyrosequencing analysis, two populations are undoubtedly observed. 
Considering that the threshold for BRAF V600E positivity is 9.82%, the population with low abundance of 
mutated allele (< 10%) was considered negative and another population with a higher percentage of mutated 
alleles (> 10%) was considered positive.

This separation of populations is smoothed out in both ddPCR with manual selection or k-NN algorithm 
as shown in Fig. 6 panel b and c. Our hypothesis is that because of the high variability of the technique, the 
information about biological populations of tumors with different VAFs is smoothed and information is lost.

Discussion
To our knowledge, this is the first study that compared Sanger, Pyrosequencing and ddPCR with a real-life dataset 
consisting of tumor samples derived from FFPE with variable DNA quality. When comparing these techniques, 
most studies used high quality DNA samples or even FFPE samples that were recently processed according to 
specific protocols and usually using a serial dilution of a high-quality sample to quantitative  comparison1,2,5–10. 
Although there are studies in the literature that compared pyrosequencing with Sanger or ddPCR, as far as we 
know, there is no study that evaluated absolute quantification of somatic mutations in FFPE tissue-derived DNA 
and in general studies select the classification that found the most positive qualitative results for SNP  detection1,9.

We here aimed to identify strategies that would give us the most reliable results to detect BRAF V600E 
mutated allele in DNA isolated from FFPE specimens.

In addition to detect the presence/absence of mutated allele, the VAF detections likely have an important effect 
on biological behavior of the tumor. In the literature, many works have shown that tumors with higher VAF of 
some drivers such as P53 have worse prognosis and disease-free  survival11–13. In PTC with tumor size > 1 cm, it 
has been shown that when more than 30% of BRAF V600E is present there is an association with disease aggres-
siveness and poorer  outcome14. Moreover, some diagnostic techniques such as fine-needle aspiration (FNA) and 
conventional biopsies may contain a high number of infiltrate cells and, therefore, sensitive detection of mutations 
are important for both clinical practice use and  research15.

One example is that if BRAF V600E is found in cells obtained from FNA of a thyroid nodule, even within low 
mutated allele frequency, the nodule is considered malignant and surgery is indicated based on this  finding16. 
Another important point to the use of quantitative allele detection is that some mutations, even when present at 
very low abundance, triggers important and deleterious effects, such as mutations related to tumor progression 
and drug  resistance17,18.

This fact encourages the use of quantitative techniques for the detection of variant allele frequency in genes 
related to cancer.

The need for quantitative sequencing technologies for genetics disease such as cancer is one reason for the 
development of new technologies. One example is digital PCR, which has been proposed some years after the 
conception of conventional PCR. Nevertheless, the procedure of creating thousands of separated reactions was 
unfeasible with the technology. Recently, the correct chemistry was improved to allow the generation of droplets 
from the same PCR reaction, by using microfluidics. Droplet digital PCR can be very helpful, with high preci-
sion and sensitivity, but the challenges to include this technology in clinical environment are not elementary. 
As an example, the hands-on is vastly more complicated than qPCR, Sanger Sequencing and pyrosequencing. 
Additionally, the initial DNA input varies according to the platform used which should be considered for rare 
samples such as microPTC. Lastly, there is no obvious method for the automatic classification of positive and 
negative samples for degraded genetic material such as that obtained from FFPE.

When comparing the three different approaches to detect a somatic driver mutation, we observed that, when 
using DNA isolated from FFPE specimens, Sanger Sequencing showed lower accuracy and sensitivity than ddPCR 
and pyrosequencing to detect BRAF V600E mutation. In fact, these comparisons have been independently per-
formed and suggested that Sanger Sequencing is not as sensitive as ddPCR and  pyrosequencing1,2,9. Therefore, our 
data corroborate with this hypothesis and confirmed that Sanger require at least > 15% of abundance of mutated 
allele to detect a mutation as seen in Fig. 1.

As the percentage of mutated alleles in few samples varied between ddPCR analyses, our hypothesis is that 
ddPCR was sensitive to amplicon size. As FFPE-derived DNA is highly degraded, its sensitivity is extremely 
dependent of primer and probe designs that affect the size of PCR product. Additionally, we cannot exclude 
that inhibiting substances were co-eluted during DNA isolation and were present at higher concentrations in 
few original samples and could contribute to PCR failure. Therefore, smaller amplicon size and lower input of 
FFPE tissue-derived DNA are critical. One recommendation for FFPE tissue in ddPCR is that rare samples with 
very low DNA concentration could be evaporated by using vacuum concentrator so no DNA is lost, and FFPE 
contaminants could be eluted when water is added to the ddPCR reaction mix to complete 20ul final volume.

