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Temperature tolerance is critical for defining the fundamental niche of ectotherms and researchers 
classically use either static (exposure to a constant temperature) or dynamic (ramping temperature) 
assays to assess tolerance. The use of different methods complicates comparison between studies 
and here we present a mathematical model (and R-scripts) to reconcile thermal tolerance measures 
obtained from static and dynamic assays. Our model uses input data from several static or dynamic 
experiments and is based on the well-supported assumption that thermal injury accumulation 
rate increases exponentially with temperature (known as a thermal death time curve). The model 
also assumes thermal stress at different temperatures to be additive and using experiments with 
Drosophila melanogaster, we validate these central assumptions by demonstrating that heat injury 
attained at different heat stress intensities and durations is additive. In a separate experiment 
we demonstrate that our model can accurately describe injury accumulation during fluctuating 
temperature stress and further we validate the model by successfully converting literature data 
of ectotherm heat tolerance (both static and dynamic assays) to a single, comparable metric (the 
temperature tolerated for 1 h). The model presented here has many promising applications for 
the analysis of ectotherm thermal tolerance and we also discuss potential pitfalls that should be 
considered and avoided using this model.

Tolerance to temperature extremes is arguably among the most important traits defining the fundamental niche 
of ectotherms1–5. However, studies of thermal tolerance are difficult to compare due to the plethora of static (con-
stant temperature) and dynamic (ramping temperature) assays used to assess tolerance limits3,6–19. Furthermore, 
it is difficult to relate laboratory measures of thermal tolerance to the temperature stress experienced under 
natural conditions particularly as the duration and intensity of temperature stress may fluctuate unpredictably.

Static and dynamic methods differ in their temperature protocol (constant and changing temperature, respec-
tively) but also in duration of the stress during testing (see discussions in9,13,15,20). A solution to unify many of 
these different tests can be found in the exponential relation between tolerance time and temperature (see13,15,16 
and “Discussion” below). Thus, a linear relation between log10 (tolerance time) and temperature in ectothermic 
organisms has been known for more than a century6,13,14,16,21–26. This analysis of thermal tolerance has also 
recently been revisited as a “thermal tolerance landscape” (TTL)15,20. A TTL describes the temperature–time 
interaction of tolerance, along with information of percentwise population mortality level20, and thus for each 
mortality level (for example 50%) there is a specific temperature–time interaction, which is termed a thermal 
death time (TDT) curve6. Accordingly, multiple TDT curves which describes different mortality levels can be 
joined to form the thermal tolerance landscape for a population20. In this study, we expand this TDT curve analy-
sis further and present a theoretical and mathematical framework that allows researchers to directly compare 
thermal tolerance measurements obtained during constant and dynamic experiments. Specifically, this model 
(and associated R-scripts) allows researchers to convert assessments of tolerance from static to dynamic assays 
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(and vice versa) and to use lab measurements of tolerance to assess the severity of thermal stress experienced 
under temperature fluctuations.

Theoretical foundation
Assessment of thermal tolerance uses various endpoints (loss of righting response, onset of spasms, coma, 
death27,28), but for a given endpoint used, the estimate of tolerance will depend critically on the duration and 
intensity of stress exposure. The thermal death time curve usually employs death as the tolerance assessment 
endpoint (as per the name), but here we use the time of coma onset, a different endpoint that is however closely 
related to mortality at high temperatures29–31. The model is likely also applicable to other endpoints and to meas-
ures of cold tolerance. In static measurements, thermal tolerance can be recorded as the duration until onset of 
coma (tcoma) (Fig. 1A). The TDT curve describes thermal tolerance of a species/population using the slope of the 
relation between assay temperature and log10(tcoma) and a point on the line (here we use sCTmax (1 h) which is the 
temperature causing heat coma after a 1-h exposure) (Fig. 1B). The slope represents a thermal sensitivity factor 
that describes the temperature change resulting in a one order of magnitude change in tcoma. To be consistent with 
TDT curve terminology the slope is described by the parameter z where z = − 1/slope (cf.20), which is analogous 
to Q10 where Q10 = 1010/z. The TDT parameters from the linear regression can be used to estimate the exposure 
duration (tcoma) tolerated at a specific temperature or to calculate the maximal static temperature (sCTmax) that 
can be tolerated for a specific duration (but see below and associated R-script for details).

Another perspective of TDT curve analysis is to consider temperature as the determinant of an injury accu-
mulation rate (Fig. 2Aii)13–17,23. From this perspective injury accumulation rate increases exponentially with 
temperature and the endpoint is then reached when the animal has accumulated the critical amount of injury 
(100%), illustrated graphically as the area under the curve in Fig. 2. The use of coma onset as the tolerance 
endpoint means that this “injury accumulation rate” is actually a “rate of failure induction”, but since heat coma 
and mortality is closely associated in time, we have opted to use the term injury accumulation rate. Applying 
the concept of injury accumulation rates, it is possible to use TDT parameters to find the tolerance limits using 
other combinations of static, dynamic or fluctuating stress exposure. To validate this model empirically, we use 
Drosophila melanogaster to parameterize a TDT curve with static experiments and then use the TDT parameters 
to predict (and test) the accumulated injury from two sequential stress exposures at two different temperatures 
(as in Fig. 2C) and to predict (and test) heat failure in flies exposed to randomly fluctuating temperatures (as 
in Fig. 2D).

