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Association between aphasia 
severity and brain network 
alterations after stroke assessed 
using the electroencephalographic 
phase synchrony index
Teiji Kawano1,2,3, Noriaki Hattori1,2,3,4*, Yutaka Uno3, Megumi Hatakenaka1, Hajime Yagura1, 
Hiroaki Fujimoto1, Michiko Nagasako1, Hideki Mochizuki2, Keiichi Kitajo3,5,6 & Ichiro Miyai1

Electroencephalographic synchrony can help assess brain network status; however, its usefulness 
has not yet been fully proven. We developed a clinically feasible method that combines the phase 
synchrony index (PSI) with resting-state 19-channel electroencephalography (EEG) to evaluate 
post-stroke motor impairment. In this study, we investigated whether our method could be applied 
to aphasia, a common post-stroke cognitive impairment. This study included 31 patients with 
subacute aphasia and 24 healthy controls. We assessed the expressive function of patients and 
calculated the PSIs of three motor language-related regions: frontofrontal, left frontotemporal, 
and right frontotemporal. Then, we evaluated post-stroke network alterations by comparing PSIs 
of the patients and controls and by analyzing the correlations between PSIs and aphasia scores. 
The frontofrontal PSI (beta band) was lower in patients than in controls and positively correlated 
with aphasia scores, whereas the right frontotemporal PSI (delta band) was higher in patients than 
in controls and negatively correlated with aphasia scores. Evaluation of artifacts suggests that this 
association is attributed to true synchrony rather than spurious synchrony. These findings suggest 
that post-stroke aphasia is associated with alternations of two different networks and point to the 
usefulness of EEG PSI in understanding the pathophysiology of aphasia.

Aphasia, a common post-stroke manifestation affecting 15‒42% of patients1, often leads to a poor functional 
outcome2. Thus, to understand the pathophysiological underpinnings of aphasia, great efforts have been made 
to establish clinically applicable tools that can assess damaged brain function3.

Since language function is lateralized to the dominant hemisphere, many studies have focused on stroke 
lesions in the left (ipsilesional) hemisphere4. In addition, recent reports with functional imaging data have indi-
cated that functional connectivity (FC) can offer new insights into changes remote from the stroke lesion, includ-
ing the right (contralesional) homologous brain area5. Magnetic resonance imaging (MRI) is the most commonly 
used modality in FC studies. A large cohort resting-state functional MRI (fMRI) study revealed that both lesion 
topography and FC were equally useful for explaining aphasia severity and that decreased interhemispheric FC 
of the language-related regions correlated with aphasia scores6. Electroencephalographic synchrony analysis can 
also be performed to assess neural network functions, because FC is defined as the temporal correlation of physi-
ological signals in remote brain regions7. Furthermore, electroencephalography (EEG) can offer a high temporal 
resolution, providing distinct information in various frequency bands, and allowing noninvasive recording at a 
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low cost8. A combination of high-density EEG (128-channel) and coherence analysis with a graph-theoretical 
approach was reported to predict recovery from post-stroke aphasia9.

However, fMRI and high-density EEG recordings cannot be performed in most medical facilities. Practically, 
a more clinically feasible recording approach would be preferable. Recently, we have reported that the phase 
synchrony index (PSI), computed from resting-state 19-channel EEG, reflects post-stroke brain network status 
and is associated with motor impairment and recovery in patients with hemiparesis10. Theoretically, the PSI is 
robust to amplitude change and selectively indicates EEG synchrony11,12. Specifically, the PSI between a pair of 
electrodes on the bilateral primary motor cortices decreased in subacute stroke and positively correlated with 
the upper extremity Fugl–Meyer motor assessment score.

In the current cross-sectional study, we sought to test if this PSI method could be applied to the assessment of 
aphasia, one of the most common post-stroke cognitive impairments. In our study, the choice of electrodes was 
based on existing neuroanatomical13–16 and neurophysiological6,17,18 findings regarding aphasia. We hypothesized 
that the PSIs between the motor language-related regions would reflect post-stroke brain network alterations 
and would correlate with the expressive function of patients with aphasia. Specifically, we concentrated on the 
left inferior frontal lobe (Broca’s area) and its right hemispheric homotopic region, considering their anatomical 
connection via the corpus callosum. We also focused on the frontotemporal networks of long association fibers 
connecting Broca’s and Wernicke’s areas. In addition, we focused on right homotopic frontotemporal network. 
Based on the 19-channel EEG electrode setting, we focused on three PSIs related to the left (F7) and right (F8) 
inferior frontal lobes: (1) the interhemispheric frontofrontal (F7F8) PSI, (2) left intrahemispheric frontotemporal 
(F7T5) PSI, and (3) right intrahemispheric frontotemporal (F8T6) PSI (Fig. 1a). First, we assessed post-stroke 