Remarkable, pyrosequencing and ddPCR were able to classify a sample as positive when only 10% of mutated 
alleles are present. Importantly, there is a lot of room for the improvement of ddPCR, which has begun to be 
used in the clinical setting in recent years, while the pyrosequencing is virtually closed for new developments.

One advantage of ddPCR over pyrosequencing is that ddPCR is an old technology based on new chemistry 
and, therefore, the platform shows great potential for advancements, such as the possibility to perform higher 
multiplexing and the use of machine learning methods to implement a more accurate automatic classification 
of droplets.

One example that needs improvement is to overcome the droplet allocation bias in ddPCR analysis. However, 
most algorithms used to automatically classify droplets were tested using serial dilution of one sample and did 
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not compare to other techniques that are also sensitive such as  pyrosequencing6–8. To fill this gap, we sought 
to compare classification algorithms with the most reliable method that we found, which was pyrosequencing.

In our study, we could compare the results of clinical samples with another already proven technology. First, 
machine learning was able to automatically classify the experiments made with FFPE-derived DNA. Additionally, 
we found that the automatic classification of droplets could increase the sensitivity and precision of this technique 
when comparing with pyrosequencing (Fig. 4), but also reduce selection bias. Nevertheless, one weakness of our 
study is that we did not include a serial dilution of FFPE-derived DNA with high percentage of BRAF V600E 
mutated allele and another with low percentage of BRAF V600E mutated allele. However, there are studies show-
ing that both techniques have a good accuracy with synthetic serial  dilutions1,2,8,9.

Additionally, as most laboratories would not have time and resources to process samples using different 
techniques, providing an automated way to check for the presence of mutations is essential for clinical uses of 
ddPCR. With the creation of an initial training dataset of controls in ddPCR, for example, all other reactions 
could be run without the need to reclassify samples if k-NN classification was used.

Another important point is that simple supervised machine learning, the k-NN algorithm, can be used with 
very simple software in R or even online with a simplified and friendly website with the help of Shiny-based 
 GUI8,19. By using the package twoddPCR, seamless integration of Biorad’s Quantstudio software can be done and 
automated. In principle, this algorithm is so reasonably simple that it could be easily integrated in the original 
ddPCR Quantstudio software.

In sum, our tests indicate machine learning is able to disentangle several pitfalls in the ddPCR droplet classifi-
cation and allow broad generalization of droplet automatic classification for clinical settings. Additional machine 
learning algorithms should be tested with real biological samples, but even k-NN, which is very simple, showed 
promising results to improve ddPCR results in comparison with pyrosequencing.

Methods
Patients. Formalin-fixed paraffin-embedded (FFPE) sections were selected from patients who underwent 
thyroid surgery at Hospital São Paulo, Universidade Federal de São Paulo and diagnosed with microPTC, defined 
by the World Health Organization as a PTC of 10 mm or less in the largest dimension. The series consisted of 
73 microPTC cases. All hematoxylin and eosin-stained slides of each sample were reviewed by a pathologist 
(FC), to confirm the diagnosis. For multifocal microPTC, distinct tumors foci were selected. An optimal block 
was selected from each case and at least one area of microPTC was selected for macrodissection. For metastatic 
microPTC, paraffin blocks from 20 available paired lymph node metastasis of 13 patients were macrodissected. 
Hence a total of 115 thyroid specimens were analysed. As controls, we additionally included FFPE from thyroid 
samples that had previously been confirmed as positive (PTC) and negative (FTA) for BRAF V600E mutation by 
Sanger  Sequencing20–22. The study was conducted under the approval of the Research Ethical Committee of the 
Universidade Federal de São Paulo, São Paulo, Brazil.

Macrodissection and DNA isolation. One H&E stained slide along with 5–8 unstained sections (five 
microns in thickness) were mounted on slides. Areas of interest were circled on the H&E slide by a pathologist 
and corresponding areas from the unstained slides were manually macrodissected using a razor blade, to remove 
contaminating normal cells. The paraffin fragments were placed in a 1.5 ml microcentrifuge tube, deparaffinized 
with xylene, vortexed, and centrifuged at 14,000 rpm × 5 min. The tissue pellet was washed twice with 100% 
ethanol. The DNA was extracted from the macrodissected sections using the kit GeneRead DNA FFPE tissue 
kit (Cat # 180134, Qiagen GmbH, Hilden, Germany) according to the manufacturer’s instructions. The isolated 
DNA was quantified using a NanoDrop 2000c spectrophotometer (NanoDrop Technologies, Wilmington, DE, 
USA).