To make this method accessible to researchers we describe the mathematical foundation and provide R-scripts 
to directly derive TDT parameters and use them to assess tolerance limits. The scripts can derive TDT param-
eters from static data sets (where time to failure, tcoma, is measured at different constant temperatures), or from 
dynamic data sets (where the maximal temperature tolerated, CTmax, is measured using different ramping rates). 
The scripts also allow for construction of a TDT curve using only a single static or dynamic estimate of heat 
tolerance, but we caution that the model will be extremely sensitive to the (untested) assumed value of z that 
must be provided. Irrespective of the type of input data, the scripts can predict heat failure at various static and 
dynamic measurements from TDT parameters or integrate TDT parameters with data of temperature fluctuations 
to predict heat stress under fluctuating conditions. To test the applicability of the model we compare estimates 
of heat tolerance in nine ectotherm species from many different literature sources with the assumption that 
each of these species are characterised by a reasonably constant species-specific heat tolerance. Specifically, we 
use the original experimental data to generate TDT parameters and then estimate the temperature required to 
cause heat failure in 1 h.

As with most models in biology the quality of the input data determines the quality of the model output. 
Furthermore, all models have boundaries and limitations for their applications. We therefore discuss important 
considerations including: (i) The importance of using experimental data for model parameterization within the 
time and temperature domain of interest, (ii) The risks of model extrapolation, and (iii) The need to consider 
model boundaries and to consider interactions with repair and hardening. These different considerations are 
important as they set the boundaries in time and temperature for the applicability of the model.

Materials and methods
Mathematical foundation.  If we assume that the acute, temperature-related injury accumulation rate of 
an animal depends on temperature by some function R(T) then the amount of accumulated injury/damage (d) 
at some time t is given by:

here T(τ) is the time-varying temperature regime and tc is the time where injury accumulation starts. The 
temperature at tc is Tc, and up to this temperature the repair of injury can match the generation of injury. For 
Eq. (1) to hold true, however, we must require that once temperature surpasses Tc it will stay above Tc. At some 
time tLd (the dynamic knockdown time, vertical arrow in Fig. 2Bi), a lethal dose dL (area under the curve in 
Fig. 2Bii) has been attained and the animal is knocked down. If injury generation rate depends exponentially 
on temperature, and if injury repair rate is maximized at Tc (reached at tc), then the accumulated lethal dose is 
related to the knockdown time tLd by:

(1)d(t) =
t

∫
tc

R[T(τ)]dτ

(2)dL = R0

tLd
∫
tc

(

ek(T(t)−Tc) − 1

)

dt
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Due to the potent (high k) relation between injury accumulation rate and temperature, and because the true 
Tc for any species is rarely known, we simplified this to (see Fig. S1 for further justification):

where tc* is some start time for integration where the temperature T attains some convenient value Tc* (e.g. rear-
ing temperature) below the true Tc. In the event that exposure temperature is constant (and above Tc*) we get:

where tLs is the static knockdown time. Rearranging this leads to an exponential relation between the static 
knockdown time and temperature, which is here called sCTmax (static CTmax):

where α = dL/R0. This is identical to the usual form of the TDT curve if log(α) = sCTmax/z and k = ln(10)/z.
Assuming that the accumulated injury is always the same at knockdown then, once knowing knockdown 

time and temperature in one experimental setting, will allow calculation of expected knockdown temperatures 
and/or times in other experimental settings. Thus, in the case of a linearly increasing temperature ramp of the 

(3)dL ≈ R0

tLd
∫
tc∗

e
k(T(t)−Tc∗)dt

(4)dL = tLsR0e
k(T−Tc∗)

(5)tLs = αe−k(sCTmax−Tc∗)
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Figure 1.   Exponential relation between temperature and tcoma presented as a thermal death time (TDT) curve. 
(A) Time to coma (tcoma) decreases exponentially with temperature. (B) Observations from (A) presented as a 
TDT curve (however with coma rather than death time) where the linearity of log10-transformed tcoma versus 
temperature indicates the exponential relation (full line). The negative inverse slope of the TDT curve is used 
as the thermal sensitivity parameter z (z = the change in temperature required to change tcoma by an order of 
magnitude). Intersections between the TDT curve and horizontal lines show the temperature (sCTmax) at which 
coma is expected to occur after a fixed time (e.g. 1 h, sCTmax (1 h)). Extrapolations in either end of the TDT curve 
(dotted lines) are tempting but should be met with caution as the relationship is only linear in a certain time–
temperature interval (see “Discussion” section).
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form T(t) = T0 + bˑt, where T0 is the ramp start temperature and b is the ramping rate, the dynamic knockdown 
time and temperatures can be calculated by: (– note that in the original paper15 the “ln” and the k in front of 
(Tc*-T0) was lost in typesetting):

One can also express sCTmax as a function of dCTmax:

If the temperature varies randomly (and therefore is not monotonically increasing) it is no longer possible 
to calculate an expected knockdown temperature from knockdown temperatures obtained in static or dynamic 
ramp experiments. However, the expected knockdown time can still be found by evaluating (usually numerically) 
the integral of Eq. (3) as a function of time.

