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Design of a multi‑epitope vaccine 
against cervical cancer using 
immunoinformatics approaches
Samira Sanami1, Fatemeh Azadegan‑Dehkordi2, Mahmoud Rafieian‑Kopaei3, Majid Salehi4, 
Maryam Ghasemi‑Dehnoo3, Mehran Mahooti5, Morteza Alizadeh4* & Nader Bagheri2*

Cervical cancer, caused by human papillomavirus (HPV), is the fourth most common type of cancer 
among women worldwide. While HPV prophylactic vaccines are available, they have no therapeutic 
effects and do not clear up existing infections. This study aims to design a therapeutic vaccine 
against cervical cancer using reverse vaccinology. In this study, the E6 and E7 oncoproteins from 
HPV16 were chosen as the target antigens for epitope prediction. Cytotoxic T lymphocytes (CTL) and 
helper T lymphocytes (HTL) epitopes were predicted, and the best epitopes were selected based on 
antigenicity, allergenicity, and toxicity. The final vaccine construct was composed of the selected 
epitopes, along with the appropriate adjuvant and linkers. The multi‑epitope vaccine was evaluated 
in terms of physicochemical properties, antigenicity, and allergenicity. The tertiary structure of the 
vaccine construct was predicted. Furthermore, several analyses were also carried out, including 
molecular docking, molecular dynamics (MD) simulation, and in silico cloning of the vaccine construct. 
The results showed that the final proposed vaccine could be considered an effective therapeutic 
vaccine for HPV; however, in vitro and in vivo experiments are required to validate the efficacy of this 
vaccine candidate.

Cervical cancer, with about 0.6 million cases and 0.3 million deaths per year, is the fourth most common type of 
cancer among women  worldwide1. Human papillomavirus (HPV) is the most important cause of this disease, 
which is transmitted through sexual  intercourse2. There are five main genera of HPV, alpha, beta, gamma, mu, 
and  nu3. The most important HPVs are in the alpha genus, and they are classified into high-risk and low-risk 
groups based on the risk of oncogenic  transformation4. The high-risk group includes types 16, 18, 31, 33, 35, 39, 
45, 51, 52, 56, 58, 59, and  685. Based on biological studies, HPV16 and 18 together cause approximately 70% of 
all cervical  cancers6, and HPV16 is the most carcinogenic of the  two7. HPV types 6, 11, 40, 42, 43, 44, 54, 61, 70, 
72, and 81 are classified in the low-risk  group8. HPV is a non-enveloped virus with a circular double-stranded 
DNA genome that is approximately 8 kb in  length9. There are three regions in the HPV genome, an early region 
(E1, E2, E4, E5, E6, and E7), a late region (L1, L2), and a long control region (LCR)10.

The E6 and E7 oncoproteins are the major virus transforming proteins in high-risk HPV, and they play a role 
in cell proliferation, immortalization, and transformation in human epithelial  cells11. The key function of the 
E6 protein in high-risk HPV types is to promote ubiquitin-mediated degradation of the p53 protein through its 
interaction with the E6-associated protein (E6AP)12. Moreover, p53 is a transcription factor that regulates the 
expression of genes involved in cell cycle arrest and  apoptosis12. E7 binds to the retinoblastoma (Rb) protein, 
causing E2F to be released from the Rb-E2F complex and the cell to enter the S  phase13. Since the E6 and E7 
oncoproteins are essential for tumor progression, and they are consistently expressed in HPV-infected cells but 
not in healthy cells, they are ideal targets for the development of therapeutic HPV  vaccines14,15.

Gardasil and Cervarix are available prophylactic vaccines to prevent HPV infection. These vaccines have no 
therapeutic effect because their action mechanism is to induce the production of neutralizing antibodies against 
the L1 capsid protein, and since L1 is expressed in the granular epithelium before viral shedding, consequently, 
current prophylactic vaccines are not effective in eliminating previous  infections16. Inducing cell-mediated 
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immune response is needed to clear infected  cells17. This study aims to design a therapeutic vaccine against 
cervical cancer using reverse vaccinology. The reverse vaccinology method, which examines the genomes of 
pathogenic microorganisms to identify antigens, employs a number of algorithms for predicting T-cell and 
B-cell epitopes. Unlike the conventional vaccinology method, this method does not require culturing pathogens 
and extracting antigenic proteins, which are costly and time-consuming  processes18. In the present study, CTL 
and HTL epitopes of the E6 and E7 oncoproteins were identified and linked together by appropriate linkers for 
the design of a multi-epitope vaccine against cervical cancer. Multi-epitope vaccines are recombinant vaccines 
that are considered to be a promising strategy against tumors and viral infections due to their high specificity, 
safety, and stability, and low-cost  development19. The major downside of multi-epitope vaccines is their low 
immunogenicity because proteinases can quickly degrade the antigenic peptides in the body, making them 
difficult to identify by the immune cells’  receptors20. One of the strategies suggested for improving the immune 
response generated by multi-epitope vaccines is to use adjuvants in the vaccine  construct21. We also added the 
50S ribosomal protein L7/L12 (Locus RL7_MYCTU) as an adjuvant to the N-terminal of the vaccine construct 
with the help of an EAAAK linker. Subsequently, the physicochemical properties and the secondary and tertiary 
structures of the vaccine were predicted. Furthermore, several analyses were also carried out, including molecular 
docking, MD simulation, and in silico cloning of the vaccine construct. The flow of methods used to design a 
multi-epitope vaccine is illustrated in Fig. 1.

