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Microbial metagenomic approach 
uncovers the first rabbit 
haemorrhagic disease virus 
genome in Sub‑Saharan Africa
Anise N. Happi1,3*, Olusola A. Ogunsanya1,3, Judith U. Oguzie2,3, Paul E. Oluniyi2,3, 
Alhaji S. Olono2,3, Jonathan L. Heeney4 & Christian T. Happi2,3*

Rabbit Haemorrhagic Disease (RHD) causes high morbidity and mortality in rabbits and hares. Here, 
we report the first genomic characterization of lagovirus GI.2 virus in domestic rabbits from sub‑
Saharan Africa. We used an unbiased microbial metagenomic Next Generation Sequencing (mNGS) 
approach to diagnose the pathogen causing the suspected outbreak of RHD in Ibadan, Nigeria. The 
liver, spleen, and lung samples of five rabbits from an outbreak in 2 farms were analyzed. The mNGS 
revealed one full and two partial RHDV2 genomes on both farms. Phylogenetic analysis showed close 
clustering with RHDV2 lineages from Europe (98.6% similarity with RHDV2 in the Netherlands, and 
99.1 to 100% identity with RHDV2 in Germany), suggesting potential importation. Subsequently, 
all the samples were confirmed by RHDV virus‑specific RT‑PCR targeting the VP60 gene with the 
expected band size of 398 bp for the five rabbits sampled. Our findings highlight the need for increased 
genomic surveillance of RHDV2 to track its origin, understand its diversity and to inform public health 
policy in Nigeria, and Sub‑Saharan Africa.

Rabbit haemorrhagic disease (RHD) is a highly infectious and deadly viral haemorrhagic disease of rabbits. The 
disease is caused by Rabbit haemorrhagic disease virus (RHDV) a Lagovirus of the Caliciviridae  family1. Within 
the lagovirus, RHDV is classified as GI genogroup. Members of this genogroup include the GI.1, GI.2, GI.3 and 
GI.4 genotypes. The GI.1 is the former G1 to G6 groups and the GI.2 is the earlier classified RHDV2/b. GI.1is 
divided into variants GIl.1a to Gl.1d2.

The RHDV genome is a positive sense and single stranded RNA of approximately 7437 nucleotides in  length1. 
There are two open reading frames (ORFs); ORF1 encoding the seven nonstructural proteins (RdRp, RNA-
dependent RNA polymerase, p16, p23, p29, helicase, VPg and protease) and the major capsid structural proteins 
VP1/VP60) and ORF2 encoding the minor structural proteins VP2/VP13–5.

The virus causes a high morbidity and mortality rates, killing more than 90% of infected adult animals in 
2–3 days following  infection6,7. This disease causes economic losses to the rabbit meat and fur industry and 
great negative ecological impact in wild rabbit  population7,8. RHD is among the diseases notifiable to the World 
Organization for Animal Health (OIE).

Transmission of the virus is via nasal, oral, conjunctival routes with mechanical transmission by insects or 
 fomites9. The virus is also shed through excretions from infected  animals10. The lesions of RHD are usually due to 
circulatory and degenerative disorders. The primary lesions include hepatic necrosis and petechial haemorrhages 
in multiple organs. However, the most severe form of these lesions appears in the liver, trachea, and  lungs11. The 
virus also promotes fatal hepatitis in adult  rabbits12.

Rabbit haemorrhagic disease was first reported in China in  198413 where over 140 million rabbits were 
killed in the course of an  outbreak14. The subsequent spread of the virus was reported in Europe and other 
 continents15–21. This disease has been reported in some African countries like Tunisia, Republic of Benin, 
Morocco, Cape Verde and  Egypt11,22–24.
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A new GI.2 genotype of RHDV was later discovered in France in  201011 and is now reported  globally26–33. 
GI.2 was responsible for major outbreaks causing deaths in previously vaccinated adult rabbits as well as young 
rabbits known to be resistant to disease induced by classical  RHD20,25,31,34. In sub-Saharan Africa, outbreaks of 
GI.2 have been confirmed by enzyme immunoassays (EIA) in domestic rabbits from Republic of  Benin23 and PCR 
from Cote d’Ivoire31. However, to date there are no available virus genome data from any Sub-Saharan African 
country, rendering it difficult to trace their origin, evolution, and genetic diversity.