Figure 1.   Maps of electrode pairs and stroke lesions in this study. (a) Electrode pairs used for the computation 
of the F7F8-PSI, F7T5-PSI, and F8T6-PSI. They are located in the motor language-related regions. (b) Electrode 
pairs (F3F4, F3P3, and F4P4) spatially adjacent to those in (a) (F7F8, F7T5, and F8T6) used for evaluation of the 
effect of artifacts. They are not located in the motor language-related regions. (c) A map of the ischemic stroke 
lesion distribution in 31 patients. The colors indicate the number of patients with lesions. PSI phase synchrony 
index.
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network alterations by comparing PSIs of patients with those of healthy controls. Then, we evaluated correla-
tions of these PSIs with the Aphasia Rating Scale speech (ARSsp) score19 calculated from seven subscores of the 
Standard Language Test of Aphasia (SLTA)20. Furthermore, we evaluated the possibility of spurious synchrony 
due to artifacts21 by assessing the spatially adjacent electrode pairs that are not located in the motor language-
related regions (Fig. 1b), the global PSIs, the effect of stroke lesion volume (LV), and another synchrony measure: 
Phase Lag Index (PLI). The PLI may underestimate true synchrony due to its conservative nature22. In addition, 
we also evaluated the EEG power to compare with the PSI.

Results
Participants’ characteristics.  This study included 31 subacute stroke patients (mean age: 67.6  years, 
seven women) with aphasia and 24 age- and sex-matched healthy controls. All patients had ischemic cortical 
lesions in the left frontal lobe (Fig. 1c). We recorded the resting-state EEG (median: 35.0 days after stroke). The 
median interval between EEG recording and the SLTA assessment was 2.0 days (interquartile range: − 1.0 to 
5.0 days). Table 1 summarizes the demographic and clinical characteristics of the participants. The Shapiro–Wilk 
test revealed that the ARSsp scores, LV, and substantial proportions of the PSIs and the PLIs deviated from a 
normal distribution. Detailed data of each patient and each healthy control participant are described in the Sup-
plementary information (Supplementary Tables S1‒S30 online).

Evaluation of the PSIs between motor language‑related regions.  First, we evaluated three PSIs 
between motor language-related regions according to our hypothesis. We assessed post-stroke network altera-
tions by comparing PSIs of patients with those of healthy controls. The F7F8-PSI in patients was significantly 
lower than that in healthy controls in the β1 and β2 bands (β1: U = 213.0, P = 0.031; β2: U = 193.0, P = 0.014). The 
F7T5-PSI in patients was significantly higher than that in healthy controls in the γ band (U = 221.0, P = 0.037). 
The F8T6-PSI in patients was significantly higher than that in healthy controls in the δ and θ bands (δ: U = 149.0, 
P = 0.003; θ: U = 164.0, P = 0.004; Fig. 2a‒c; Supplementary Table S31 online). Results are false discovery rate 
(FDR) corrected (P < 0.05).

Next, we performed a correlation analysis between the F7F8/F7T5/F8T6-PSIs and ARSsp scores. The F7F8-
PSI correlated significantly positively with the ARSsp score in the β1 band (ρ = 0.55, P = 0.005). By contrast, the 
F7T5-PSI was significantly negatively correlated with the ARSsp scores in the β1, β2, and γ bands (β1: ρ =  − 0.58, 
P = 0.006; β2: ρ =  − 0.63, P = 0.003; γ: ρ =  − 0.56, P = 0.005). The largest correlation coefficient was observed for the 
β2 band. On the other hand, the F8T6-PSI was significantly negatively correlated with the ARSsp score in the δ 
band (ρ =  − 0.58, P = 0.004; Fig. 2d‒f; P < 0.05, FDR corrected; Supplementary Table S32 online). Scatter plots 
(Fig. 3a‒c) revealed a positive correlation of the F7F8-PSI (β1) with the ARSsp score and negative correlations 
between the F7F5-PSI (β2)/F8T6-PSIs (δ) and ARSsp scores.

Evaluation of the PSIs between adjacent electrode pairs.  Second, to evaluate the possibility of 
spurious synchrony due to artifacts, we assessed spatially adjacent electrode pairs (F3F4/F3P3/F4P4; Fig. 1b) 
that are not located in the motor language-related regions. We found that the F3F4/F3P3/F4P4-PSIs in patients 
showed no significant difference from those in healthy controls (P < 0.05, FDR corrected; Fig. 4a‒c; Supplemen-
tary Table S31 online).

We then performed correlation analysis between the F3F4/F3P3/F4P4-PSIs and ARSsp scores. We found that 
the F3F4/F3P3/F4P4-PSIs showed no significant correlation with ARSsp scores in any frequency band (P < 0.05, 
FDR corrected; Fig. 4d‒f; Supplementary Table S32 online).

