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Meta‑analysis of gene signatures 
and key pathways indicates 
suppression of JNK pathway 
as a regulator of chemo‑resistance 
in AML
Parastoo Modarres1, Farzaneh Mohamadi Farsani1,3, Amir Abas Nekouie2 & Sadeq Vallian1*

The pathways and robust deregulated gene signatures involved in AML chemo-resistance are not 
fully understood. Multiple subgroups of AMLs which are under treatment of various regimens seem 
to have similar regulatory gene(s) or pathway(s) related to their chemo-resistance phenotype. In 
this study using gene set enrichment approach, deregulated genes and pathways associated with 
relapse after chemotherapy were investigated in AML samples. Five AML libraries compiled from 
GEO and ArrayExpress repositories were used to identify significantly differentially expressed genes 
between chemo-resistance and chemo-sensitive groups. Functional and pathway enrichment analysis 
of differentially expressed genes was performed to assess molecular mechanisms related to AML 
chemotherapeutic resistance. A total of 34 genes selected to be differentially expressed in the chemo-
resistance compared to the chemo-sensitive group. Among the genes selected, c-Jun, AKT3, ARAP3, 
GABBR1, PELI2 and SORT1 are involved in neurotrophin, estrogen, cAMP and Toll-like receptor 
signaling pathways. All these pathways are located upstream and regulate JNK signaling pathway 
which functions as a key regulator of cellular apoptosis. Our expression data are in favor of suppression 
of JNK pathway, which could induce pro-apoptotic gene expression as well as down regulation of 
survival factors, introducing this pathway as a key regulator of drug-resistance development in AML.

Acute myeloid leukemia (AML) is one of the most aggressive, life-threatening hematological malignancies char-
acterized by uncontrolled proliferation of abnormal differentiated and nonfunctional myeloid precursor cells1. 
Clonal expansion of ≥ 20% malignant myeloblasts in the peripheral blood, bone marrow and other tissues has 
been considered as an indication for diagnosis of AML2. The incidence of AML as the most common type of acute 
leukemia increases substantially with age and leads to impaired hematopoietic system3. According to their clinical 
and genetic features including age, performance status, molecular/cytogenetic alterations and organ functions, 
a variety of cytotoxic chemotherapy agents are used in treatment regimens for AML patients4.

The common standard induction therapy for AML has not yet changed for more than four decades, consisting 
of sequential courses of a combination of anthracycline for 3 days and cytarabine (cytosine arabinoside, Ara-C), 
for 7–10 days (“7 + 3” regimen)5. Some of the clinicians intensify induction therapy by adding an anthracycline or 
other therapeutic compounds to enhance the likelihood of achieving a complete remission (CR)6. These altera-
tions in the standard frontline therapy include use of different types of anthracyclines, mainly daunorubicin, 
idarubicin and etoposide as well as different cytotoxic agents such as topoisomerase II inhibitors (mitoxantrone), 
nucleoside analogues (azacitidine) and gemtuzumab ozogamicin (GO; a CD33-directed antibody-drug conjugate) 
which are added to induction therapy with or without cytokines and differentiation agents4,6,7.

All of these cytotoxic compounds have DNA-damaging effects that make tumor cells more susceptible to 
death. These anti-leukemic regimens represent strong activity against cell cycle progression and proliferation in 
multiple ways, including intercalating to DNA and termination of DNA synthesis, DNA damaging and inhibi-
tion of DNA replication7–10.
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Despite acceptable rate of initial CR of 60–80% in adult younger than 65 years and 40–60% in older adult 
with > 65 years old, a major therapeutic challenge in all cases is drug resistance due to recurrent refractory and 
relapse during therapy11. This indicates an indispensable need for the development of novel targeted therapies 
through further investigation to identify chemo-resistance-regulated gene signatures and focus on pathways that 
are restricted to resistance of AML cases to cytotoxic agents.