Following devastating outbreaks of suspected cases of RHD affecting several rabbitries from the southwest-
ern region of Nigeria in the first few months of the year 2020, there were farms with no surviving rabbits and 
some sustained considerable economic losses. In August 2020, two smallholding farms (Farm A and Farm B) 
reported high mortalities. The two farms were visited for investigations, post-mortem examinations, and sample 
collections for molecular diagnosis. During the outbreak, farmers had observed symptoms similar to those of 
RHD. Exotic breeds of rabbits of all ages and both sexes were fatally affected. The symptoms reported by the 
farmers were anorexia (a day prior to death), clear mucoid lacrimal discharge, lethargy, bleeding from the oral 
and nasal orifices and sudden death. Five carcasses from both farms were examined grossly and samples col-
lected for diagnosis. Here we report the use of microbial metagenomics sequencing to uncover the first genomic 
characterization and whole genome of the GI.2 in sub-Saharan Africa from an outbreak of RHD in Nigeria.

Results
Gross post mortem findings. The carcasses were in good body condition but slightly autolyzed (5/5, 
that is five out of 5 carcasses). The oral and ocular mucous membranes were mildly pale (5/5). There were a few 
multifocal widespread petechial haemorrhages on the ventral and dorsal abdominal subcutaneous muscle (2/5), 
as well a few multifocal petechial haemorrhages spread on the pleura surface of the lungs (2/5). A focal pinpoint 
haemorrhage was also observed on the kidney (1/5), heart (1/5), liver (1/5) and on the adventitia surface of the 
trachea (2/5). There was ballooning of the large intestine (1/5) and mild accentuation of the lobular pattern of 
the liver (1/5).

RT‑PCR. We conducted two sets of RT-PCRs  using different primers sets. In the first RT-PCR (RT-PCR1), 
two samples (RT2 and RT4) out of five were positive for RHDV targeting the VP60 gene (Table 1). Bands were 
confirmed on 1% agarose gel electrophoresis at regions between 1500 and 2000 bp (results not shown).

Following sequencing, a second RT-PCR (RT-PCR2) was conducted and all five samples (RT1-RT5) were 
positive for RHDV targeting the 398 bp region of the VP60 (capsid) gene (Table 1) of the lagoviruses. Bands 
were confirmed on 2% agarose gel electrophoresis at 398 bp regions (Fig. 1). These samples were confirmed to 
be RHDV2 by sequencing and bioinformatic analysis.

Table 1.  Rabbit sample demographics with molecular results.

Sample ID Sex Age RT-PCR1 RT-PCR2 Genome sequence

RT1 Female 8 weeks Negative Positive No

RT2 Male 8 weeks Positive Positive Yes (partial)

RT3 Male 5 weeks Negative Positive No

RT4 Male 3 weeks Positive Positive Yes (partial)

RT5 Male Adult Negative Positive Yes (full)