Evaluation of the global PSI.  Third, to compare with the local synchrony of motor language-related 
regions, we evaluated the global intrahemispheric PSI (Intrah-PSI) of both hemispheres. The left Intrah-PSI in 
patients showed no significant difference from that in healthy controls, while right Intrah-PSI in patients was 
significantly higher than that in healthy controls in the δ and θ bands (Fig. 5a and b; δ: U = 161.0, P = 0.004; θ: 
U = 165.0, P = 0.003; P < 0.05, FDR corrected; Supplementary Table S33 online). In the correlation analysis, how-

Table 1.   Demographic and clinical characteristics of the participants. ARSsp Aphasia Rating Scale 
speech, EEG electroencephalography, IQR interquartile range, LV lesion volume, MMSE mini mental state 
examination, NIHSS National Institutes of Health Stroke Scale, SD standard deviation.

Variables Patients Healthy controls Statistics P

Number of participants 31 24 – –

Age, (years, ± SD) 67.6 ± 13.2 66.0 ± 6.9 t(47.3) =  − 0.73 0.471

Women:Men 7:24 10 : 14 χ2
(1) = 0.52 0.472

MMSE score (median [IQR]) – 30.0 [28.5–30.0] – –

EEG recording after stroke onset (days, median [IQR]) 35.0 [27.8–43.0] – – –

NIHSS score (median [IQR]) 6 [2–10] – – –

ARSsp score (median [IQR]) 47.0 [3.5–62.0] – – –

LV (mm3; median [IQR]) 59,704 [33,464–103,216] – – –
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Figure 2.   Results of analyses for the PSIs between the motor language-related regions. Comparison of PSIs in 
stroke patients with those in healthy controls. A box-and-whisker plot indicating values of the (a) F7F8-PSI, 
(b) F7T5-PSI, and (c) F8T6-PSI of stroke patients and healthy controls (Mann‒Whitney U test; * P < 0.05; 
** P < 0.01, FDR corrected). The F7F8-PSI (β1 and β2), the F7T5-PSI (γ), and the F8T6-PSI (δ and θ) show 
significant differences between stroke patients and healthy controls. Correlation coefficients of the F7F8/F7T5/
F8T6-PSIs with ARSsp scores. A polygonal line graph of the correlation coefficients for the correlation of (d) 
F7F8-PSI, (e) F7T5-PSI, and (f) F8T6-PSI with ARSsp scores (Spearman’s correlation analysis; * P < 0.05; ** 
P < 0.01, FDR corrected). Each PSI shows significant correlations in distinct frequency bands with significant 
differences between stroke patients and healthy controls. ARSsp Aphasia Rating Scale speech, FDR false 
discovery rate, PSI phase synchrony index.
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ever, we found that either the left or right Intrah-PSIs showed no significant correlation with ARSsp scores in any 
frequency band (P < 0.05, FDR corrected; Fig. 5c and d; Supplementary Table S34 online).

Figure 3.   Correlation of the F7F8/F7T5/F8T6-PSIs with ARSsp scores. Scatter plots of the (a) F7F8-PSI, (b) 
F7T5-PSI, and (c) F8T6-PSI versus the ARSsp scores (P values: Spearman’s correlation analysis; FDR corrected). 
The F7F8-PSI is correlated positively with the ARSsp score, whereas the F7T5-PSI and F8T6-PSI are correlated 
negatively with the ARSsp scores. ARSsp Aphasia Rating Scale speech, FDR false discovery rate, PSI phase 
synchrony index.
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Figure 4.   Results of analyses for the spatially adjacent PSIs. Comparison of PSIs in stroke patients with those in 
healthy controls. A box-and-whisker plot indicating values of the (a) F3F4-PSI, (b) F3P3-PSI, and (c) F4P4-PSI 
of stroke patients and healthy controls (Mann‒Whitney U test, FDR corrected). In contrast to the PSIs between 
motor language-related regions, all spatially adjacent PSIs show no significant difference between stroke patients 
and healthy controls. Correlation coefficients of the F3F4/F3P3/F4P4-PSIs with ARSsp scores. A polygonal 
line graph of the correlation coefficients for the correlation of (d) F3F4-PSI, (e) F3P3-PSI, and (f) F4P4-PSI with 
ARSsp scores (Spearman’s correlation analysis, FDR corrected). In contrast to the PSIs between motor language-
related regions, all spatially adjacent PSIs show no significant correlations in any frequency band. ARSsp Aphasia 
Rating Scale speech, FDR false discovery rate, PSI phase synchrony index.
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Evaluation of the PLIs between motor language‑related regions.  Fourth, for further evaluation of 
the effect due to artifacts, we assessed the F7F8/F7T5/F8T6-PLIs because the PLI is less affected by the artifacts 
originating from near-zero phase synchrony22 compared with the PSI. The F7F8-PLI in patients was signifi-
cantly higher than that in healthy controls in the θ band (U = 160.0, P = 0.003). The F7T5-PLI in patients was 
significantly lower than that in healthy controls in the β1 and β2 bands (β1: U = 200.0, P = 0.024; β2: U = 124.0, 
P < 0.001). The F8T6-PLI in patients showed no significant difference from that in healthy controls (P < 0.05, 
FDR corrected; Fig. 6a‒c; Supplementary Table S35 online).