In this study we performed cross-platform meta-analyses of several public microarray-based datasets con-
tributed to chemotherapeutic response in AML to identify robust gene-expression signatures and pathways 
associated with drug resistance. First significantly differentially expressed genes between chemo-resistance and 
chemo-sensitive groups were investigated. Then, receiver operating characteristic (ROC) analysis was used to 
evaluate the predictive ability of differentially expressed genes (DEGs). Functional and pathway enrichment 
analysis of DEGs were also performed to provide deeper understanding of molecular mechanism of DNA dam-
aging-induced chemotherapy resistance.

Results
Data collection and filtering.  Five publicly accessible microarray datasets consisting of 131 arrays in total 
were matched to our predetermined inclusion criteria. The datasets were as following: (1) GSE52919 involved a 
gene expression profiling of patients with AML receiving chemotherapy with cytarabine (Ara-C) and daunoru-
bicin (DNR) gene expression. The participants of this microarray dataset were adult with the age of 18–61 years 
with median age of 39 years, (2) GSE52891 contained expression profiling associated with pediatric relapsed 
AML patients with median age of 13.2 after receiving cytarabine and anthracycline as an initial therapy, (3) 
GSE75086 consisted of RNA expression profiling of samples with AraC-based chemotherapy at post induc-
tion, relapse and diagnostic sample (Of these, the relapsed samples were used), (4) GSE107465 encompassed 
expression profiling of 30 different AML patients who received different chemotherapy protocols. Among these 
patients, those treated with cytarabine, anthracyclines and other DNA-damaging agents such as daunorubicin, 
idarubicin, mitoxantrone, azacitidine and gemtuzumab ozogamicin were selected. The age of participants of this 
microarray dataset were ranged from 19 to 84 years with median age of 51 years, (5) GSE45249 contained gene 
expression profiling of three chemo-resistant subpopulation of leukemic stem cells (LSCs) to daunorubicin and 
cytarabine from 9 patients with primary childhood AML (27 samples in total). The detailed information of these 
five datasets was also provided in Table 1.

After removing the outliers and irrelevant sample arrays, the normalized datasets composed of 53 sample 
arrays were obtained for further downstream analysis. Then, the samples were classified into two subgroups 
during our meta-analysis: chemo-sensitive and chemo-resistant. The data summary of the samples in our meta-
analysis was shown in Table 2.

Quality assessment of the calibrated data.  Before meta-analysis, probe annotation and filtering were 
applied on log-scaled features with identical distribution across all arrays, and genes with low variance in inten-
sities across samples, control probe sets, and other internal controls were removed. To perform quality control 
assessment, RNA degradation plots and study-specific clustering pattern of samples were made. To reduce the 
batch effect, the well-established LIMMA (Linear Models for Microarray Data) procedure was applied and rela-
tive log expression (RLE) plots as a simple powerful tool for detecting and visualizing unwanted variations were 
used (Fig. 1a,b). As illustrated in Fig. 1b, in most cases, distribution of the chips was centered on about zero. No 
major differences to represent a bias were seen in our analysis.

Moreover, to inspect the sample clustering patterns, the results were presented using the principal component 
analysis (PCA) plot which showed clustering based primarily on sensitive and resistant groups to chemothera-
peutic AML drugs, PCA plot of the calibrated, summarized data, PC1/PC2 versus PCA plot of batch corrected 
summarized data, PC3/PC4 (Fig. 2a,b, and see Supplementary Fig. 1).

Statistical meta‑analysis.  Identification of common gene expression signatures in chemo‑resistance 
AMLs.  After normalization of all datasets, integration analysis was performed in three steps: (1) Analysis of all 
normalized arrays including patient’s cells (subpopulations of LSC) and patient’s samples from adult and child-

Table 1.   Characteristics of the gene expression datasets included in the meta-analysis. MEC Mitoxantrone, 
Etoposide, Cytarabine, Go Gemtuzumab ozogamicin, NA not available. a Anthracycline: Daunorubicin, 
Idarubicin, Etoposide (VP16), Mitoxantrone.