Figure 1.  Agarose gel electrophoresis (1% agarose) results of RT-PCR amplified products using specific primers 
that target the VP60 gene of RHDV. L = DNA maker (5000 bp), RT1 = Rabbit tissue sample 1, RT2 = Rabbit tissue 
sample 2, RT3 = Rabbit tissue sample 3, RT4 = Rabbit tissue sample 4, RT5 = Rabbit tissue sample 5, NE negative 
extract.
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Sequencing. We assembled three genomes; one full genome (sample RT5) and two partial sequences (sam-
ples RT4 and RT2), two of which (RT5 and RT4) were used for further analysis (Table 1). With the metagenomic 
analysis of the sequence data, genotype RHDV2 also known as GI.3P-GI.2 or RHDVb was identified in three 
samples (RT2, RT4 and RT5) out of five samples sequenced. The full genome (sample RT5) had a genome length 
of 6,976 bp and mean coverage depth of 16X. The two partial genomes had lengths of 1214 bp (sample RT4) and 
86 bp (sample RT2) and mean coverage depths of 2X and 0.1X, respectively. Total number of reads for sample 
RT5 was 16,922 with a total number of RHDV2 reads of 1,455 (8.6% RHDV2 reads). Sample RT4 had 291,278 
total reads and 1737 total RHDV2 reads (0.6% RHDV2 reads) while sample RT2 had 142,230 total reads and 126 
total RHDV2 reads (0.09% RHDV2 reads). Mapping of our sequencing reads to the Rabbit Hemorrhagic Disease 
Virus (GI genogroup) reference genome showed that the reads mapped all across the genome of the virus. How-
ever, for samples RT4 and RT2 there wasn’t sufficient coverage (Figs. 2, 3, 4) to confidently call a base for most of 
the nucleotide positions and so for regions of ambiguity, our assembly pipeline called an ‘N’. Stripping RT2 and 
RT4 of all ‘Ns’ resulted in 86 bp and 1214 bp sequence lengths for each sample respectively.

BLAST analysis revealed that sample RT5 shared a 98.6% nucleotide pairwise identity with a 2016 Germany 
GI.2 sequence with NCBI accession number LR899157 and a 98.58% nucleotide pairwise identity with a 2016 
Netherlands GI.2 sequence with accession number MN061492.1 across a 6,976 bp region. RT4 shared a 99.05% 
nucleotide pairwise identity with a 2016 Germany GI.2 sequence with NCBI accession number LR899157 across 
a 1214 bp region (Fig. 5). Phylogenetic analysis further confirmed the results of our BLAST analysis, demonstrat-
ing that the sequences from these animals belong to the GI.2 genotype as they clustered together in the same 
clade with previous GI.2 sequences from Europe and other parts of Africa (Fig. 5). Analysis of Single Nucleotide 

Figure 2.  lllumina read coverage across Rabbit Hemorrhagic Disease Virus (GI genogroup) genome assembly 
from sample RT5.

Figure 3.  lllumina read coverage across Rabbit Hemorrhagic Disease Virus (GI genogroup) genome assembly 
from sample RT4. 
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variants of sample RT5 revealed 11 common mutations resulting in amino acid changes. Four of these mutations 
(Leu1929Pro, Ser1978Phe, Val2104Ala, Val2127Ala) occur in the region of target for the RT-PCR1 primers.

Discussion
Our initial suspicion of RHD based on case history, the extent of morbidity, mortality and postmortem findings 
was confirmed by RT-PCR investigation and metagenomic sequence analysis resulting in three GI.2 genome (one 
full and two partial) assemblies. In addition to metagenomic analysis, RDHV2 specific RT-PCR investigation 
showed all five samples to be positive.

To the best of our knowledge, this study provides the evidence of the first full genome sequence of Rabbit 
Hemorrhagic Disease Virus 2 (RHDV2) in sub-Saharan Africa.

The post mortem findings from this study were mild and not apparent in some of the carcasses. However, 
the few lesions observed were similar to some of the lesions reported in  Europe35,  Asia36, and  Africa39. These 

Figure 4.  lllumina read coverage across Rabbit Hemorrhagic Disease Virus (GI genogroup) genome assembly 
from sample RT2. 

Figure 5.  Mid-point rooted maximum likelihood phylogenetic tree showing relationship between the 
sequences from this study (coloured blue) and RHDV sequences obtained from the NCBI database. Sequences 
coloured red are sequences that are in the same clade as our study sequences and they are obtained from 
Germany, France, Netherlands, China and Poland. Bootstrap values are shown on the nodes. 
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suggest that the outbreak on the two farms were characterised by two clinical forms (acute and per acute form) 
of the disease.