Results
Identification and selection of T‑cell epitopes. A total of 54 CTL epitopes for the E6 and E7 proteins 
were predicted using the NetCTL 1.2 server. The predicted epitopes were screened at several stages. In the first 
step, those epitopes were selected that could bind to at least three MHC class I supertypes. These epitopes were 
then evaluated for antigenicity, toxicity, and allergenicity using VaxiJen v2.0, ToxinPred, and AllerTOP v. 2.0 
servers, respectively. Finally, a CTL epitope was selected for each of the E6 and E7 proteins (Table 1). Here, we 
predicted 99 HTL epitopes for the E6 and E7 proteins using the NetMHCII 2.3 server, among which 27 epitopes 

Figure 1.  A schematic illustration of the immunoinformatics approaches used to design a multi-epitope 
vaccine.

Table 1.  Predicted CTL epitopes of E6 and E7 proteins.

Protein CTL epitope MHC class I supertypes VaxiJen score Allergenicity Toxicity Final decision

E6

IVYRDGNPY A26, A3, B62 0.248 Allergen Non-toxin –

MHQKRTAMF A24, B39, B8 1.2253 Allergen Non-toxin –

RREVYDFAF B8, B27, B39 1.3879 Non-allergen Non-toxin *

E7 RAHYNIVTF A24, B7,B8, B58,B62 0.5919 Non-allergen Non-toxin *
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Table 2.  Predicted HTL epitopes of E6 and E7 proteins.

Protein HTL epitope MHC class II alleles
VaxiJen 
score Allergenicity Toxicity IFN-γ –inducing IL-4- inducing Final decision

E6

YRHYCYSLYGTTLEQ DRB1_0101,DRB1_0901, 
DRB1_0405 0.8524 Non-allergen Non-toxin Positive IL4-inducer *

CIVYRDGNPYAVCDK
DRB1_0401, DRB1_0301, 
DRB3_0101, DRB3_0202, 
DRB3_0202

0.43 Allergen Non-toxin Positive IL4-inducer –

CKQQLLRREVYDFAF DRB1_0103, DRB3_0101, 
DRB4_0101, DRB4_0103 0.051 Allergen Non-toxin Positive IL4-inducer –

DKKQRFHNIRGR WTG DRB1_0103, DRB1_1301, 
DRB4_0103, DRB5_0101 0.7454 Allergen Non-toxin Positive IL4-inducer -

DLCIVYRDGNPYAVC
DRB1_0401, DRB1_1302, 
DRB3_0101, DRB3_0202, 
DRB1_0301

0.8357 Allergen Non-toxin Positive IL4-inducer –

KFYSKISEYRHYCYS DRB1_1501, DRB1_1602, 
DRB5_0101 0.6924 Allergen Non-toxin Positive IL4-inducer –

KKQRFHNIRGR WTG R
DRB1_0103, DRB1_0801, 
DRB1_1301, DRB4_0103, 
DRB5_0101

1.0979 Allergen Non-toxin Positive IL4-inducer –

KQQLLRREVYDFAFR DRB3_0101, DRB4_0101, 
DRB4_0103 0.2691 Allergen Non-toxin Positive IL4-inducer –

KQRFHNIRGR WTG RC
DRB1_0103, DRB1_0103, 
DRB4_0103, DRB5_0101, 
DRB1_0801

1.347 Allergen Non-toxin Positive IL4-inducer –

LKFYSKISEYRHYCY DRB1_1501, DRB1_1602, 
DRB5_0101, DRB1_0801 0.8558 Allergen Non-toxin Positive IL4-inducer –

QQLLRREVYDFAFRD DRB1_0301, DRB3_0101, 
DRB4_0101 0.5512 Allergen Non-toxin Positive Non-IL4-inducer –

QRFHNIRGR WTG RCM DRB1_1301, DRB4_0103, 
DRB1_0103, DRB1_0801 1.3041 Allergen Non-toxin Positive IL4-inducer –

RDLCIVYRDGNPYAV DRB1_0401, DRB1_0301, 
DRB1_1302, DRB3_0101 0.9706 Allergen Non-toxin Positive IL4-inducer –

CDKCLKFYSKISEYR DRB1_1602, DRB1_0801, 
DRB1_1501, DRB1_0802 0.2837 Non-allergen Non-toxin Positive IL4-inducer –

CLKFYSKISEYRHYC
DRB1_1602, DRB1_0801, 
DRB1_0802 , DRB1_1501, 
DRB5_0101

0.7518 Non-allergen Non-toxin Positive IL4-inducer *

DKCLKFYSKISEYRH
DRB1_1602, DRB1_0801, 
DRB1_1501, DRB5_0101, 
DRB1_0802

0.26 Non-allergen Non-toxin Positive IL4-inducer –

EYRHYCYSLYGTTLE DRB1_0101, DRB1_0405, 
DRB1_0901 1.1925 Non-allergen Toxin Positive IL4-inducer –

HLDKKQRFHNIRGRW DRB1_0103, DRB4_0103, 
DRB1_1301 0.7193 Non-allergen Non-toxin Positive IL4-inducer *