We next performed correlation analysis between the F7F8/F7T5/F8T6-PLIs and ARSsp. We found that the 
F7F8-PLI and F7T5-PLI were not correlated with the ARSsp scores, while F8T6-PLI was significantly positively 
correlated with the ARSsp score in the β1 band (ρ = 0.57, P = 0.013; P < 0.05, FDR corrected; Fig. 6d‒f; Supple-
mentary Table S36 online).

Evaluation of EEG power of motor language‑related regions.  Fifth, for comparison with the PSI, 
we assessed the EEG wavelet power (wP) related to F7F8, F7T5, and F8T6. The F7F8-wP in patients showed no 

Figure 5.   Results of analyses for the global PSIs. Comparison of PSIs in stroke patients with those in healthy 
controls. A box-and-whisker plot indicating values of the (a) left Intrah-PSI and (b) right Intrah-PSI of stroke 
patients and healthy controls (Mann‒Whitney U test; * P < 0.05, ** P < 0.01, FDR corrected). Right Intrah-PSIs 
shows significant differences between stroke patients and healthy controls in the δ and θ bands. Correlation 
coefficients of the left/right Intrah-PSIs with ARSsp scores. A polygonal line graph of the correlation coefficients 
for the correlation of (c) left Intrah-PSI and (d) right Intrah-PSI with ARSsp scores (Spearman’s correlation 
analysis, FDR corrected). In contrast to the PSIs between motor language-related regions, global PSIs show no 
significant correlations in any frequency band. ARSsp Aphasia Rating Scale speech, FDR false discovery rate, 
Intrah intrahemispheric, lt left, PSI phase synchrony index, rt right.
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Figure 6.   Results of analyses for the PLIs between the motor language-related regions. Comparison of the PLIs 
in stroke patients with those in healthy controls. A box-and-whisker plot indicating values of the (a) F7F8-PLI, 
(b) F7T5-PLI, and (c) F8T6-PLI of stroke patients and healthy controls (Mann‒Whitney U test; * P < 0.05, 
** P < 0.01, *** P < 0.001, FDR corrected). In contrast to the F7F8-PLI and F7T5-PLI, the F8T6-PLI shows no 
significant difference between stroke patients and healthy controls. Correlation coefficients of the F7F8/F7T5/
F8T6-PLIs with ARSsp scores. A polygonal line graph of the correlation coefficients for the correlation of (d) 
F7F8-PLI, (e) F7T5-PLI, and (f) F8T6-PLI with ARSsp scores (Spearman’s correlation analysis; * P < 0.05, FDR 
corrected). In contrast to the F7F8-PLI and F7T5-PLI, the F8T6-PLI shows a significant correlation in the β1 
band. ARSsp Aphasia Rating Scale speech, FDR false discovery rate, PLI phase lag index.
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significant difference from that in healthy controls. The F7T5-wP in patients was significantly higher than that in 
healthy controls in the β1 band (β1: U = 204.0, P = 0.039). The F8T6-wP in patients was significantly higher than 
that in healthy controls in the β2 band (U = 209.0, P = 0.034; P < 0.05, FDR corrected; Supplementary Table S37 
online). In the correlation analysis, however, the F7F8/F7T5/F8T6-wP showed no significant correlation with 
the ARSsp scores in any frequency band (P < 0.05, FDR corrected; Supplementary Table S38 online).

Evaluation of the stroke LV.  Finally, we assessed the effect of stroke LV on the synchrony analysis. The 
F7T5-PSI was significantly negatively correlated with LV in the β1, β2, and γ bands (β1: ρ = 0.56, P = 0.010; β2: 
ρ = 0.62, P = 0.003; γ: ρ = 0.55, P = 0.009; P < 0.05, FDR corrected). In contrast, the F7F8/F8T6-PSIs and the F7F8/
F7T5/F8T6-PLIs showed no significant correlation with LV in any frequency band (P < 0.05, FDR corrected; 
Supplementary Table S39‒S40 online).

Stroke LV was significantly negatively correlated with the ARSsp score (ρ =  − 0.69, P < 0.001, non-multiple 
comparison; Fig. 7a). Thus, LV could be a confounding factor in correlation analyses of the PSI/PLI with the 
ARSsp scores. Nonparametric partial correlation analysis revealed that the F7T5-PSIs (β1/β2/γ) were not sig-
nificantly correlated with ARSsp scores (β1: ρ =  − 0.32, P = 0.082; β2: ρ =  − 0.34, P = 0.063; γ: ρ =  − 0.30, P = 0.103, 
before correction). By contrast, the F7F8-PSI (β1: ρ = 0.55, P = 0.014), the F8T6-PSI (δ: ρ =  − 0.52, P = 0.021) and 
the F8T6-PLI (β1: ρ = 0.63, P = 0.003) were significantly correlated with ARSsp scores after correction for the LV 
effect (P < 0.05, FDR corrected). Figure 7b summarizes the outcome of the analyses in this study.