Bioinformatics analysis of the virus genomes revealed that two sequences from this study belong to genotype 
Lagovirus europaeus/GI.2. This genotype was first identified in 2010 as a novel pathogenic form of Lagovirus in 
 France12 after which it spread rapidly through Europe and other parts of the world (Oceania, North America, Asia 
and Africa)22,23,29,30,32,33. Lagovirus GI.2 has also been reported to replace the former circulating GI.1 genogroup 
in Australia and  Portugal37-39. Phylogenetic analysis showed that our sequences clustered closely with previous 
sequences from Europe. BLAST analysis revealed sample RT5 shared a 98.6% nucleotide pairwise identity with 
a 2016 Germany GI.2 sequence with NCBI accession number LR899157, and a 98.58% nucleotide pairwise iden-
tity with a 2016 Netherlands GI.2 sequence with NCBI accession number MN061492.1 across a 6976 bp region. 
RT4 shared a 99.05% nucleotide pairwise identity with a 2016 Germany GI.2 sequence with NCBI accession 
number LR899157 across a 1214 bp region, suggesting that the virus was most likely imported into the country 
from Europe. In addition, the age of the European ancestral virus (2016) also suggests that the GI.2 found in 
our study was either an older introduction that circulated for some time undetected in Nigeria, or a more recent 
introduction of an unsampled, likely European virus.

The lagovirus europaeus/GI.3P-GI.2 genotype is known to dominate in most regions where it’s found. RHDV2 
has also been circulating in some African countries and more recently, there have been reports of GI.2 outbreaks 
in a few countries from North Africa (Tunisia, Egypt and Morocco)39,40.

To the best our knowledge, there is no GI.2 genome sequence data from Sub-Saharan Africa despite its 
devastating effect on rabbit farming. This is due to the limited resources and scanty infrastructural facilities in 
sub-Saharan African countries for molecular investigations, disease monitoring and surveillance. In Australia, 
GI.2 spread to all states and territories and rapidly became the dominant circulating genotype within 18 months 
of initial  detection38. Active surveillance and sequencing should be considered in order to understand the spread, 
diversity, host-virus interaction and their impact on the susceptible populations and the rabbit farming industry 
in Nigeria and Africa. Furthermore, analysis of more samples is also needed in order to determine the time of 
introduction of the virus into Nigeria and how the disease varies through the country.

Our phylogenetic analysis revealed high genetic diversity of the GI.3P-GI.2 genotype. The diversity found 
in our study is a characteristic of this virus. RT-PCR1 analysis of the samples targeting a 1740 bp of the VP60 
capsid protein gene revealed only two positive samples out of five. The reason why RT5 gave a negative result 
during RT-PCR1 and yet yielded a full genome after metagenomic analysis, could be as a result of accumula-
tion of mutations, some of which occurred in the target region of the primers. This further emphasizes the 
genetic diversity, which is likely due in part to the rapid spread and evolution of this virus. This is also within 
the expectations for RNA viruses that have been circulating for more than 10 years now; this probably reflects 
lack of sampling and sequencing of GI.2 strains from Africa and the limited comparison with RHDV strains. 
Therefore, compiled genomic data should be carefully considered when developing diagnostics and updating 
already available vaccines.

The findings from this study is a significant landmark in the field, as it has revealed the circulation of GI.2 
in Nigeria, and reports the first genomic characterization of RHDV2 in sub-Saharan Africa. The close sequence 
homology suggests that the virus was most likely imported from Europe. In addition, the high genetic diversity 
of the GI.2 genogroup found in our study highlights the need for characterization of many more samples across 
sub-Saharan Africa, in order to guide the development of improved diagnostics and update RHDV2 vaccines.