KCLKFYSKISEYRHY
DRB1_1602, DRB1_0802, 
DRB1_0802 , DRB1_1501, 
DRB5_0101,DRB1_1101

0.4568 Non-allergen Non-toxin Positive IL4-inducer *

LCIVYRDGNPYAVCD
DRB1_0301, DRB1_0401, 
DRB3_0101, DRB3_0202, 
DRB3_0202

0.6622 Non-allergen Non-toxin Positive IL4-inducer *

LDKKQRFHNIRGRWT DRB4_0103, DRB1_0103, 
DRB1_1301 0.9320 Non-allergen Non-toxin Positive IL4-inducer *

VYCKQQLLRREVYDF DRB1_0103, DRB1_1301, 
DRB4_0103 0.0419 Non-allergen Non-toxin Positive IL4-inducer –

E7

LRLCVQSTHVDIRTL
DRB1_0301, DRB1_0701, 
DRB1_0801, DRB4_0101, 
DRB1_0301, DRB1_0403

0.7711 Allergen Non-toxin Positive IL4-inducer –

STLRLCVQSTHVDIR
DRB1_0403, DRB1_0404, 
DRB1_0701, DRB1_0801, 
DRB3_0301, 
DRB4_0101,DRB4_0103

0.8539 Allergen Non-toxin Positive IL4-inducer –

TLRLCVQSTHVDIRT
DRB1_0701, DRB1_0801, 
DRB3_0301, 
DRB4_0101,DRB4_0103

0.7219 Allergen Non-toxin Positive IL4-inducer –

DSTLRLCVQSTHVDI
DRB1_0403, 
DRB1_0404,DRB1_0701,DRB1_0801 
, DRB3_0301, DRB4_0101

0.5514 Non-allergen Non-toxin Positive IL4-inducer *

IVTFCCKCDSTLRLC DRB1_0301, DRB1_0403, 
DRB3_0101 0.3626 Non-allergen Toxin Positive Non-IL4-inducer –
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capable of binding to at least three MHC class II alleles were identified and checked for antigenicity, toxicity, and 
allergenicity. The selection of six HTL epitopes for E6 and one epitope for E7 was the result of these screenings 
(Table 2).

Construction of the multi‑epitope vaccine construct. A total of two CTL epitopes and seven HTL 
epitopes were merged to construct the multi-epitope vaccine using AAY and GPGPG linkers, respectively. A 
sequence of 159 amino acids was generated after epitope fusion. The adjuvant sequence, with a length of 130 amino 
acid (MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAA GAA PAGAAVEAAEEQSEFD-
VILEAAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAPKPLLEKVAKEAADEAKAKLEAAGATVTVK), was 
added to the N-terminal of the vaccine sequence by an EAAAK linker. The final designed vaccine construct 
consisted of 294 amino acids (Fig. 2).

Evaluation of the antigenicity, allergenicity, and physicochemical properties of the vac‑
cine. The antigenicity of the vaccine construct was calculated using the VaxiJen v2.0 and ANTIGENpro 
servers. The probability of antigenicity predicted by VaxiJen v2.0 and ANTIGENpro was 0.5058 and 0.745186, 
respectively. The allergenicity of the proposed vaccine was predicted using the AllerTOP v. 2.0 server, indicating 
that it was non-allergenic. Various physicochemical characteristics of the designed vaccine were calculated using 
the ProtParam server. The final composition of the multi-epitope vaccine consists of 294 amino acids. The theo-
retical pI, molecular weight, and instability index of the vaccine construct were calculated to be 8.33, 32.01 kDa, 
and 37.82, respectively. The half-life of the vaccine was estimated to be 30 h in mammalian reticulocytes, more 
than 20 h in yeast, and more than 10 h in E. coli. The aliphatic index of the vaccine was 76.43, and its GRAVY 
score was reported to be -0.307.

Figure 2.  The structural arrangement of the final multi-epitope vaccine construct.

Figure 3.  The graphical representation of the secondary structure configuration of the multi-epitope vaccine.
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Prediction of the secondary structure. The percentage of the secondary structure components of 
the multi-epitope vaccine was computed using the Prabi server. The predicted structure included alpha-helix 
(40.48%), extended strand (27.55%), and random coil (31.97%) (Fig. 3).

Tertiary structure modeling, refinement, and validation of the multi‑epitope vaccine. The five 
models of the 3D structure of the vaccine construct were generated by the I-TASSER server using the threading 
templates (PDB Hit: 1dd4A, 6slmA, 1rquA, 4giz, 1dd3A, 4gizC, 2ftc, 1dd4A, and 6slm). The calculated C-score 
values for models 1–5 were − 3.72, − 3.94, − 4.10, − 4.43, and − 4.44, respectively. The C-score is usually within 
the range of − 5 to 2, where a higher C-score for the model indicates that it has a high level of  confidence22. 
Therefore, we selected model 1 with a C-score value of −  3.72. Chimera 1.15rc software was used to visualize the 
3D model of the vaccine  construct23 (Fig. 4). This model was then refined by the 3Drefine server. This server pro-
vided five refined models with different parameters, including the 3D refined score, GDT-TS, GDTHA, RMSD, 
MolProbity, and RWPlus (Table 3). Higher GDT-TS, GDT-HA, and RMSD values, and lower 3D refine Score, 
RWplus, and MolProbity values indicate a higher quality for the models. The refined model 5 was selected based 
on the above parameters (Fig. 4). The ProSA-web and SAVES v6.0 servers were also used to compare the overall 
quality of the protein structure of the multi-epitope vaccine before and after the refining process. The Z-score of 
the initial and refined models was − 0.86 and − 2.48, respectively (Fig. 5A,B). The Ramachandran plot generated 
by the SAVES v6.0 server showed that in the initial model, 50.2%, 34.3%, 10.6%, and 4.9% of the residues were 
present in the favoured, additional allowed, generously-allowed, and disallowed regions, respectively Fig. 5C), 
while in the refined model, these values changed to 60.8%, 25.3%, 8.6% and 5.3%, respectively (Fig. 5D).