In summary, the interhemispheric frontofrontal PSI was positively correlated with aphasia scores, whereas 
the right frontotemporal PSI was negatively correlated with aphasia scores, showing a significant difference of 
PSI values in the same frequency bands compared with healthy controls. In contrast, the F8T6-PLI was positively 
correlated with aphasia scores with no significant difference to healthy controls.

Discussion
In patients with subacute aphasia, the decreased interhemispheric frontofrontal PSI (β band) positively correlated 
with the aphasia score, whereas the increased right frontotemporal PSI (δ band) negatively correlated with the 
aphasia score independent of stroke LV. Moreover, these PSIs showed significant differences with healthy controls 
in the same frequency bands. These results suggest that aphasia in subacute stroke is associated with alterations 
in the two distinct phase synchrony networks.

In the synchrony analysis of EEG data, we have to consider the possibility of the spurious synchrony due to 
artifacts21,23. Therefore, we performed several complementary analyses. We assessed PSIs of spatially adjacent 
electrode pairs (F3F4/F3P3/F4P4-PSIs) that are not located in the motor language-related regions. If the effects of 
artifacts such as common reference problem and volume conduction effect caused spurious synchrony rather than 
true synchrony, the F3F4/F3P3/F4P4-PSIs would give the same results as the F7F8/F7T5/F8T6-PSI. However, 
the results of the F3F4/F3P3/F4P4-PSIs suggested this is not the case. The synchrony in the F7T5-PSI observed 
in wide frequency range (β1 to γ; Fig. 2e) was considered to be spurious because the partial correlation analysis 
with LV as another variable revealed no significant correlation with ARSsp scores. Furthermore, the global PSIs 
that also could be influenced by the above potential artifacts, showed no significant correlation with the ARSsp 
scores. Thus, these examinations of the results for artifact suggest that this association is attributed to true syn-
chrony rather than spurious synchrony.

We also evaluated the PLI, a more conservative synchrony measure than the PSI22. In our previous study for 
large-scale synchrony, the PLI showed a similar correlation pattern to the PSI24,25. In this study, however, the 
F7F8-PLI and the F7T5-PLI showed no significant correlation with ARSsp scores. The F8T6-PLI was correlated 
with the ARSsp scores with no significant difference to healthy controls. The PLI may be overly conservative 
to assess local synchrony between anatomically connected regions, underestimating the true synchrony with a 
near-zero phase lag.

In this study, the F7F8-PSI (β1 band) in patients with aphasia was significantly lower than that in healthy 
controls and significantly positively correlated with the ARSsp score. These findings were similar to the results 
of our previous report that focused on patients with hemiparesis10. The PSI (α band) covering the primary 
motor cortices in these patients was lower than that in healthy controls and positively correlated with the upper 
extremity motor function score. These results indicate that the decrease in homotopic interhemispheric PSIs 
may represent a common brain response in subacute stroke. Furthermore, in the current study, we found a 
significant correlation selectively in the β band. EEG β synchrony is associated with higher cognitive function26 
and aphasia recovery9. These results suggest that network information reflecting motor or cognitive impairment 
may be mediated by distinct frequency bands.

The same trend of interhemispheric connectivity was observed in a previous fMRI study6. In that cross-
sectional study with 132 subacute stroke patients, decreased interhemispheric homotopic FC was the most 
prominent change after stroke, and changes in interhemispheric FC showed strong associations with behavioral 
impairments, including aphasia. Furthermore, longitudinal normalization of decreased interhemispheric FC 
was associated with clinical recovery in another study8.