Furthermore, the need for unbiased metagenomic analysis for diagnosis of suspected cases and discovery of 
new variants couldn’t be overemphasized. In this study, only one full genome was assembled despite the RT-PCR 
positivity of all the samples tested to GI.2 virus. This may be due to the sequencing method used and or sample 
preparation for the mNGS. Sample quality in addition to the sequencing throughput method, has tremendous 
impact on the method sensitivity, particularly the ability to detect small amounts of virus in the background of 
host nucleic  acids41. It is in a bid to enhance viral nucleic acid detection that many authors have described viral 
enrichment approaches for RNA virus discovery in clinical  samples42–44. In this study also, no targeted RNA 
virus discovery strategies were applied on the tissue samples to enrich viral sequences. Perhaps, these enrich-
ment steps if done, would have provided a more effective and in depth viral nucleic acid detection with more 
successful full genome assemblies.

Overall, the detection of RHDV2 with unbiased metagenomic sequencing, as shown in this study illustrates 
the power of genomics in explaining a suspected outbreak. This ability to rapidly identify and characterize an 
emerging virus (RHDV2) highlights the value of in-country genomics capacity. Serology using ELISA and RT-
PCR are the current methods of choice for RHDV diagnosis in Sub-Saharan Africa. These diagnostic methods 
despite their limitations are done in very few selected laboratories. The integration of genomics capacity into the 
established, but siloed, pathogen-specific diagnostic platforms provides exciting opportunities for Veterinary 
public health surveillance.

Methods
Post mortem and sample collection. In August 2020, following reports of devastating outbreaks of 
suspected Rabbit haemorrhagic disease (RHD) in rabbitries in Ibadan, South-western region of Nigeria, post 
mortem was carried out on four carcasses from farm A and one carcass from farm B. Signalment from farm A 
consists of one female (8 weeks old) and three males (8 weeks, 5 weeks and 3 weeks old). Farm B consisted of one 
adult male rabbit. The breeds on both farms were Hyla. Tissue sections were collected into RNAlater from the 
five (5) rabbit carcasses suspected to have died from RHD. The samples were tagged RT1, RT2, RT3, RT4 (farm 
A) and RT5 (farm B). Tissues (liver, spleen, lungs) of each animal were pooled for RT1-RT4, while only liver was 
collected for RT5. The samples were then maintained in a cold chain and RNALater during transportation to 
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the African Centre of Excellence for the Genomics of Infectious Disease (ACEGID), Redeemer’s University, Ede, 
Nigeria for PCR confirmation and metagenomics sequencing analysis.

RNA extraction. Samples stored in RNAlater were first washed in PBS and thereafter homogenized and 
macerated. Total RNA was extracted from tissues macerated in TRIzol using QIAamp Viral RNA extraction kit 
(Qiagen, Hilden, Germany) according to manufacturer’s instructions. Extracted RNA was stored in − 20 °C until 
RT-PCR and sequencing.

Next generation sequencing and bioinformatics analysis. Upon RT-PCR confirmation on Septem-
ber 25, 2020, Nextera XT sequencing Libraries were made based on established unbiased  protocol45,46 as rou-
tinely used in our laboratory. Briefly, host ribosomal RNA were quantified by rt-qPCR and samples with over a 
million copies per microlitre depleted using rRNA probes. Extracted RNAs were cleaned from unwanted nucleic 
acid using Turbo DNase treatment and converted to cDNA by a random primer hybridization. Subsequently, 
Nextera XT sequencing libraries were made and quantified by KAPA qPCR.

Normalized and pooled libraries were quantified via KAPA qPCR and the fragments size were determined 
using BioAnalyser. The pool was loaded on the Miseq at a final concentration of 10 pM. Using the Illumina 
Miseq V2 -300 cycle cartridge with  read length 101 and 2-channel SBS chemistry, we carried out a paired-end 
sequencing to ensure high quality reads from both ends of the sequencing library.