Prediction of the B‑cell epitope. Seven linear B-cell epitopes (20-mer) were predicted by the BCPREDS, 
and the scores of the epitopes ranged from 0.819 to 1 (Table 4). The position of the linear B-cell in the final vac-
cine construct were highlighted using the Chimera 1.15rc  software23 (Fig. 6). The ElliPro server also predicted 

Figure 4.  The unrefined and refined structures of the 3D model of the vaccine. The unrefined structure is 
shown in blue, while the refined structure is shown in orange. To identify the differences between the unrefined 
and refined structures, the structures were superimposed.

Table 3.  Results of the model refinement.  Models with higher GDT-TS, GDT-HA, and RMSD values and 
lower 3Drefine Score, RWplus, and MolProbity values are of higher quality.

Model 3Drefine Score GDT-TS GDT-HA RMSD (Å) MolProbity RWPlus

5 26463.3 0.9456 0.8019 0.825 4.381 − 49,065.048671

4 27133.7 0.9583 0.8248 0.769 4.385 − 49,004.222934

3 28245.9 0.9711 0.8495 0.699 4.431 − 48,951.722387

2 30776.4 0.9813 0.8818 0.600 4.431 − 48,782.336975

1 37559.3 0.9966 0.9405 0.442 4.495 − 48,486.394142
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Figure 5.  Evaluation of the 3D model of the vaccine construct using the ProSA-web and Ramachandran plot 
before and after the refining. (A) The initial model has a Z score of − 0.86, (B) while the refined model has a Z 
score of − 2.48. (C) The Ramachandran plot analysis shows that in the initial model, 50.2%, 34.3%, 10.6%, and 
4.9% of the residues are found in the favoured, additional allowed, generously allowed, and disallowed regions, 
respectively, (D) while in the refined model, these values changed to 60.8%, 25.3%, 8.6% and 5.3%, respectively.

Table 4.  A list of linear B-cell epitopes predicted by the BCPREDS.

Position Linear B-cell epitope Score

269 IRGR WTG PGPGDSTLRLCVQ 1

170 TTLEQGPGPGLCIVYRDGNP 1

223 KKQRFHNIRGRWGPGPGKCL 1

247 KISEYRHYGPGPGLDKKQRF 1

43 AAA GAA PAGAAVEAAEEQSE 0.999

201 LKFYSKISEYRHYCGPGPGH 0.998

126 TVTVKEAAAKRREVYDFAFA 0.819
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five discontinuous B-cell epitopes in the tertiary structure of the vaccine (Fig. 7). The minimum and maximum 
scores for the predicted discontinuous B-cell epitopes were 0.648 and 0.792, respectively (Table 5).

Molecular docking. The molecular docking between the vaccine construct and TLR4 was conducted using 
the ClusPro 2.0 server. In this study, the server generated 26 clusters, and it then ranked them by energy level. 
The cluster with the lowest energy of -1103.8 was chosen as the best complex. The Chimera 1.15rc software was 
used to visualize the molecular docking  results23 (Fig. 8). There were 17 hydrogen bonds between chain B of 
TLR4 and the vaccine, while three hydrogen bonds formed between chain D and the vaccine. The map of hydro-
gen bonds and hydrophobic contacts between the vaccine construct and TLR4 generated by the LigPlot v1.4.5 
 program24 (Fig. 9). Tables 6 and 7 show the amino acids involved in the formation of these hydrogen bonds along 
with the lengths of the bonds.

Figure 6.  The linear B-cell epitopes (blue color) are highlighted in the 3D structure of the multi-epitope vaccine 
(tan color).

Figure 7.  To visualize discontinuous epitopes on the vaccine construct’s 3D structure (A–E), the open- source 
molecular viewer Jmol (http:// jmol. sourc eforge. net/) was employed. The gray sticks and the yellow surface 
indicate the vaccine construct and discontinuous B-cell epitopes, respectively.

Table 5.  A list of discontinuous B-cell epitopes predicted by the ElliPro server.