In our study, adjacent (but not motor language-related) PSI (F3F4-PSI) and EEG power (F7F8-wP) were not 
useful to evaluate post-stroke neural network alteration. The F7F8-PLI showed no significant correlation with 
ARSsp scores probably because the PLI was overly conservative to assess local synchrony between anatomically 
connected regions, thereby underestimating the true synchrony with a near-zero phase lag. In addition, a partial 
correlation analysis revealed that the correlation between the F7F8-PSI and ARSsp scores was independent of 
the stroke LV. Altogether, the decreased F7F8-PSI reflects decreased FC between the bilateral inferior frontal 
lobes (motor language area and its right-sided homotopic region) and may represent interhemispheric brain 
network alternation in subacute stroke. Thus, the F7F8-PSI (β1 band) may be a biomarker in post-stroke aphasia.
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In previous studies, left frontotemporal FC was associated with the aphasia score17,18. Although the F7T5-
PSI was negatively correlated with the ARSsp score in the β1, β2, and γ bands, the F7T5-PSI (β1 and β2) values 
of patients with aphasia did not differ significantly from those of healthy controls. Conversely, the F7T5-PSI 
significantly correlated with the LV in the β1, β2, and γ bands. Because LV negatively correlated with the ARSsp 
score, the correlation of the F7F8-PSI with the ARSsp score was likely induced by a confounding LV effect, rather 
than by true EEG synchrony. In fact, partial correlation analysis revealed that the F7T5-PSI showed no significant 
correlation with the ARSsp score after correction for the LV effect. This result coincided with our previous stud-
ies, in that, when all electrodes were located within the ipsilesional hemisphere, the PSI value was inflated by 
spurious synchrony due to an artifact (volume-conduction effect)10,24. Thus, the F7T5-PSI is not appropriate for 
assessing the intrahemispheric brain network within the ipsilesional hemisphere. The adjacent PSI (F3P3-PSI), 
EEG power (F7T5-wP), global PSI (left Intrah-PSI), and the F7T5-PLI were not useful to evaluate post-stroke 
neural network alteration in the left hemisphere.

The F8T6-PSI (δ band) in patients with aphasia was significantly higher than that in healthy controls and sig-
nificantly negatively correlated with the ARSsp score. Regarding contralesional intrahemispheric EEG synchrony, 

Figure 7.   A correlation of LV with ARSsp scores and a summary of correlation analyses in this study. (a) A 
scatter plot showing a negative correlation between stroke LV and the ARSsp score. (b) A summary of the 
correlation analyses between six PSIs (F7F8-PSI, F3F4-PSI, F7T5-PSI, F3P3-PSI, F8T6-PSI, and F4P4-PSI)/the 
F8T6-PLI and ARSsp scores is plotted on the brain overlay. The solid arrow indicates a significant correlation, 
whereas dashed arrows indicate nonsignificant correlations. The gray shadow indicates the stroke lesion. ARSsp 
Aphasia Rating Scale speech, LV lesion volume, PSI phase synchrony index, PLI phase lag index.
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our previous study demonstrated that the contralesional PSI (θ band) centered on the primary motor cortex of 
patients with hemiparesis was higher than that of healthy controls10. Similar findings were reported in a longi-
tudinal fMRI study showing that FC of the right homotopic language area was activated in the subacute stage 
and normalized in the chronic stage27.

In a cross-sectional fMRI study, a decrease in interhemispheric FC was accompanied by an increase in intra-
hemispheric FC6. In our EEG results, a similar segregation of interhemispheric/intrahemispheric synchrony was 
observed. In contrast to the F7F8-PSI, the F8T6-PSI negatively correlated with the ARSsp score. In another EEG 
study, increased δ band activity was associated with reduced interhemispheric connectivity28. An fMRI study 
reported a trend of inverse association between the language network FC and verbal executive function (higher 
FC exhibits a larger deficit)29. These findings suggest that the negative correlation between the increased F8T6-
PSI and the ARSsp score represents right intrahemispheric inhibition due to interhemispheric disinhibition by 
the left hemisphere. Another explanation may be that increased δ band synchrony reflects compensation for a 
greater deficit without being sufficient to improve the clinical status. With respect to the band frequency, δ band 
synchrony mediates large-scale cortical integration30. In contrast, as an EEG study recently reported a negative 
correlation between δ band coherence of the bilateral primary motor cortices and the motor score in patients 
with stroke31, δ band synchrony may also relate to functional recovery from hemiparesis.

The adjacent PSI (F4P4-PSI), EEG power (F8T6-wP) and global PSI (right Intrah-PSI) were not useful. In 
addition, the result of the F8T6-PLI was inconsistent because values of the F8T6-PLI showed no significant 
difference to healthy controls. The correlation between the F8T6-PSI and the ARSsp score remained significant 
after removing the effect of stroke LV. Taken together, an increased F8T6-PSI is considered to reflect real increase 
in FC between the right frontotemporal lobes, and although it remains to be elucidated whether this increase is 
a compensatory or simple reaction to the disinhibition, the F8T6-PSI (δ band) may be a biomarker that can be 
used to better understand the pathophysiologic mechanism in the contralesional hemisphere.

Notably, the method suggested in this study is clinically feasible because the less than 5-min resting-state EEG 
recording based on the standard International 10–20 system can be easily performed in most medical facilities. 
In addition, our findings from a moderate number of patients (n = 31) with common etiology (ischemic stroke) 
and stroke lesion (cortical lesion including frontal lobe) might be generalizable to a similar stroke population.