Following sequencing, raw reads from the next-generation sequencing machine were uploaded to our cloud-
based platform (DNAnexus, www. dnane xus. com). Quality control was carried out on the raw reads using fastqc 
(https:// www. bioin forma tics. babra ham. ac. uk/ proje cts/ fastqc). Metagenomics analysis was carried out using 
 Kraken24.

RHDV genomes were assembled using our publicly-available software viral-ngs v2.1.8 (https:// github. com/ 
broad insti tute/ viral- ngs) implemented on DNAnexus. Following BLASTn analysis, all whole genome RHDV 
sequences available in GenBank as at 24th March 2021 were aligned with two of our sequences using MAFFT 
v7.45347 Using Geneious Prime 2021.0.348. A 4127 bp region was identified as having the most coverage by all 
the sequences; this region was extracted and used to infer a maximum likelihood tree using IQTREE v1.6.1249. 
IQtree  ModelFinder50 selected SYM + R5 as the best-fit model according to Bayesian Information Criterion (BIC) 
for the dataset and ultrafast  bootstrap51 with 1000 replicates was carried out. The tree was viewed and manually 
edited using FigTree (http:// tree. bio. ed. ac. uk/ softw are/ figtr ee/). The two sequences from this study were aligned 
with all whole genome sequences obtained from NCBI to check for amino acid mutations specific to our new 
sequences from Nigeria. We also mapped the RT-PCR primers to our full genome obtained from this study to 
check for any mutations in the target regions of the primers.

RT‑PCR. We conducted two different sets of RT-PCRs (RT-PCR1 and RT-PCR2 for the purpose of this study)  
on extracted RNA with modified established  protocols16. For RT-PCR1, primers (RHD-F5′-ATG GAG GGCA 
AAG CCC GCA CAG CG-3′ and RHD-R 5′- AAT TCA GAC ATA AGA AAA GCCA TTG-3′) targeting the VP60 
capsid protein gene giving a 1740 base pair product were used. One-step SuperScript III One-Step RT-PCR Sys-
tem with Platinum Taq DNA Polymerase (Invitrogen, USA) was used for PCR amplification. Following positive 
metagenomics sequencing data from some negative samples in RT-PCR1, a second RT-PCR (RT-PCR2) using a 
different set of primers was conducted to confirm the presence of the lagovirus in all five samples collected from 
RHD suspected animals. We used RHDV specific primers; forward 5′-GTT ACG ACT GTG CAG GCC TAT 
GAG TT-3′ and reverse 5′-TTG TTG AGC AGT CCA ATT GTC ACT G-3′ in this experiment to target a 398-bp 
region of the VP60 (capsid)  gene52.

Both RT-PCRs final reaction volume of 25ul were made up of 12.5 µl of 2X reaction mix, 1.25 µl of 20 µM 
each of forward and reverse primers, 1 µl SuperScript III RT/Platinum Taq Mix, 1 µl RNA template and MgSo4 
optimization to a final concentration of 2.5 µM and nuclease free water to make up the reaction volume. The 
cycling conditions RT-PCR1 included; 55 °C for 30 min for cDNA synthesis, pre-denaturation at 95 °C for 
15 min, then 40 cycles at 95 °C for 1 min, 58 °C for 30 s and 72 °C for 1 min, and a final extension step at 72 °C 
for 10 min. While the cycling conditions for RT-PCR2 were as follows: cDNA synthesis at 50 °C for 30 min; then 
pre-denaturation at 95 °C for 15 min and 43 cycles of 94 °C for 30 s, 55 °C for 30 s, and 72 °C for 1 min; and final 
extension of 72 °C for 10 min. RT-PCR products were viewed in 1% and 2% gel electrophoresis for RT-PCR1 
and RT-PCR2, respectively.

The samples were all confirmed positive for a lagovirus and this was confirmed to be RHDV2 by sequencing 
and bioinformatic analysis.

Data availability
All sequences from this study were submitted to the National Center for Biotechnology Information (NCBI) 
database/GenBank and the accession numbers (MW123059–MW123061) received on the 16 October, 2020.
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