No Position Discontinuous B-cell epitope Score

1 1 MAKLSTDELLDAFKEMTLLELSDFVKKFEETFEVTAAAPVAVAAA 0.792

2 67 LEAAGDKKIGVIKVVREIVSGLGLKEAKDLVDGAP 0.744

3 209 EYRHYCGPGPGHLDKKQRFHNIRGRW 0.734

4 246 SKISEYRHYGPGPGLDKKQRFHNIRG 0.654

5 109 AKEAADEAKAKLEAAGATV 0.648

http://jmol.sourceforge.net/
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MD simulation. The docked complex of the vaccine construct and TLR4 was subjected to MD simulation 
using the GROMACS 2019.6 software. RMSD was evaluated to determine the structural stability of the vaccine 
and TLR4, while RMSF was calculated to measure residual fluctuations. At the beginning of the simulation, the 
RMSD value of TLR4 increased rapidly, reaching approximately 0.3 nm in 3000 ps, and it then fluctuated slightly 
around this value until the end of the simulation. The RMSD value of the vaccine had an upward trend, reach-
ing 0.6 nm at 1000 ps. Afterward, RMSD increased slowly until it reached approximately 1.1 nm at 30,000 ps, 
and it remained constant at this value until the end of the simulation (Fig. 10A). In the previous section, it 
was observed that the vaccine construct was attached to chain B from TLR4, and since both chains A and B 
from TLR4 have the same sequence, the RMSF values of the two chains were compared to accurately evaluate 
the effects of the vaccine construct binding on the flexibility of chain B. The RMSF value of residues 30–110, 
200–205, 390–470, and 550–627 from chain A showed a greater degree of flexibility than that of chain B, while 
the flexibility of other regions in the two chains was almost the same. The RMSF plot of the vaccine showed that 
most of the residues were highly flexible (Fig. 10B).

Codon optimization and in silico cloning of the final vaccine construct. The back translation and 
codon optimization of the multi-epitope vaccine were performed by JCat. The CAI and GC contents of the 
optimized nucleotide sequence of the vaccine were 0.95 and 52.04%, respectively. Finally, in silico cloning of the 
vaccine construct into the pET-28 (+) vector was performed using the SnapGene software (Fig. 11).

Discussion
Cervical cancer, caused by HPV, is a public health crisis in both developing and developed  countries25. Despite 
the availability of HPV prophylactic vaccines, developing a therapeutic vaccine for cervical cancer remains an 
essential need in public  health26. Reverse vaccinology, an unconventional approach to the development of new 
vaccines that combines immunogenicity, immunogenicity, and bioinformatics, has attracted the attention of many 
researchers around the  world27. This approach has been widely used to develop multi-epitope vaccines against a 
variety of organisms, including Helicobacter pylori28, Leishmania donovani29, Klebsiella pneumoniae30, hepatitis C 
 virus31, Fasciola gigantica32, Tropheryma whipplei33, Elizabethkingia anopheles34, Candida auris35, dengue  virus36, 
Zika  virus37, and SARS-COV-238–40. In recent years, several studies have been published focusing on the design 
of multi-epitope vaccines for HPV. In the studies conducted by Negahdaripour et al., the HPV16 L2 protein was 
used to predict the  epitope41,42, while Sarkar et al.43. and Mahmoudvand et al.44 used L1 protein to predict the 
epitope. In another study, Namvar et al. selected the E5 and E7 proteins from HPV16/18/31/45 as target proteins 
for epitope  prediction45. The E6 and E7 proteins are key targets in the development of therapeutic vaccines against 
cervical  cancer46 for a variety of reasons. First, HPV-associated malignancies and HPV-infected cells consistently 
express E6 and E7, whereas healthy cells do  not14,15. Second, E6 and E7 proteins are essential for the initiation 
and maintenance of HPV-associated malignancies, cancer progression, and escape from the immune  system47. 
Third, E6 and E7 proteins are viral antigens that are not subject to central tolerance by human immune  systems48. 

Figure 8.  Docked complex of the vaccine construct (ligand) and TLR4 (receptor). Chains A, B, C, and D of 
TLR4 are shown in blue, cyan, green, and yellow, respectively, while the vaccine construct is shown in red.
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Figure 9.  The map of interactions between the vaccine construct and TLR4.

Table 6.  List of amino acids involved in hydrogen bonds between vaccine and TLR4 (chain B).

TLR4 (chain B) Vaccine
Bond length 
(Å)

Glu605
Asp186 3

Lys135 2.7

Arg598 Tyr159 2.81

Val32 Gly177 2.99

Thr37 Tyr245 2.84

Glu24 Arg148 2.81

Asp502 Arg270 2.75

Gln430
Tyr213 2.84

Arg226 2.9

Asp428 Arg226
2.89

2.76

Asp405
Arg226 2.77

Gln225 3.08

Tyr403 Gln225 2.85

Lys477 Cys214 3.04

Asp379 Lys224 2.81

Arg225 His220 2.97

Asp550 Arg211 2.66
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Table 7.  List of amino acids involved in hydrogen bonds between vaccine and TLR4 (chain D).

TLR4 (chain D) Vaccine
Bond length 
(Å)

Glu143 Arg233
3.21

2.8

Gln73 Arg233 3.05

Figure 10.  Molecular dynamics simulation of the vaccine—TLR4 complex. (A) RMSD plot of the vaccine-
TLR4 complex. (B) RMSF plot of the vaccine—TLR4.