Accession no Platform Drugs Tissue Sample Age

Number of samples

Selected/total Sensitive Resistance

GSE52919 GPL13252; Agilent Daunorubicin and Cytarabine Bone marrow Patient Adult 12/15 8 4

GSE52891 GPL570: Affymetrix Cytarabine and 
Anthracyclinea

Bone marrow/peripheral 
blood Patient Childhood 17/23 – 17

GSE75086 GPL16686 : Affymetrix Cytarabine Peripheral blood Patient NA 4/36 – 4

GSE107465 GPL570: Affymetrix MEC, Anthracycline, Cytara-
bine, Azacitidine, GO Peripheral blood Patient Adult 9/30 6 3

GSE45249 GPL571; Affymetrix Daunorubicin and Cytarabine Bone marrow Patient’s cells Childhood 11/27 – 11



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12485  | https://doi.org/10.1038/s41598-021-91864-2

www.nature.com/scientificreports/

Accession Group Study Treatment Platform Tissue Gender Outcome Age

GSM1278195 R.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow M Resistance 43

GSM1278196 R.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow F Resistance 61

GSM1278197 R.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow F Resistance 32

GSM1278198 R.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow F Resistance 43

GSM1278200 S.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow F Sensitive 43

GSM1278201 S.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow M Sensitive 50

GSM1278203 S.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow F Sensitive 33

GSM1278204 S.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow F Sensitive 44

GSM1278205 S.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow M Sensitive 50

GSM1278206 S.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow F Sensitive 18

GSM1278207 S.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow F Sensitive 44

GSM1278208 S.529 GSE52919 AraC/DNR Agilent MNC_Bone 
marrow M Sensitive 44

GSM1277549 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277551 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277553 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277554 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277556 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood F Resistance Chilhood

GSM1277557 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277558 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277559 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277560 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277561 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277562 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277563 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood F Resistance Chilhood

GSM1277565 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood F Resistance Chilhood

GSM1277567 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277568 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM1277569 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood F Resistance Chilhood

GSM1277570 R.528 GSE52891 AraC + Anthra HG-U133_Plus_2 Blast_Bone mar-
row_Blood M Resistance Chilhood

GSM2867943 S.107 GSE107465 Anthra + nucleo-
side Analog HG-U133_Plus_2 Blood F Sensitive 63

GSM2867944 S.107 GSE107465 Anthra + nucleo-
side Analog HG-U133_Plus_2 Blood F Sensitive 54

GSM2867946 R.107 GSE107465 Anthra + nucleo-
side Analog HG-U133_Plus_2 Blood M Resistance 69

GSM2867949 R.107 GSE107465 Anthra + nucleo-
side Analog HG-U133_Plus_2 Blood M Resistance 76

GSM2867952 S.107 GSE107465 Anthra + nucleo-
side Analog HG-U133_Plus_2 Blood M Sensitive 30

Continued
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hood patients (53 sample arrays). (2) Analysis of arrays from patients’ samples (38 sample arrays). (3) Analysis of 
adult patients (21 sample arrays). Using LIMMA approach and considering the cut-off criteria of P value < 0.05 
and |fold change|> 1.5 (Fig. 3), a total of 64, 73 and 143 DEGs were found in chemo-resistant group compared 
to sensitive group for each mentioned analysis, respectively (Fig. 4). The top significantly up- or down-regulated 
genes in the first meta-analysis were shown in Fig. 3.

Table 2.   Characteristics of the samples used in the meta-analysis. Anthra Anthracycline, DNR Daunorubicin, 
AraC Cytarabine, NA not available.

Accession Group Study Treatment Platform Tissue Gender Outcome Age

GSM2867954 R.107 GSE107465 Anthra + nucleo-
side Analog HG-U133_Plus_2 Blood F Resistance 49

GSM2867955 S.107 GSE107465 Anthra + nucleo-
side Analog HG-U133_Plus_2 Blood M Sensitive 53

GSM2867959 S.107 GSE107465 Anthra + nucleo-
side Analog HG-U133_Plus_2 Blood F Sensitive 56

GSM2867965 S.107 GSE107465 Anthra + nucleo-
side Analog HG-U133_Plus_2 Blood M Sensitive 32