Using the equations.  We provide two R-scripts (https://​github.​com/​MOers​ted/​Therm​al-​toler​ances, see guide 
in Supplementary Information) to aid TDT parameterization from static and dynamic assays. One script estab-
lishes the TDT parameters from the knockdown time at two or more static temperatures (Fig. 1), while the other 
script derives TDT parameters from two or more values of dCTmax obtained by different ramping rates and/or 
start temperatures (Fig. 2B). Using dynamic input data, sCTmax and z is estimated either through nonlinear curve 
fitting in case dCTmax is available for three or more ramping rates, or by solving two equations (either 7a or 7b) 
with two unknowns when dCTmax is known for two ramping rates (see Supplementary Information for details).

Knowing only one dCTmax or sCTmax will not suffice to establish a TDT curve since k (and thus z) in Eqs. (7a) 
and (7b) will be left unknown. In such cases, an estimated value of z must be supplied (some guidance is provided 

(6)tLd =
1

kb
ln

[

kbtLse
k(sCTmax−T0) + ek(Tc∗−T0)

]

(7a)dCTmax = T0 +
1

k
ln

[

kbtLse
k(sCTmax−T0) + ek(Tc∗−T0)

]

.
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k
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[

1
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(
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)

]

.

Figure 2.   Temperature profiles of heat tolerance experiments and their corresponding temperature-dependent 
injury accumulation (ACC) rates based on parameters from the thermal death time curve. x-axes represent a 
time scale. Shaded areas under the curves represent identical amounts of accumulated injury that result in heat 
failure (lethal dose, Aii–Dii). The exposure duration resulting in accumulation of the lethal dose is reported as 
tcoma (static) or CTmax (dynamic), marked by vertical and horizontal arrows, respectively, in Ai-Di. The grey box 
highlights the two classical assay types (static and dynamic). Note that injury only accumulates at temperatures 
above a specific critical temperature (Tc, thin black line). (Ai–Aii) Exposure to a static temperature yields 
a constant temperature-dependent injury accumulation rate. (Bi–Bii) Exposure to a dynamic ramp where 
temperature changes by a fixed rate resulting in an exponentially increasing injury accumulation rate with time. 
The fast ramping rate (red) results in a shorter exposure before CTmax is observed than the slow rate (yellow), but 
as the injury accumulation rate increases more slowly for the low ramping rate, the final CTmax is lower. (Ci–Cii) 
During initial exposure to a static temperature (blue), some injury is accumulated, but not sufficient to trigger 
coma onset. Successive exposure to another static temperature (green) produces the critical amount of injury, 
but as some injury had already accumulated, the exposure to the second temperature is shorter than if only 
this temperature had been used (compare with Aii). The prediction of the model will only hold true if injury is 
additive at the two static temperatures. (Di–Dii) Varying (natural or laboratory generated) temperature changes 
that cannot be described by a simple fixed ramping rate. However, knowing the temperature–time profile 
permits calculations of the injury accumulation at any time and thus estimation of tcoma.

https://github.com/MOersted/Thermal-tolerances
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in Supplementary Information, Table S1), to allow the establishment of a crude TDT curve, which will be subject 
to uncertainty and sensitive to extrapolation (see “Discussion” section).

Once the TDT curve is parameterized, both scripts have four available outputs; (i) estimated exposure dura-
tion (tcoma) tolerated at specific temperatures, (ii) estimated static temperature (sCTmax) that can be tolerated for 
specific durations, (iii) estimated maximal dynamic temperature dCTmax that can be tolerated in experiments 
with specific ramp rates, and (iv) estimated injury accumulation under fluctuating temperatures (Fig. 2D), and 
thus the exposure duration tolerated before a given percent of lethal injury has accumulated.

Empirical experiments for model validation.  Animal husbandry.  Drosophila melanogaster (collected 
in Denmark, 2011) were kept in bottles with oat-based Leeds medium11 (19 °C, constant light). Experimental 
flies were produced by transferring a spoonful media containing egg/larvae to fresh bottles (23 °C, 14:10 L:D 
cycle). Emerging flies were collected every two days and after 2–5 days flies were briefly anaesthetised with CO2 
(< 5 min), then separated by sex and returned to fresh vials. Flies were allowed > 2 days to recover from anaes-
thesia before experiments32, resulting in 4–8 days old experimental flies.

Thermal death time (TDT) curves.  TDT curves were generated by exposing flies to different stressful static 
temperatures and measuring the time to coma (tcoma, like Fig. 1). Experiments were conducted at temperatures 
resulting in heat coma onset ranging from ~ 10 min to 5 h using the experimental setup described in15. Briefly, 
flies were placed individually in 5-mL glass vials with a droplet of Leeds medium in the cap (food and water 
source), then mounted to a rack and submerged in a preheated temperature-controlled water bath. The median 
value of tcoma was reported for each temperature allowing for long experiments (> 30 min) to be terminated once 
more than half of the flies had entered heat coma (See15 for use of median values). A TDT curve was parameter-
ized for each sex by linear regression of the log10-transformed median tcoma against the assay temperature as 
described above (Fig. 1).