Figure 11.  In silico cloning of the multi-epitope vaccine into the pET28a (+) vector using SnapGene sofware 
free-trial (https:// www. snapg ene. com/ free- trial/). The red section represents the vaccine construct and the black 
section shows the backbone of the vector.

https://www.snapgene.com/free-trial/
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Therefore, in the present study, the E6 and E7 oncoproteins from HPV16 were chosen as the target antigens for 
epitope prediction. The predicted epitopes were evaluated for antigenicity, toxicity, and allergenicity. In multi-
epitope vaccines, the nature of the epitopes, adjuvants, and linkers, and their order and position in the chimeric 
sequence are all important. Since the physicochemical properties and the secondary and tertiary structures of 
the multi-epitope vaccine are determined by the construct’s structure, the nature of the epitopes, adjuvant, and 
linkers, and their arrangement and position in the multi-epitope vaccine are all  important42. In this study, we used 
AAY linkers to fuse CTL epitopes, while we used GPGPG linkers to link HTL epitopes, similar to the studies by 
Khatoon et al.29, Tahir ul Qamar et al.49, and Tarang et al.50. GPGPG and AAY linkers promote epitope presenta-
tion, while they also reduce the formation of junctional  epitopes51,52. The 50S ribosomal protein L7/L12 (Locus 
RL7_MYCTU) is a protein derived from Mycobacterium tuberculosis that has been shown in several studies to 
have an affinity for  TLR453–55; hence, we used it as an adjuvant to improve the vaccine’s immunogenicity. The 
EAAAK linker decreases the connection with other protein areas, while increasing  stability56,57.

The proposed vaccine construct was antigenic and non-allergic, indicating its effectiveness in eliciting robust 
immune responses without causing potentially-harmful allergic responses. The theoretical pI of the vaccine 
was found to be 8.33, indicating that the vaccine is basic in nature. The molecular weight of the vaccine was 
32.01 kDa, which is appropriate since proteins with molecular weights less than 110 kDa are easier and quicker 
to  purify58. The instability index of the vaccine was calculated to be 37.82, and as this value is below 40, the 
vaccine is considered a stable  protein59. The half-life of our vaccine was determined to be 30 h in mammalian 
reticulocytes, while the half-life of the constructs designed in the study of Sarkar et al. is one  hour43, indicating 
that our vaccine is exposed to the immune system for a longer period of time than the vaccines designed by 
Sarkar et al. The aliphatic index of the vaccine was calculated to be 76.43, which shows that it is  thermostable60. 
The GRAVY value was -0.307, and a negative value for this parameter indicates that the vaccine is hydrophilic, it 
can interact with water  molecules61. However, in the study of Negahdaripour et al.41. GRAVY was determined to 
be 0.252, and the use of micelles to increase vaccine interaction inside the polar environment of the body seems 
to be needed due to the vaccine’s hydrophobic nature.

After building the vaccine’s three-dimensional structure, the refining process was used to improve its quality, 
getting it closer to the native structure. Model validation is necessary to compare the quality of the unrefined 
model with that of the refined model. The Ramachandran plot showed that 50.2% of the residues in the unre-
fined model were found in the favoured region, while 60.8% of the residues in the refined model were located 
in the favoured region, indicating the refined model’s improvement. The TLR4 immune receptor is expressed 
in human cervical cancer HeLa cells with a frequency 100 times higher than other TLRs, proving a correlation 
between TLR4 and cervical cancer  progression62,63. Therefore, the molecular docking analysis of the vaccine was 
carried out with TLR4. The molecular docking results indicated that the vaccine interacted strongly with TLR4. 
The vaccine-TLR4 docked complex was also subjected to MD simulation to determine the vaccine construct’s 
stability. The RSMD plot of the proposed vaccine and TLR4 revealed that both were stable. According to the 
RMSF analysis, the vaccine construct had the lowest fluctuations in the regions with the most interactions with 
TLR4. Codon optimization was carried out in order to increase the expression of the vaccine candidate in E. 
coli (K12 strain). The vaccine sequence had a CAI value of 0.95 and a GC content of 52.04%. Since CAI values 
greater than 0.8 are considered to be good for expression in the target  organism64, and since it is reported that 
a GC content between 30 and 70% is required for better  expression61, the results of this section are satisfactory.

Materials and methods
Protein sequence retrieval. The reference sequence of E6 (NP_041325.1) and E7 (NP_041326.1) proteins 
from HPV16 were retrieved in FASTA format from NCBI database (https:// www. ncbi. nlm. nih. gov/).

Identification and selection of T‑cell epitopes. The NetCTL 1.2 server (http:// www. cbs. dtu. dk/ servi 
ces/ NetCTL/) was used to identify the CTL epitopes for the target  proteins65. This server can predict CTL 
epitopes (9 mer), restricted to 12 MHC class I supertypes, including A1, A2, A3, A24, A26, B7, B8, B27, B39, B44, 
B58, and B62. A combination of three approaches proteasomal C-terminal cleavage, TAP transport efficiency, 
and MHC class-I binding affinity, is included in the prediction. TAP transport efficiency is evaluated using a 
weight matrix, while MHC-I binding and proteasoma C-terminal cleavage are predicted using artificial neural 
networks. In this study, the threshold value for epitope prediction was set at 0.75.