GSM1099774 R.45 GSE45249 AraC + DNR HG-U133A_2 LSC_Bone mar-
row NA Resistance Childhood

GSM1099775 R.45 GSE45249 AraC + DNR HG-U133A_2 LSC_Bone mar-
row NA Resistance Childhood

GSM1099777 R.45 GSE45249 AraC + DNR HG-U133A_2 LSC_Bone mar-
row NA Resistance Childhood

GSM1099778 R.45 GSE45249 AraC + DNR HG-U133A_2 LSC_Bone mar-
row NA Resistance Childhood

GSM1099780 R.45 GSE45249 AraC + DNR HG-U133A_2 LSC_Bone mar-
row NA Resistance Childhood

GSM1099781 R.45 GSE45249 AraC + DNR HG-U133A_2 LSC_Bone mar-
row NA Resistance Childhood

GSM1099782 R.45 GSE45249 AraC + DNR HG-U133A_2 LSC_Bone mar-
row NA Resistance Childhood

GSM1099783 R.45 GSE45249 AraC + DNR HG-U133A_2 LSC_Bone mar-
row NA Resistance Childhood

GSM1099784 R.45 GSE45249 AraC + DNR HG-U133A_2 LSC_Bone mar-
row NA Resistance Childhood

GSM1099785 R.45 GSE45249 AraC + DNR HG-U133A_2 LSC_Bone mar-
row NA Resistance Childhood

GSM1099789 R.45 GSE45249 AraC + DNR HG-U133A_2 LSC_Bone mar-
row NA Resistance Childhood

GSM3265141 R.750 GSE75086 AraC HuGene-2_0-st Blast_Blood NA Resistance NA

GSM3265143 R.750 GSE75086 AraC HuGene-2_0-st Blast_Blood NA Resistance NA

GSM3265145 R.750 GSE75086 AraC HuGene-2_0-st Blast_Blood NA Resistance NA

GSM3265147 R.750 GSE75086 AraC HuGene-2_0-st Blast_Blood NA Resistance NA

Figure 1.   Boxplot for the RLE values. The relative log expression (RLE) box plot of AML sample arrays before 
(a) and after (b) batch correction. RLE distribution centered on zero demonstrates almost elimination of 
unwanted variation. The plot was generated using R language program version 4.0.5 (https://​www.R-​proje​ct.​
org/)57.

https://www.R-project.org/)
https://www.R-project.org/)
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Among 64 DEGs which were significantly identified in the first analysis, 34 annotated genes were common 
with two other statistical analyses like c-Jun (also known as JUN), ARAP3, SORT1, SPP1, RPS6KA2, ACP6, AKT3, 
PELI2, GABBR1, MATK genes (for more details please see Fig. 4 and Table 3). In other word, these 34 differ-
entially expressed genes where 17 genes were up-regulated and 17 genes were down-regulated in AML chemo-
resistance group compared to chemo-sensitive group, have a possible role in development of drug resistance in 
general in AML adult patient. Among DEGs, c-Jun was identified as the most significant deregulated genes with 
the considerable decreased expression (with fold change, − 2.87 and P value, 5.74E−07) in the chemo-resistant 
AML samples. In contrast, the data showed significantly increased expression of ARAP3 and SORT1 genes (with 
logFC, 2.4 and P value < 0.01). The heatmap graph of the most differentially regulated genes with possible role 
in AML drug resistance and their corresponding fold changes were shown in Fig. 5.

ROC curve analysis.  The ROC curve analysis was performed by the GraphPad.Prism.9 software. As shown in 
Fig. 6, the area under the curve (AUC) of most of the identified genes was above 0.7 (AUC > 0.7). Among these 
hub genes, AUC for RPS6KA2, S100B, INSIG1, EPAS1, MGAT4A, NRIP3, SERPINF1, SPP1, LHFPL2 and MERG, 
was 0.9 (AUC ≥ 0.9). This indicated that these genes could be considered as valuable predictive biomarkers for 
chemo-resistance onset in AML. The AUCs of other DEGs were less than 0.7 (Fig. 6).