Test of injury additivity between two static temperatures.  To investigate whether heat injury acquired at differ-
ent temperatures is additive, flies were exposed to one stressful temperature (T1) and successively transferred to 
another stressful temperature (T2) (Fig. 2C). The two temperatures were selected from the TDT curve: a ‘low’ 
temperature (~ 36.5 °C) with expected tcoma > 4 h and a ‘high’ temperature (~ 39.5 °C) with expected tcoma < 1 h. 
Experiments were performed with both the ‘high’ and ‘low’ temperature as T1 to examine whether additivity was 
independent of the heat stress intensity during the first exposure. In each experimental run, six groups (n = 10) 
of both sexes were placed at T1 and then transferred to T2 at regular intervals for recording of tcoma. For each 
combination of sex and treatment order (‘high’ or ‘low’ temperature as T1) the median exposure time at T1 and 
T2 was recalculated as fractions of the tcoma predicted by the TDT curve. As an example, an initial exposure of 
15 min to the higher test temperature (39.5 °C, TDT curve-predicted tcoma = 50 min) corresponds to a fraction of 
15 min/50 min = 0.3 of injury resulting in coma. The hypothesis of additivity predicts that the fractions of accu-
mulated injury resulting in coma should sum to 1, and accordingly the predicted fraction of time to coma at T2 
should be 0.7. Thus, if the lower test temperature (36.5 °C) has a TDT curve-predicted median tcoma of 300 min, 
a fraction of 0.7 corresponds to 300 min⋅0.7 = 210 min.

Test of injury additivity during temperature fluctuations.  Animals in the field experience temperature fluctua-
tions. If injury is additive, it should be possible to predict tcoma under such conditions by considering fluctua-
tions as many additive exposures to different temperatures each characterised by an injury accumulation rate 
(calculated from TDT curve, Fig. 2D). To investigate whether heat injury during fluctuating temperatures can 
be modelled from TDT parameters, tcoma was observed in flies exposed to randomly fluctuating temperatures 
and compared to a TDT curve-predicted tcoma. Flies were divided into 13 experimental groups (n = 16–18) for 
each sex. Groups were introduced to the water bath at different times, which was randomly and sequentially 
programmed to heat or cool. Consequently, each group experienced a unique temperature profile (range: 34.5–
42.5 °C). The median tcoma for each sex and experimental group was compared to the tcoma predicted by the TDT 
curve. Specifically, to predict tcoma under these conditions the associated R-script was given the average tem-
perature for each 10-s period and injury accumulation for each period was then calculated from the TDT curve. 
Injury accumulated during each 10-s interval was summed until the critical amount of injury had accumulated 
resulting in predicted tcoma.

Model validation using literature data.  Measures of heat tolerance from different publications are dif-
ficult to compare as they are based on different experimental procedures or conditions. To examine whether our 
model can improve comparison of published tolerance estimates, we collected heat tolerance measures from 
both static and dynamic assays for nine ectothermic species including a crustacean (Daphnia magna Straus 
1820), insects (D. melanogaster Meigen 1830, Drosophila subobscura Collin 1936, Glossina pallidipes Austen 
1903, Tenebrio molitor L. 1758), collembolans (Folsomia candida Willem 1902, Orchesella cincta L. 1758) and 
fishes (Gambusia affinis Baird & Girard 1853, Salmo salar L. 1758). Literature search was aided by an overview 
of dynamic assays with at least three ramping rates33, the GlobTherm database34 and a review of CTmax in aquatic 
ectotherms35. For static assays the time of failure and assay temperature were recorded while the ramping rate, 
CTmax and the initial temperature (t0) were noted for dynamic assays. Acclimation temperature was recorded if 
specified. The aim was to gather multiple heat tolerance measures from the same publication to provide input 
for TDT curves, but publications with fewer assay temperatures or ramping rates were also included to examine 
how the model operated using assumed values of z. The data set included 155 static entries and 227 dynamic 
entries from 55 publications. For all studies included the associated R-scripts were used to derive TDT param-
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eters to estimate the static temperature that causes heat failure after a 1-h exposure (sCTmax(1 h)). For studies with 
single tolerance measures we assumed the mean species value of z calculated from the other publications in our 
analysis (Table S1).

Results
Thermal death time curves.  Median time to heat coma (tcoma) ranged from 7 to 289 min (~ 5 h) in flies 
exposed to constant, stressful temperatures ranging 36.30–42.75 °C (Fig. 3A). The resulting TDT curves were 
well-fitted (R2 > 0.98) for both sexes, showing that the exponential function is appropriate to describe the nega-
tive relation between temperature and tcoma. These TDT parameters (z and sCTmax(1 h)) were used to characterise 
temperature-specific injury accumulation rates in subsequent experiments.

Test of injury additivity between two static temperatures.  To investigate whether heat injury 
acquired at two stressful temperatures is additive, groups of flies were exposed to a static temperature (T1) and 
subsequently exposed to another static temperature (T2) (Fig. 3B,C). Injury accumulated at the two tempera-
tures was scored as the fraction of injury required to enter coma at T1 and T2, respectively (calculated from TDT 
curves, Fig. 3A), and these fractions summed to ~ 1 (graphically points are scattered around the line of additiv-
ity, R2 > 0.78, Fig. 3B,C). This indicates that heat injury at two static stressful temperatures is additive, which is 
supported statistically as the linear regressions of the fractional injury accumulation to tcoma at T1 vs. T2 were not 
significantly different from the line of additivity for neither sex nor temperature sequence (F(2,14–16) < 2.7, P > 0.1, 
Fig. 3B,C, Table S2).