This study has some limitations. First, it was difficult to completely eliminate the effects of artifacts such as 
common reference problem and volume conduction effect. However, examination of the spurious synchrony 
indicates the usefulness of our analysis. Second, the low electrode density was disadvantageous owing to limited 
spatial resolution. Third, we had a limited range of choice in electrode pairs. That was a reason why we focused 
on the inferior frontal lobes (F7 and F8) and speech subscores in SLTA. Fourth, all patients were native Japanese 
speakers. Language factors intrinsic to Japanese may hinder the expansion of our findings to other populations. 
Finally, the causality of the correlations between PSIs and ARSsp scores could not be determined from this study.

Conclusions
This study provides empirical evidence that post-stroke aphasia has an aspect of a network disorder. Our results 
suggest two different PSIs linked to the right inferior frontal lobe, namely the frontofrontal PSI and left fronto-
temporal PSI, reflect the segregation of interhemispheric/intrahemispheric networks. Furthermore, the existence 
of distinct frequency bands that may mediate specific network information is a unique feature of EEG synchrony 
analysis. Although further research is needed to confirm whether PSIs are useful in patients with receptive 
aphasia, our method is adaptable for clinical use. In conclusion, our novel findings suggest that the PSI could be 
a useful tool to better understand pathophysiological mechanisms associated with subacute stroke and serve as 
a potential biomarker of cognitive and motor functions.

Methods
Ethical approval.  The experimental protocols of this study were approved by the Institutional Review 
Boards of RIKEN and Morinomiya Hospital and adhered to the tenets of the Declaration of Helsinki. All partici-
pants or their proxies provided written informed consent. In case of difficulties in understanding explanations 
and/or in signing their name due to aphasia and/or paralysis, the patient’s proxy provided written informed 
consent.

Participants.  All patients enrolled in this study were recruited from a cohort of inpatients admitted to the 
Kaifukuki (convalescent) rehabilitation ward32 at Morinomiya Hospital. The inclusion criteria were as follows: 
(1) age ≥ 20 years, (2) first episode of unilateral cortical ischemic stroke with a left frontal lobe lesion, irrespec-
tive of temporal/parietal lobe involvement on MRI, (3) presence of aphasia at the time of admission, (4) right-
handedness, (5) Japanese speaker, and (6) interval since the onset of stroke > 2 weeks. The exclusion criteria were 
as follows: (1) a medical history of psychiatric or neurological disorders, such as epilepsy, dementia, and Parkin-
son’s disease, (2) lack of a left frontal lesion, and (3) skull defects. Age- and sex-matched healthy participants who 
had no history of psychiatric or neurological disorders were also recruited as a healthy control group. Thirty-one 
patients and 24 control participants were enrolled in the study.

Clinical assessments.  We used the SLTA to assess patients with aphasia20. The SLTA, commonly used in 
Japan33–35, was designed for profiling the level of aphasia of patients and consists of 26 subscores (Supplementary 
Table S41 online). For quantitative analysis, Hasegawa et al. developed the Aphasia Rating Scale (ARS) based on 
factorial analysis of the SLTA data obtained from 313 patients with aphasia19. They categorized 19 subscores of 
the SLTA into three functions: writing (seven items), speech (seven items), and comprehension (five items). In 
this study, we focused on the expressive function of patients with left frontal lobe lesions, more specifically on 
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speech function, because some patients with frontal lobe lesions had difficulty in writing owing to hemiparesis. 
According to the 19-channel electrode setting, we focused on the inferior frontal lobes (electrodes F7 and F8; 
Fig. 1a) and speech score because the posterior language system is too widely distributed to be addressed appro-
priately with this setting36. The seven items of the SLTA, comprising the ARSsp, are object naming, description 
of pictures, description of four-panel cartoons, kanji word reading, single kana letter reading, kana word read-
ing, and short sentence reading. We allocated 10 points to each item and summed these to assess the severity of 
patients’ expressive function deficit (range: 0–70, with a lower score indicating a more severe deficit). Assessment 
of the SLTA of patients was performed by trained speech therapists. We also assessed patients’ general neurologi-
cal deficit using the National Institutes of Health Stroke Scale (range: 0–42). We assessed cognitive function of 
healthy control participants using the Mini Mental State Examination. All clinical assessments were performed 
by trained staff members who were blinded to the patients’ PSI values.

EEG recording, data processing, and PSI computation.  We recorded scalp EEGs using a NeuroFax 
EEG 1224 system (Nihon Kohden Co., Tokyo, Japan) with an online bandpass filtering between 0.53 and 120 Hz 
and a sampling rate of 500 Hz. EEG data were recorded from 19 Ag/AgCl electrodes located according to the 
International 10–20 system, with a ground electrode located at the center of the forehead. Participants were 
asked to rest in the supine position and alternately open and close their eyes for 30 s under each condition, 
comprising five sessions. We used the eyes-closed condition data (30 s × 5 sessions) because the eyes-opened 
condition data were subject to motion artifacts of the eyelids and eyeballs.