Functional gene enrichment analysis.  To clarify the biological roles of DEGs in development of AML drug 
resistance, functional gene enrichment analysis was conducted using the Enrichr for 34 genes which were identi-
fied as common DEGs in three statistical analyses (see Fig. 7). Enrichr provided gene ontology (GO) enrichment 
including the biological process (BP), molecular function (MF) and cellular component (CC) categories as well 
as web-based pathway analysis to map genes to pathways created by Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Reactome online resources12–14.

For gene set enrichment we also used the functional annotation chart tool of DAVID (Table 4) and StringApp 
plug-in implemented in Cytoscape v.3.7.0 (Table 5 and Supplementary Fig. 2). Finally, common terms with cut-
off P value < 0.05 including “neurotrophin signaling pathway”, “cAMP signaling pathway”, “Toll-like receptor 
signaling pathway”, “Renal cell carcinoma” and “Estrogen signaling pathway” were identified as the most strongly 
enriched pathway clusters for DEGs using all procedures with potential responsibility in AML chemo-resistance 
based on KEGG (Table 4). Among DEGs both c-Jun and AKT3 genes were involved in all of the five identified 
pathways with − 2.88 and 1.66 logFC, respectively, as well as P value < 0.01. Moreover, neurotrophin signaling 
pathway was the most highly enriched pathway associated with AML drug resistance with the five deregulated 
mediators including the upregulation of SORT1 and AKT3 genes, and the downregulation of c-Jun, MATK, and 
RPS6KA2 genes. The pathway was indicated by DAVID (P value, 1.04E−04), StringApp (FDR value, 2.60E−04) 
and Enrichr (P value, 1.66E−06 and Combined Score, 399.566) as the most significantly over-represented signal 
transduction for driving drug resistance in AML (Tables 4, 5).

Figure 2.   PCA plot of the summarized data by batch correction. Scatter plots of principal components 
analysis (PCA) show the PC1 versus PC2 output for each calibrated AML samples of included datasets before 
batch correction procedure (a), and PC3 versus PC2 output after batch correction (b). PCA plots illustrate the 
similarity of gene expression profiles among samples using the ggplot2 package version 3.3.3 in R74.
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Discussion
In this study we wished to investigate deregulated genes and enriched pathways involved in drug resistance in 
AML patients under treatment of DNA-damaging agents including Anthracyclines, Cytarabine and Gemtuzumab 
ozogamicin. Analysis of transcriptomic profiles of AML samples was performed on two groups, chemo-resistance 
against chemo-sensitive. Moreover, a comparative meta-analysis in three ways was conducted based on sample 
type (only for patient’s sample not patient’s cells), age (only adult; due to unavailability of sensitive sample in 
childhood group) and samples in total (with any criteria). The data resulted in the identification of 34 common 
DEGs that were statistically correlated with AML chemo-resistance. In the next step, gene set enrichment analy-
sis using DAVID/Enrichr/Cytoscape (StringApp) was done to identify possible signaling pathways which were 
enriched among candidate DEGs, and could be associated with chemo-refractory relapse to DNA-damaging 
compounds in AML patients after chemotherapy.

Our data revealed the involvement of five major signaling pathways associated with chemo-refractory relapse 
in AML samples. These signaling pathways were as follow: neurotrophin, Estrogen, cAMP, Toll-like receptor and 
Renal cell carcinoma. Among the above pathways, neurotrophin signaling pathway was found to be the most 
significantly over-represented signal transduction for driving drug resistance in AML as indicated in Tables 4 and 
5. Its tyrosine kinase receptors [tropomyosin receptor kinase (Trk)] including Trk A, B and C, express in a variety 
of human tissues and support cell survival in multiple solid and liquid tumors15,16. Moreover, neurotrophin/Trk 
signaling pathway has been found connected with a variety of intracellular cascades including mitogen-activated 
protein kinase (MAPK) pathway, the phosphatidylinositol 3-kinase (PI3K)/AKT pathway, and phospholipase 
C (PLC) pathway, providing growth and survival advantage for cells17,18. On the contrary, the p75 neurotrophin 