Pyrosequencing to detect BRAF V600E mutation. Pyrosequencing was performed in all thyroid 
samples (n = 115) and controls (n = 2). For quantitative measurement of mutation in codon 600 in exon 15 of 
BRAF, a 101-bp region spanning the hotspot mutation was amplified by polymerase chain reaction (PCR). The 
PCR reaction was performed using a custom pyrosequencing kit from Qiagen (Cat # 979009, 979006, 970802, 
979008, 978703 and 978776, Qiagen) according to the manufacturer’s instructions with 10–20 ng of DNA in a 
final volume of 25 µL. Primer sequences were: forward: 5′-TGA AGA CCT CAC AGT AAA AAT AGG -3′; reverse: 
5′-ACA AAA TGG ATC CAG ACA ACTG-3′. The reverse primer was 5′-biotinylated to enable single-strand DNA 
template isolation, using streptavidin-coated sepharose beads, which is the template for the pyrosequencing 
reaction. The amplicons are immobilized on streptavidin sepharose high performance (Cat # 17-5113-01, GE 
Healthcare, Little Chalfont, United Kingdom). The single-strand DNA was sequenced using the following 
primer: 5′-GTG ATT TTG GTC TAG CTA C-3′. The samples were then analyzed on the PyroMark Q24 and Pyro-
Mark Q24 Software (Qiagen GmbH).

Twenty-three randomly selected thyroid samples were re-analyzed, to assess reproducibility. As pyrosequenc-
ing has been largely used and considered reliable, more accurate and  sensitive1,2 method for detection and quan-
tification of both mutated and wild-type alleles than conventional sequencing methods, it was selected as gold 
standard for all analyses. To classify a sample as positive or negative, we defined the allele frequency threshold 
using the DNA isolated from positive and negative controls (Figure S1). Positive and negative controls were 
selected for their consistent results by Sanger after numerous sequencing analyses and were included in each run.

Sanger sequencing to detect BRAF V600E mutation. All samples with less than 20% abundance of 
the BRAF V600E mutated allele by pyrosequencing were screened by sequenced by Sanger Sequencing as previ-
ously  described20–22. Additionally, we randomly selected samples with > 20% of abundance of mutated alleles for 
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Sanger Sequencing. Briefly, PCR reactions were performed using 10 ng of DNA and the amplification conditions 
were optimized as follows: denaturation for 10 min at 95  °C and 45 cycles of amplification. The PCR prod-
ucts were resolved by electrophoresis, purified, submitted to sequencing using a BigDye Terminator v3.1 cycle 
sequencing kit and analyzed using an ABI PRISM 310 Genetic Analyzer (Applied Biosystems, Foster City, CA, 
USA). The samples were sequenced at least twice and in both directions.

Droplet digital PCR to detect BRAF V600E mutation. For Droplet Digital PCR analysis the Bio-Rad 
QX100 System was used in combination with the dual-probe TaqMan assay for detection of BRAF V600E muta-
tion (Cat # Hs000000004_rm, Thermo Fisher Scientific, Waltham, MA, USA). The assay includes a mutation-
specific Taqman probe (VIC fluorescence) and a wild type Taqman probe (FAM fluorescence) direct to the 
same region, and PCR primer pairs to amplify the sequence of interest. The PCR reaction was performed using 
40–60 ng of DNA, 1× ddPCR Super Mix, 1× TaqMan assay and restriction enzyme EcoRI-HF at the concentra-
tion of 0.375U per sample (#Cat R3101, NEB, Ipswich, Massachusetts, EUA) to a final reaction volume of 20 µL. 
The PCR mixture was loaded into plates and the droplets were generated with droplet generation oil in the drop-
let generator of the QX100 system (Bio-Rad, Hercules, CA, USA). The droplets were transferred to a new plate, 
sealed and cycled, using the following conditions: 95 °C for 10 min, and 45 cycles of 94 °C for 30 s, and 55 °C for 
one minute. After PCR, the plates were placed in the droplet reader from the Bio-Rad QX100 System (Bio-Rad) 
and the droplets were analyzed according to the manufacture’s recommendation. Briefly, the amplified DNA 
in each droplet was measured for target DNA via fluorescence signaling, such that the number of positive and 
negative droplets can be counted. A positive and a negative control were included in each run. We additionally 
included a no-template control (NTC) well with no DNA. All plates were run in “rare event detection” program 
as suggested by BioRad. The ddPCR analysis was performed in all samples (n = 115). Because of the filtering 
changes according to droplet classification, including NTC droplet classification, analyses have different number 
of accepted samples. The maximum number of accepted samples was 104 samples, on manual selection without 
rain. The size of PCR products (approximately 130 bp) was verified using high-resolution agarose on a gel elec-
trophoresis. The full-length gel is presented in Figure S2. The gel image was obtained with Gel Doc™ EZ System 
and the software ImageLab (Bio-Rad, Hercules, CA, USA) with high-intensity bands exposure.