Test of injury additivity during random temperature fluctuations.  Groups of flies were exposed 
to randomly fluctuating temperatures to investigate whether injury accumulation was also additive under these 
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Figure 3.   Thermal death time curves and test of injury additivity between two temperatures. (A) Flies 
were exposed to a static stressful temperature until coma onset (tcoma). Each point is the median tcoma of a 
group (n = 2–10) and TDT curves are made for each sex by linear regressions of median log10(tcoma) vs. assay 
temperature. (B) Groups of flies (n = 5–6 per sex) were exposed to a high temperature (~ 39.5 °C) and then, 
after different durations, transferred to a lower temperature (~ 36.5 °C) where median tcoma was recorded. The 
exposures are shown as fractions of injury resulting in coma at T1 (x-axis) and T2 (y-axis), where small and large 
fractions indicate brief and long exposures, respectively (i.e. brief exposure results in small accumulation of 
injury relative to the critical amount of injury). If injury acquired at two different temperatures is additive, the 
two fractions should sum to 1, i.e. follow the (full) line of additivity. (C) A similar experiment as (B), but with 
initial exposure to ~ 36.5 °C and the subsequent exposure to ~ 39.5 °C.



7

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12840  | https://doi.org/10.1038/s41598-021-92004-6

www.nature.com/scientificreports/

conditions (Figs.  2D, 4A). Each group experienced a unique sequence of stressful temperatures resulting in 
exposures spanning 33–245 min before the last fly entered coma. For each of the random temperature expo-
sures the accumulated amount of injury was predicted using TDT parameters and the accompanying R-script 
(Fig. 4B). Median tcoma was recorded for each sex in the 13 test groups and compared to the predicted tcoma for 
each specific fluctuating temperature sequence (Fig. 4C). Predicted and observed tcoma correlated strongly in 
both sexes (R2 > 0.94), and though the linear regressions deviated slightly from the line of unity (F(2,11) > 5.9; 
P < 0.02, Table S3), the predicted and observed tcoma were not significantly different (inset in Fig. 4C, Mann–
Whitney U test, male: W = 96, P = 0.58; female: W = 88, P = 0.84). The model calculated the mean amount of 
injury accumulated at the median observed tcoma to be 1.10 (range: 0.75–1.36) and 1.09 (range: 0.86–1.46) for 
males and females, respectively, where 1.00 is the TDT curve predicted amount causing coma (Fig. 4C).
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of flies (n = 8–9) were introduced at different times during the assay (arrowheads in (A)), and thus each group 
experienced a unique sequence of fluctuating temperatures. The temperature-specific injury accumulation rates 
were used to predict the gradual injury accumulation (coloured lines), and accordingly, when each experimental 
group should have accumulated the critical amount of injury according to the TDT curve (fraction = 1, dotted 
line). Numbers accompanying median points are the calculated amount of injury accumulated at that specific 
time for this group. (Inset) Observed vs predicted tcoma from all experiments (grey line of unity).
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Using TDT parameters to compare heat tolerance measures from the literature.  Literature 
values of heat tolerance were obtained for nine ectotherm species and for each publication we used values as 
model input to calculate a common heat tolerance estimate; the static temperature estimated to result in heat 
failure after a 1-h exposure (sCTmax (1 h), Fig. 5). Input data included both dynamic and static experiments and 
after conversion to a common metric sCTmax (1 h) we generally found overlap within species and it is for example 
possible to discern large interspecific differences in heat tolerance (compare D. melanogaster and D. subobscura 
or G. affinis and S. salar, Fig. 5). In species with a relatively large intraspecific variation, higher acclimation tem-
peratures tend to increase heat tolerance, although this was not formally tested.

Figure 5.   Heat tolerance measures from the literature re-calculated to the temperature resulting in heat 
failure after a 1-h exposure (sCTmax (1 h)). Heat tolerance measurements from both dynamic and static assays 
were obtained from the literature for nine ectothermic species and used as input for the associated R-scripts. If 
multiple measures of the same assay type were available in a publication (triangles), these measurements were 
used for TDT curve parameterization and then calculate sCTmax (1 h). If only a single measurement was available 
(circle) an estimated value of z was supplied to create a TDT curve for calculation of sCTmax (1 h) (see main text). 
Connected points represent publications that provided both dynamic and static measures and colour indicates 
acclimation temperature.
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Discussion
Fitting tolerance time versus temperature to build a thermal death time curve.  The high 
coefficients of determination found in the D. melanogaster TDT curves (Fig. 3A) are not uncommon and the 
exponential relation has consistently been found to provide a good fit of tolerance time vs. temperature in 
ectotherms3,15,20,22–24. Tolerance time vs. temperature data are also well fitted to Arrhenius plots which are based 
on thermodynamic principles (see for example15,36) and the absence of breakpoints in such plots provides a 
strong indication (but not direct proof) that the cause of coma/heat failure under the different intensities of acute 
heat stress is related to the same physiological process regardless whether failure occurs after 10 min or 10 h2,3 
(but see “Discussion” section below). Despite the superior theoretical basis of Arrhenius analysis, we proceed 
with simple linear regressions of log10-transformed tcoma (TDT curve) as this analysis likewise provides a high 
R2 and is mathematically more straightforward. The physiological cause(s) of ectotherm heat failure are poorly 
understood37,38 but we argue that they are founded in a common process where heat injury accumulates at a 
temperature-dependent rate until a species-specific critical dose is attained (area below the curve and above Tc in 
Fig. 2). Thus, the organism has a fixed amount (dose) of thermally induced stress that it can tolerate before evok-
ing the chosen endpoint. The experienced temperature of the animals then dictates the rate of which this stress 
is acquired, and accordingly when the endpoint is reached (Fig. 2) It is this reasoning that leads to TDT curves 
and explains why heat stress can be additive and thus also determines the boundaries of TDT curve modelling.