Figure 3.   Volcano plot of the differentially expressed genes. Differentially expressed genes which were 
identified by meta-analysis were illustrated using the ggplot2 package in R74. P value cutoff was 0.05. As 
presented, 34 genes were identified as common differentially expressed genes (DEGs) with more than 1.5 fold 
change in chemo-resistance group as compared to the chemo-sensitive group. The data presented as log2 fold 
change. The plot was created by the ggplot2 R package version 3.3.363. FC fold change, NS not significant.
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receptor (p75NTR), another receptor of neurotrophins, induces the expression of pro-apoptotic genes through 
activation of p38 and c-Jun N-terminal kinase (JNK) pathways18 (see Fig. 8).

Our meta-analysis data revealed that the expression of AKT3, RPS6KA2, c-Jun, SORT1 and MATK genes was 
significantly altered in chemo-resistance AML samples. SORT1, AKT3 and RPS6KA2 genes were up-regulated 
but c-Jun and MATK were downregulated in AML chemo-resistance group compared to the -sensitive group (see 
Fig. 5b). It has been reported that AKT3 has an important role in DNA double strand break repair and chemo-
therapeutic resistance20. It has been documented that both AKT3 and RPS6KA2 genes could act in parallel as 
the mediators of PI3K/AKT and MAPK pathways under the impression of neurotrophin signals15,21. c-Jun has 
been reported to play an apoptotic role in neurotrophin/Trk signaling pathway18.

The contribution of SORT1 (also known as sortilin) with Trk receptors promotes cell survival and character-
ized as an oncogenic factor for cells18. This gene was the second significantly up-regulated gene in chemo-resistant 
AML samples, which may induce resistance to chemotherapy through neurotrophin signaling pathway. It was 
reported that the expression of SOTR1 was elevated in adult Acute B Lymphoblastic Leukemia (B-ALL) cases 
after chemotherapy, which was correlated to relapse and/or B-ALL-related death22.

cAMP signaling pathway is the second pathway that was identified in our chemo-resistance AML samples. 
This pathway is one of the important cascades associated with anthracycline resistance in AML patients23. It 
has been demonstrated that cAMP plays a crucial role in the reduction of response to DNA-damaging reagents 
in Chronic myelogenous leukemia (CML) cells23. Moreover, it has been shown that cAMP signaling pathway 
is under regulation of G protein-coupled receptors (GPCRs) which contribute to the development of AML24. 
Besides, the elevation of cAMP signaling could suppress apoptosis-induced JNK activation25. Our meta-analysis 
data showed that GABBR1, a member of GPCR family, had an increased expression in chemo-resistance samples 
compared to the sensitive ones (logFC 1.6) (Fig. 5b)26. GABBR1 has been introduced as a survival associated 
marker for AML27. Excessive signal transduction through GABBR1 triggers growth and migration of cancer 
cells27. These findings support our data showing the association of increased expression of GABBR1 and chemo-
resistance in AML samples.

In addition to GABBR1, the expression level of other cAMP-related genes including ARAP3, AKT3 were 
increased, but c-Jun was down regulated. ARAP3 and AKT3 are two down-stream elements of GPCRs oncogenic 
pathway. The critical role of ARAP3 and AKT isoforms was shown in regulating the developmental angiogenesis. 
These two proteins are common substrate for PI3K pathways which play an essential role in angiogenesis28,29. 
The importance of angiogenesis in AML as a source of drug resistance and relapse was documented in several 
clinical studies30,31.

Given the highest expression of ARAP3 gene among 34 DEGs in our chemo-resistance samples, it could be 
suggested that increased level of ARAP3 may correlate with increased angiogenesis through PI3K pathway. This 
could also provide an explanation for the development of chemo-resistance response of AML patients to treat-
ment. Therefore, ARAP3 gene could be introduced as a high-risk marker in AML relapse, and could be considered 
as a new target for AML therapy. Analysis of receiver operating characteristic (ROC) curve, showed a significant 
area under the curve (AUC, 0.8114; P value < 0.01) (Fig. 6a), which further supported the importance of ARAP3 
as a potential biomarker associated with chemo-resistance in AML.