Droplet Digital PCR manual data analysis. The absolute quantification of mutant and wild type alleles 
by ddPCR was estimated by modelling as a Poisson distribution using QuantaSoft v1.7.4.0917 software (Bio-
Rad). As recommended by Bio-Rad, for FFPE samples, automatic detection of probes fluorescence should not 
be used. Therefore, the manual selection of droplets classification was performed using the system grid classifica-
tion within the limits of detection of NTC well. The discrimination between droplets was based on the signals 
measured in two channels, each one corresponding to the targets (BRAF V600E and BRAF wild type): Positive 
in both BRAF wild type and BRAF V600E (PP); positive for BRAF V600E (PN); positive for BRAF wild type 
(NP); and negative in both channels (NN). Then the percentage of mutated allele in each sample was evaluated.

A simple cut-off criteria for the exclusion of a reaction from subsequent analysis in all classification methods 
consisted of three steps: (1) reactions that had less than 10,000 acceptable droplets; (2) reactions in which the 
mean of positive droplets (PP, PN, and NP) was lower than the mean of positive droplets in the no-template 
control; (3) if more than one reaction was done, the percentage which had been the closest to the pyrosequencing 
percentage value was selected to be evaluated.

Droplet Digital PCR automatic data analysis. For automatic detection of ddPCR, three packages that 
can analyze and visualize ddPCR data in R and are free to use and available online were used ddPCRclust 
 package6, ddPCR  package7, and twoddPCR  package8.

When using the two ddPCR package, rain classification was added, where “rain” droplets that are hard to 
classify are excluded from the analysis by a defined distance. Those droplets are hard to classify because they are 
very close to two or more clusters. The rain distance parameter was adjusted manually according to classifica-
tion results and then the same distances were used on all analyses. Also, for k-NN algorithm, the distance three 
(k = 3) was selected.

Dataset for k‑nearest neighbors (k‑NN) algorithm classification. Because k-NN is a supervised 
machine-learning algorithm, a training set that had been classified manually was needed. To reduce bias, three 
samples were randomly chosen in each experiment, for a total of 18 samples in six different plates. These three 
samples should not have been excluded by the cut-off described above and should have minimal noise. Selected 
samples were easy to classify, but also it seemed to represent the expectations on what a good result with many 
droplets in both alleles is. The manual classification results that were used as the training dataset are shown in 
Figure S3.

Statistics and comparison of techniques. All graphs, functions and statistics were calculated by using 
R version 3.6.4 and R Studio version 1.1.383 if not otherwise cited. The histogram and density graphs were 
obtained with the package ggplot2 and the included smoothed density estimates function was used to calculate 
kernel density estimate.

For comparison between percentage of BRAF V600E obtained through the classification methods of ddPCR 
droplets and pyrosequencing, LOESS regression with the formula x ∼ y and 95% confidence intervals was used 
as a visualization tool and spearman correlation with R values was used for statistical evaluation. A p value less 
than 0.05 (< 0.05) was considered statistically significant.
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For the qualitative analysis of pyrosequencing, ddPCR and Sanger, we first classified the samples as positive 
or negative for BRAF V600E. To do that, the presence of BRAF V600E according to pyrosequencing and ddPCR 
were based in a specific cut-off. This cut-off was calculated as the upper bound of the mean 99.98% confidence 
interval (based on T-distribution values) of the percentage of BRAF V600E mutation in the negative controls 
obtained with pyrosequencing, for a very strict cut-off, as seen in Figure S1.

Data availability
All data generated or analyzed during this study are included in this published article and its Supplementary 
Information files.
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