Injury is additive across different stressful assay temperatures.  If heat stress acquired at intense 
and moderate stress within the span of the TDT curve acts through the same physiological mechanisms or 
converges to result in the same form of injury, then it is expected that injury is additive at different heat stress 
intensities. This hypothesis was tested by exposing flies sequentially to two static temperatures (different injury 
accumulation rates) and observe whether coma occurred as predicted from the summed injury (Fig. 2C). The 
accumulated heat injury at the two temperatures was found to be additive regardless of the order of temperature 
exposure (Fig. 3B,C). This finding is consistent with a conceptually similar study using speckled trout which also 
found strong support for additivity of heat stress at different stressful temperatures13. The exact physiological 
mechanism of heat injury accumulation is interesting to understand in this perspective, but it is not critical as 
long as the relation between temperature and injury accumulation rate is known.

If injury accumulation is additive irrespective of the order of the heat exposure, we can extend the model to 
fluctuating temperature conditions. We have previously done this by accurately predicting dynamic CTmax from 
TDT parameters obtained from static assays for 11 Drosophila species (Fig. 6A, see “Discussion” section below 
and15). Here we extend this to temperature fluctuations that cannot be described by a simple mathematical ramp 
function. Specifically, groups of flies were subjected to randomly fluctuating temperatures and the observed tcoma 
was then compared to tcoma predicted using integration of heat injury based on TDT parameters (Fig. 4). The 
injury accumulation (Fig. 4C) was calculated by introducing the fluctuating temperature profiles in the associated 
R-script and the observed and predicted tcoma was found to correlate well (R2 > 0.94) across the 13 groups tested for 
each sex. These results further support the idea that injury is additive across a range of fluctuating and stressful 
temperatures and hence that similar physiological perturbations are in play during moderate and intense heat 
stress. It is important to note that in these experiments, temperatures fluctuated between 34.5 and 42.5 °C and 
accordingly the flies were never exposed to benign temperatures that could allow repair or hardening (see below).

In conclusion, empirical data (present study;6,13,14,22) support the application of TDT curves to assess heat 
injury accumulation under fluctuating temperature conditions both in the lab and field for vertebrate and inverte-
brate ectotherms. Potential applications could be assessment of injury during foraging in extreme and fluctuating 
environments (e.g. ants in the desert39 or lizards in exposed habitat40) or for other animals experiencing extreme 
conditions41,42. The associated R-scripts allow assessment of percent lethal damage under such conditions if the 
model is provided with TDT parameters and information of temperature fluctuations (but see “Discussion” 
section of model limitations below).

Model application for comparison of static versus dynamic data.  There is little consensus on the 
optimal protocol to assess ectotherm thermal tolerance and many different types of static or dynamic tests have 
been used to assess heat tolerance. TDT curves represent a mathematical and theoretical approach to recon-
cile different estimates of tolerance as the derived parameters can subsequently be used to assess heat injury 
accumulation at different rates (temperatures) and durations13,15,16. Here we provide R-scripts that enable such 
reconciliation and to demonstrate the ability of the TDT curves to reconcile data from static vs. dynamic assays 
we used published measurements of heat tolerance for 11 Drosophila species using three dynamic and 9–17 
static measurements for each species43. Introducing data from only static assays we derived TDT parameters and 
subsequently used these to predict dynamic CTmax that were compared to empirically observed CTmax for three 
ramp rates (Fig. 6A). In a similar analysis, TDT parameters were derived from the three dynamic (ramp) experi-
ments to predict tcoma at different static temperatures which were compared to empirical measures from static 
assays (Fig. 6B). Both analyses found good correlation between the predicted and observed values regardless 
whether the TDT curve was parameterized from static or dynamic experiments (Fig. 6). However, predictions 
from TDT curves based on three dynamic assays were characterised by more variation, particularly when used 
to assess tolerance time at very short or long durations. Furthermore, D. melanogaster and D. virilis which had 
the poorest correlation between predicted and observed tcoma in Fig. 6B had values of z from the TDT curves 
based on dynamic input data that were considerably different from values of z derived from TDT curves based 
on static assays (Fig. 6B inset). In conclusion TDT curves (and the associated R-scripts) are useful for conversion 
between static and dynamic assessment of tolerance. The quality of model output depends on the quality and 
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quantity of data used as model input, and in this example the poorer model was parameterized from only three 
dynamic assays while the stronger model was based on 9–17 static assays (see also “Discussion” section below).