EEG voltages were re-referenced to the average of bilateral earlobe signals. After offline bandpass filtering 
(0.3–50 Hz), data points at which the voltage exceeded ± 200 μV were rejected. Then, the complex Morlet wave-
let transform was applied to the remaining data points, to extract the instantaneous phase and amplitude. The 
cutoff interval length of the Gaussian window, “nco,” was four cycles11. The PSI at time-point tau was defined by 
the following Eq. (1):

where T is the number of time-points, which corresponds to eight cycles of the center frequency of the complex 
Morlet wavelet, i denotes the imaginary unit, θmt  and θnt  indicate the instantaneous phases of the mth and nth 
electrodes at the time-point t. PSIs, which range from zero (no synchrony) to one (perfect synchrony), were 
obtained for every time-point (2-ms steps) and frequency (1-Hz steps) and averaged for each participant within 
six frequency bands, as follows: δ (1–3 Hz), θ (4–7 Hz), α (8–13 Hz), β1 (14–19 Hz), β2 (20–30 Hz), and γ 
(31–45 Hz). Details of EEG recording and data processing are fully described in our previous report10.

To assess the interhemispheric frontofrontal network, the F7F8-PSI was computed as the PSI between the 
F7 and F8 electrodes (Fig. 1a) that were placed over the left inferior frontal lobe (F7: motor language area) 
and right homotopic region (F8). To assess the left intrahemispheric frontotemporal network, the PSI between 
the inferior frontal lobe (F7) and posterior temporal lobe (T5) was computed (F7T5-PSI). Similarly, the right 
frontotemporal PSI (F8T6-PSI) was computed. To assess the effect of artifacts, we also evaluated the spatially 
adjacent electrode pairs (F3F4/F3P3/F4P4) that were not located in the motor language-related regions (Fig. 1b). 
Although the F7F8/T7T5/F8T6-PSI and the F3F4/F3P3/F4P4-PSIs should be influenced by artifacts in the same 
way, the latter would not be associated with network changes in patients with aphasia. In addition, we evaluated 
global synchrony by the Intrah-PSI. Left/right Intrah-PSIs were computed as the average of the local PSIs across 
all intrahemispheric electrode pairs of left/right hemispheres, respectively.

We evaluated the PLI for comparison with the PSIs as a tool to assess brain networks. The PLI (τ) was defined 
by the following Eq. (2):

where T is the number of time points (8 cycles of the central frequency), the sign indicates a signum function, 
which is defined as:

We also evaluated the EEG wP for comparison with the PSIs. The average wP of the mth electrode was com-
puted as follows using Eq. (3):

where Am
τ  means instantaneous amplitudes of the mth electrode at the time-point tau and Ttot represents the total 

number of time-points. wP was also averaged for each participant within the six frequency bands. We calculated 
the difference in the EEG power of the same electrode locations for comparison with the PSI representing the 
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difference of the EEG phases between the two electrodes. For example, the F7F8-wP was calculated by subtract-
ing wP(F8) from wP(F7). F7T5-wP and F8T6-wP were calculated in the same way.

The PSI, PLI, and wP were computed using programs developed in MATLAB (MathWorks Inc., Natick, MA).

MRI acquisition and stroke LV computation.  MRI was conducted using a 1.5-T scanner (Achieva, 
Philips Medical Systems, Best, The Netherlands) for all patients. T2-weighted images (turbo spin-echo, recon-
structed voxel size = 0.45 × 0.45 × 5.00 mm3) and three-dimensional T1-weighted images (turbo field-echo, 
reconstructed voxel size = 0.94 × 0.94 × 1.00 mm3) were obtained to cover the whole brain. To compute stroke LV, 
lesions of each patient were manually drawn on the T2-weighted images, and they were spatially normalized to 
the Montreal Neurological Institute stereotaxic space, using the Clinical Toolbox37 in SPM838 (Wellcome Trust 
Centre for Neuroimaging, London, UK). Details of the MRI acquisition conditions are fully described in our 
previous report10.

Statistical analysis.  The Shapiro‒Wilk test was used to assess the normality of variables. A nonparametric 
statistical test was conducted for variables with skewed distribution. The Mann‒Whitney U test was used to 
compare the medians of unpaired nonparametric variables between patients and healthy controls. Spearman’s 
rank correlation analysis was used for nonparametric correlation analysis. To control for multiple comparisons, 
FDR correction (Benjamini and Hochberg method) was applied39, considering the number of tested hypotheses 
(the number of frequency bands × the number of electrode pairs). To evaluate the effects of LV as a confound-
ing factor, nonparametric Spearman’s rank order partial correlation analysis40 was performed (control variable: 
LV). A two-sided P value < 0.05 was considered to indicate statistical significance. All statistical analyses were 
performed using IBM SPSS software (version 25.0, IBM Corp., Armonk, NY).

Data availability
The authors declare that all data generated or analyzed during this study are included in this published article 
and its Supplementary information files.
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