The NetMHCII 2.3 server (http:// www. cbs. dtu. dk/ servi ces/ NetMH CII/) was used to identify the HTL 
 epitopes66. This server predicts the binding of the HTL epitopes (15 mer) to HLA-DR, HLA-DQ, HLA-DP, and 
mouse MHC class II alleles using artificial neural networks. In this study, the thresholds for strong and weak 
binders were set at 2% and 10%, respectively.

Due to the large number of epitopes, epitope screening for antigenicity, toxicity, and allergenicity is performed 
to select the best epitopes. The VaxiJen v2.0 server (http:// www. ddg- pharm fac. net/ vaxij en/ VaxiJ en/ VaxiJ en. html) 
was used to predict the antigenicity of the  epitopes67–69. This server is capable of calculating the antigenicity of 
various microorganisms, such as bacteria, viruses, tumors, parasites, and fungi. The accuracy of the prediction by 
the VaxiJen v2.0 server is between 70 and 89%. In this analysis, the virus was selected as the target organism, and 
the antigenicity threshold was set at 0.4. Moreover, the ToxinPred server was used to predict epitope  toxicity70. 
In this study, an SVM-based method (Swiss-Prot) was selected to predict toxicity. In addition, the AllerTOP v. 
2.0 server (https:// www. ddg- pharm fac. net/ Aller TOP/ method. html) was used to evaluate the allergenicity of the 
 epitopes71. The strategy utilized in this server is based on the auto cross covariance (ACC) change of amino acid 
sequences into standard vectors of identical  length72. It is important to note that not all HTL epitopes have the 
ability to induce the production of cytokines, and if produced, the cytokines produced by each may be different. 
Moreover, IL4pred (https:// webs. iiitd. edu. in/ ragha va/ il4pr ed/ design. php) and IFNepitope (https:// webs. iiitd. edu. 

https://www.ncbi.nlm.nih.gov/
http://www.cbs.dtu.dk/services/NetCTL/
http://www.cbs.dtu.dk/services/NetCTL/
http://www.cbs.dtu.dk/services/NetMHCII/
http://www.ddg-pharmfac.net/vaxijen/VaxiJen/VaxiJen.html
https://www.ddg-pharmfac.net/AllerTOP/method.html
https://webs.iiitd.edu.in/raghava/il4pred/design.php
https://webs.iiitd.edu.in/raghava/ifnepitope/design.php
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in/ ragha va/ ifnep itope/ design. php) were used to predict IL-4 and IFN-γ inducing HTL epitopes, respectively. The 
SVM-based model and a threshold of 0.2 were selected to predict IL-4 inducing HTL  epitopes73, and an SVM-
based and IFN-gamma versus other cytokine models were selected to predict IFN-γ inducing HTL  epitopes74.

Construction of the multi‑epitope vaccine construct. Epitopes selected from the previous step 
were used to construct a multi-epitope vaccine. The HTL epitopes were linked using GPGPG linkers, whereas 
AAY linkers were used for the CTL epitopes. Linkers increase the representation and proper separation of the 
 epitopes28. Moreover, glycine-rich linkers, such as GPGPG, also help improve solubility. Furthermore, the 50S 
ribosomal protein L7/L12 (Locus RL7_MYCTU) with accession no. P9WHE3 was selected as an adjuvant to 
enhance the immunogenicity of the vaccine candidate, and its amino acid sequence was attached by an EAAAK 
linker to the N-terminal of the chimeric sequences.

Evaluation of the antigenicity, allergenicity, and physicochemical properties of the vac‑
cine. The assessment of antigenicity is an essential step in the process of designing vaccines. Two servers, 
VaxiJen v2.0 and ANTIGENpro, were used to predict the antigenic behavior of the final vaccine construct. 
ANTIGENpro (http:// scrat ch. prote omics. ics. uci. edu/) estimates protein antigenicity using five machine learn-
ing algorithms and multiple representations of the initial  sequence75. In order to ensure that the vaccine was 
not allergenic, AllerTOP v. 2.0 was used to predict the allergenicity of the vaccine. In this study, we used the 
Expasy ProtParam server (https:// web. expasy. org/ protp aram/) to predict various physicochemical parameters of 
the multi-epitope vaccine, including amino acid composition, theoretical pI, molecular weight, instability index, 
half-life, aliphatic index, and grand average of hydropathicity (GRAVY)59.

Prediction of the secondary structure. We used the Prabi server (https:// npsa- prabi. ibcp. fr/ cgi- bin/ 
npsa_ autom at. pl? page=/ NPSA/ npsa_ gor4. html) to predict the percentage of secondary structure elements in 
the vaccine construct. GOR IV is the prediction method used on this server, which has a mean accuracy of 
64.4%76.

Tertiary structure modeling, refinement, and validation of the multi‑epitope vaccine. The 
I-TASSER server (https:// zhang lab. ccmb. med. umich. edu/I- TASSER/) was used to predict the 3D model of the 
multi-epitope vaccine. This server generates three-dimensional structures from the amino acid sequence by reas-
sembling the excised parts from the threading templates, and it calculates the C-score to evaluate the accuracy of 
the predicted  models22,77,78. The selected model was refined using the 3Drefine server (http:// sysbio. rnet. misso 
uri. edu/ 3Drefi ne/) to improve its structural quality. The algorithm used in the 3Drefine server includes a two-
step process (1) the optimization of the hydrogen bonding network, and (2) the minimization of atomic energy 
by integrating physics into the force  field79–81. Model validation was performed using the ProSA-web server 
(https:// prosa. servi ces. came. sbg. ac. at/ prosa. php) and the SAVES v6.0 server (https:// saves. mbi. ucla. edu/). The 
ProSA-web server computes the overall quality Z-score for the protein structure. If the Z-score is outside the 
characteristic range of the native proteins, it indicates that there may be errors in the protein  structure82,83. The 
PROCHECK tool of the SAVES v6.0 server evaluates the stereochemical quality of a protein structure by check-
ing the geometry of the residues and the overall structural  geometry84,85.