Model application for comparison of published data.  Thermal tolerance is important for defining 
the fundamental niche of animals1,2,4 and the current anthropogenic changes in climate has reinvigorated the 
interest in comparative physiology and ecology of thermal limits in ectotherms. Meta-analyses of ectotherm heat 
tolerance data have provided important physiological, ecological and evolutionary insights5,44–46, but such stud-
ies are often challenged with comparison of tolerance estimates obtained through very different methodologies.

Species tolerance is likely influenced by acclimation, age, sex, diet, etc.47 and also by the endpoint used 
(onset of spasms, coma, death, etc.27). Nevertheless, we expected heat tolerance of a species to be somewhat 
constrained45, so here we tested the model by converting literature data for nine species to a single and species-
specific estimate of tolerance, sCTmax (1 h), the temperature that causes heat failure in 1 h (Fig. 5). The overwhelm-
ing result of this analysis is that TDT parameters are useful to convert static and dynamic heat tolerance measures 
to a single metric, and accordingly, the TDT model and R-scripts presented here have promising applications 
for large-scale comparative meta-analyses of ectotherm heat tolerance where a single metric allows for quali-
fied direct comparison of results from different publications and experimental backgrounds. While this is an 

Figure 6.   Conversion of heat tolerance measures between static and dynamic assays in Drosophila. Data from43. 
(A) Heat tolerance (dCTmax, d for dynamic assays) plotted against predicted dCTmax derived from species-
specific TDT curves created from multiple (9–17) static assays. Data are presented for three different ramping 
rates (0.05, 0.1 and 0.25 °C min-1). Note that this graph is  adapted from Fig. 4b in15. (B) TDT parameters based 
on dCTmax from three dynamic tests were used to predict tcoma in static assays. Each point represents an observed 
vs. predicted value of species- and temperature-specific log10(tcoma). (Inset) Species values of the thermal 
sensitivity parameter z parameterized from TDT curves based on static assays (x-axis) or dynamic assays 
(y-axis). The dashed line represents the line of unity in all three panels.
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intriguing and powerful application, we caution that careful consideration should be put into the limitations of 
this model (see “Discussion” section below).

Practical considerations and pitfalls for model interpretation.  As shown above it is possible to 
convert and reconcile different types of heat tolerance measures using TDT parameters and these parameters can 
also be used to model heat stress under fluctuating field conditions. Modelling and discussion of TDT predic-
tions beyond the boundaries of the input data has recently gained traction (see examples in48,49) but we caution 
that the potent exponential nature of the TDT curve requires careful consideration as it is both easy and enticing 
to misuse this model.

Input data.  The quality of the model output is dictated by the input used for parameterization. Accordingly, we 
recommend TDT parameterization using several (> 5) static experiments that should cover the time and temper-
ature interval of interest, e.g. temperatures resulting in tcoma spanning 10 min to 10 h, thus covering both moder-
ate and intense heat exposure. Such an experimental series can verify TDT curve linearity and allows modelling 
of temperature impacts across a broad range of temperatures and stress durations13,15,22. It is tempting to use only 
brief static experiments (high temperatures) for TDT parameterization, but in such cases, we recommend that 
the resulting TDT curve is only used to describe heat injury accumulation under severe heat stress intensities. 
Thus, the thermal sensitivity factor z represents a very powerful exponential factor (equivalent to Q10 = 100 to 
100,000;15) which should ideally be parametrized over a broad temperature range (see below). We also include a 
script that allows TDT parametrization from multiple ramping experiments and again we recommend a broad 
span of ramping rates to cover the time/temperature interval of interest. A drawback of ramping experiments 
is the relatively large proportion of time spent at benign temperatures where there is no appreciable heat injury 
accumulation. Thus, dynamic experiments can conveniently use starting temperatures that are close to the tem-
perature where injury accumulation rate surpasses injury repair rate (see “Discussion” section of “true” Tc below, 
in Supplemental Information and19 for other considerations regarding ramp experiments).

A final methodological consideration relates to body-temperature in brief static experiments where the animal 
will spend a considerable proportion of the experiment in a state of thermal disequilibrium (i.e. it takes time 
to heat the animal). To avoid this, we recommend direct measurement of body temperature (large animals) or 
container temperature (small animals), and advise against excessive reliance on data from test temperatures that 
results in coma in less than 10 min.

Extrapolation.  Most studies of ectotherm heat tolerance include only a single measure of heat tolerance which 
is inadequate to parameterize a TDT curve. However, a TDT curve can still be generated from a single measure 
of tolerance (static or dynamic) if a value of z is assumed (see Supplemental Information). As z differs within 
species and between phylogenetic groups (Table S115,20), choosing the appropriate value may be difficult and dis-
crepancies between the ‘true’ and assumed z represent a problem that should be approached with care. In Fig. 7A 
we illustrate this point in a constructed example where a single heat tolerance measurement is sampled from a 
‘true’ TDT curve (full line; tcoma = 40 min at 37 °C). Along with this ‘true’ TDT curve we depict the consequences 
for model predictions if the assumed value of z is misestimated by ± 50%. Extrapolation from the original data 
point is necessary if an estimate of the temperature that causes coma after 1 h is desired, however due to limited 
extrapolation (from 40 to 60 min), estimation of sCTmax (1 h) values based on the ‘true’ and z ± 50% are not very 
different (< ± 0.22 °C in this example). Accordingly, moderate extrapolations are associated with minor latent 
errors and such assumptions were the basis for many data points in our comparative analysis (Fig. 5). If extensive 
extrapolation is used (here 40-fold from 40 min to either 1 or 1600 min, Fig. 7A), the assumed z results in sCTmax 
estimates varying ± 2 °C from the true value and even more dramatic discrepancies are seen if tcoma is calculated 
for the temperatures resulting in the ‘true’ sCTmax for 1 min or 1600 min (41 and 33 °C, respectively, table in 
Fig. 7A). Due to the powerful exponential nature of the TDT curve, extrapolation to 41 or 33 °C with values of 
z ± 50% gives predicted tcoma of 1.5 s-3.42 min (‘true’ tcoma = 1 min) and 8 h-44 days (‘true’ tcoma ~ 1 day). Accord-
ingly, excessive extrapolation of TDT curves should be avoided as even moderate errors in the estimate of z can 
result in dramatic output errors if the TDT curve is extrapolated beyond the domain of the input data.

Breakpoints and incipient lethal temperature.  TDT curves are established at critically high temperatures and 
another cause of concern for extrapolation of TDT curves relates to the boundaries of the model. Below some 
temperature [incipient lethal temperature c.f.13, here termed Tc (see “Mathematical foundation” section], the 
processes related to acute heat injury will no longer determine the duration of survival, and graphically this is 
represented as a breakpoint on the TDT curve (analogous to an Arrhenius breakpoint) (Fig. 7B). The premise 
of the TDT curve is not valid below Tc and hence other processes will limit survival below this temperature 
resulting in a breakpoint. For most species Tc is unknown, and it is possible that this value (breakpoint) will also 
depend on other factors (acclimation, age, sex, diet, etc.)(compare Fundulus and Drosophila, Fig. 7B). Accord-
ingly, extrapolation beyond the parameterized time–temperature domain of the TDT curve should be met with 
great caution for instance when modelling over diurnal temperature fluctuations as this likely includes tempera-
tures below the incipient temperature.

The role of repair and acclimation.  From the present study and historical data13,14,16,22,25 it is clear that damage 
attained within the boundaries of the TDT curve is additive and that this model can be used to assess heat injury 
accumulation during fluctuations. Additivity is, however, only empirically validated within the boundaries of 
the TDT curve (i.e. above Tc; Fig. 7B), and at temperatures below Tc it is likely that heat injury can be repaired 
(Fig. 7C). A study using split-dose heat exposures interspaced by benign temperature exposure found that breaks 
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Figure 7.   Potential pitfalls of extrapolation and the ambiguity of heat damage repair and hardening. (A) A 
theoretical TDT curve created from a single point (37 °C, 40 min) with an assumed ‘true’ value of z (black line). 
Grey areas show the TDT curve produced from the same point with deviations from the ‘true’ z of ± 10–50%. 
Horizontal lines are used to compare estimates of sCTmax for 1 min, 1 h and 1600 min, while the vertical 
coloured lines are used to compare time estimates for the temperature of the sCTmax for the ‘true’ TDT curve 
(calculated times in table) (B) The linearity of TDT curves should only be assumed within the time–temperature 
domain where it is parameterized, and it may vary in temperature and time between species. Data and TDT 
curve estimates for D. subobscura22 and F. parvipinnis25. The dashed line for Fundulus represents the temperature 
with no mortality within the tested time domain (≤ 1 week). The dashed arrow indicates the breakpoint 
temperature found by22. (C) Hypothetical fluctuating temperature profile where temperature (and accordingly 
the injury accumulation (ACC) rate) fluctuate around the incipient lethal temperature Tc (the temperature where 
injury accumulation rate surpasses injury repair rate, i.e. net injury accumulation). The purple area indicates 
the part of the temperature profile that would attain the critical amount of injury, under the assumption that no 
repair or hardening (i.e. processes counteracting injury accumulation) takes place in the green shaded areas. 
However, when little is known about the processes counteracting injury accumulation and their relation to 
temperature, it is difficult to predict when coma onset occurs (hatched area).
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(> 6 h) between heat exposure disrupted additivity, suggesting that injury is repaired at benign temperature50. 
Injury repair rate is largely understudied but repair rate is generally increasing with temperature51–53. It is there-
fore an intriguing and promising idea to include a temperature-dependent repair function in more advanced 
modelling of heat injury. Until such repair processes are introduced in the model, we recommend that additiv-
ity of heat injury is evaluated critically if it involves periods at temperatures both above and below Tc (i.e. over 
consecutive days, see also13). An alternative, but not mutually excluding, explanation of increased heat resilience 
in split-dose experiments relates to the contribution of heat hardening as it is likely that the first heat exposure 
in a series can induce hardening responses that increase resilience (and thus change the TDT parameters) when 
a second heat exposure occurs. Such issues of repeated thermal stress have been discussed previously54 but for 
the purpose of the present study the main conclusion is that simple TDT curve modelling is not applicable to 
fluctuations bracketing Tc unless this is empirically validated. Future studies could address this issue as inclusion 
of repair functions would add further promise to the use of TDT curves in modelling of the impacts of tempera-
ture fluctuations.
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