Prediction of the B‑cell epitopes. The most important elements in the immune system are B lympho-
cytes, which are responsible for antibody secretion, thus promoting long-term immunity 28. The prediction of 
linear B-cell epitopes was performed using the BCPREDS (B-cell epitope prediction server) (http:// ailab- proje 
cts1. ist. psu. edu: 8080/ bcpred/ predi ct. html). This server uses a subsequence kernel-based SVM classifier with an 
accuracy of 74.57% to predict linear B-cell  epitopes86–88. Furthermore, the Ellipro server (http:// tools. iedb. org/ 
ellip ro/) was used for the prediction of discontinuous B-cell epitopes. The ElliPro server uses residue clustering 
algorithms along with the Tornton’s method for predicting discontinuous B-cell epitopes. The server assigns a 
score to each of the predicted epitopes, which is defined as a PI (protrusion index)  value89.

Molecular docking. Molecular docking is one of the computational methods used to evaluate the inter-
action between two molecules and find the best orientation of a ligand in a complex. The ClusPro 2.0 server 
(https:// clusp ro. org/ login. php) was used to evaluate the interaction between the vaccine construct and TLR4 
(PDB ID: 4G8A)90–93. The refined model of the vaccine construct, as the ligand, and TLR4, as the receptor, were 
submitted to the server. The LigPlot program was used to illustrate the bonds that formed between the residues 
of the vaccine construct and TLR4 in the docked  complex24.

MD simulation. The MD simulation was performed using the GROMACS 2019.6 software. Using New-
ton’s laws of atomic and molecular motion, the software predicts the behavior of ligands and receptors over a 
specific period of  time94–96. The ff99SB force field was used to prepare the input structure. The surface charge of 
the structure was then neutralized using sodium and chloride ions. The gmx solvate software was also used to 
insert the protein into a layer of TIP3P water molecules with a thickness of 10 angstroms. To eliminate van der 
Waals interactions and hydrogen bonds forming between the water and the complex molecules, the energy of the 
structures was minimized using the steepest descent method. Afterward, the system temperature was steadily 
increased from 0 to 300 K in a constant volume for 200 ps, and the system was then equilibrated at constant pres-
sure. Finally, the root-mean-square deviation (RMSD) and root-mean-square fluctuation (RMSF) of the ligand 
and the receptor were calculated over a 40-ns timeframe.

https://webs.iiitd.edu.in/raghava/ifnepitope/design.php
http://scratch.proteomics.ics.uci.edu/
https://web.expasy.org/protparam/
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html
https://npsa-prabi.ibcp.fr/cgi-bin/npsa_automat.pl?page=/NPSA/npsa_gor4.html
https://zhanglab.ccmb.med.umich.edu/I-TASSER/
http://sysbio.rnet.missouri.edu/3Drefine/
http://sysbio.rnet.missouri.edu/3Drefine/
https://prosa.services.came.sbg.ac.at/prosa.php
https://saves.mbi.ucla.edu/
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Codon optimization and in silico cloning of the final vaccine construct. The Java Codon Adap-
tation Tool (JCat) (http:// www. jcat. de/) was used for the back translation and codon optimization of the final 
vaccine  construct97. The protein sequence of the vaccine was submitted to the JCat, and E. coli (K12 strain) was 
selected as the host organism to express the vaccine construct. This server calculates two parameters, the codon 
adaptive index (CAI) and the GC content, which are important for the evaluation of protein expression levels. 
The sequence of restriction sites for XhoI and BamHI restriction enzymes were introduced at the 5′ and 3′ ends 
of the vaccine construct, respectively, and the vaccine sequence was then cloned into the pET28 (+) vector using 
the SnapGene software (https:// www. snapg ene. com/ free- trial/).

Conclusions
Cervical cancer, caused by HPV, has affected the health of millions of people worldwide. There is currently no 
effective therapeutic vaccine available to treat HPV infections. In this study, we have attempted to design a multi-
epitope vaccine against cervical cancer using reverse vaccinology. CTL and HTL epitopes from the E6 and E7 
proteins of HPV16 were identified Antigenicity, toxicity, and allergenicity of the predicted epitopes were assessed, 
and the best epitopes were merged using appropriate linkers and adjuvant. The designed vaccine was found to be 
both antigenic and non-allergenic, and its physicochemical properties were acceptable. Molecular docking was 
also performed to check the binding affinity of the vaccine construct with TLR-4 in the vaccine-TLR4 complex. 
The stability of the vaccine candidate was confirmed by MD simulation. At last, the expression and translation 
efficiency of the multi-epitope vaccine was evaluated. Although the findings of this study were very impressive, 
they must be validated in the wet lab and animal models.
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