Furthermore, many reports have confirmed the important role of Akt-related pathway in the development 
of resistance against DNA-damaging drugs in tumor cells11,19,20,32,33. It has been shown that Akt-related pathway 

Figure 4.   Venn diagram of DEGs. It shows the results of 3 statistical meta-analysis with difference in included 
sample arrays from all types of sample in total, only patient’s samples, and only adult patient’s samples. 34 
genes were identified as common significantly differentially expressed genes (DEGs) between the resistance 
versus sensitive among all type of analysis (genes with a P value < 0.05 and |fold change|> 1.5 were considered 
significant). The plot was created using the Package limma version 3.44.3 in R63.
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could lead to resume DNA replication by recovery of genome stability, and drive cancer cells to M phase through 
stimulate expression of CDKN1A (cyclin-dependent kinase inhibitor 1A). Moreover, it has been shown that the 
increased AKT3 gene expression could promote tumor malignancy and resistance to DNA-damaging chemo-
therapy compounds through activation of DNA repair pathway in glioma tumor cells20,34.

The next signaling pathway which was deregulated in our chemo-resistance AML samples was the estrogen 
signaling pathway. In this pathway, AKT3, c-Jun and GABBR1 genes were deregulated in chemo-resistance AML 
samples, of which AKT3 and GABBR1 were upregulated, but c-Jun was down regulated. Recently, a preclinical 
study has considered estrogen receptors as a potential target to enhance chemotherapy for patients with AML35. 
Given the increased expression of AKT3 and GABBR1 in chemo-resistance AML samples, as shown in our 
meta-analysis data, it could be suggested that the estrogen signaling pathway might play an important role in 
the protection of leukemic cells from apoptosis.

Toll like receptor (TLR) signaling pathway was another signaling pathway in our gene set enrichment analysis 
data, which was correlated with chemo-resistance behavior of AML cells. It has been reported that Anthracy-
clines, as the immune-stimulatory chemotherapeutic agent, can promote TLRs-mediated immunogenic apoptotic 
cell death through increased emission of DAMPs by damaging DNA in tumor cells36. Based on our gene set 
enrichment analysis (GSEA) results, differential expression of several genes including PELI2, RPS6KA2, S100B, 
c-Jun, AKT3, and SPP1, may contribute to the aberrant signal transduction of TLRs upon TRIF/MyD88- medi-
ated induction signaling in chemo-resistance AML group (Fig. 8).

In association with TLR pathway, our data showed an enhanced expression of PELI2 gene in chemo-resistance 
group. PELI2 (also known as Pellino2) encodes one of the members of the E3 ubiquitin ligases which regulate 
activation of NFκB (nuclear factor kappa enhancer binding protein) and MAPK cascades downstream of TLR 
signaling pathway. Studies on PELI2 have shown a reciprocal regulating interplay between PELI2 and IRAK137–39. 

Table 3.   Identified differentially expressed genes (DEGs) associated with AML drug resistance.

ID Gene symbol logFC P value

64411 ARAP3 2.442523 1.99E−05

6272 SORT1 2.439522 0.000225

8821 INPP4B 2.028562 0.003002

6296 ACSM3 1.989434 0.008442

23569 PADI4 1.95709 0.001243

8642 DCHS1 1.911221 0.000669

51205 ACP6 1.86439 4.18E−05

55506 MACROH2A2 1.775521 0.000722

57161 PELI2 1.672159 0.016775

10000 AKT3 1.661464 0.00097

240 ALOX5 1.652833 0.007188

3382 ICA1 1.64897 0.004476

2550 GABBR1 1.623574 0.008618

8543 LMO4 1.622589 0.002394

54558 SPATA6 1.581695 7.04E−05

9750 RIPOR2 1.526171 0.00349

2634 GBP2 1.516136 0.004751

221749 PXDC1 − 1.53333 0.001975

3638 INSIG1 − 1.54813 0.000126

56675 NRIP3 − 1.55975 0.006188

11226 GALNT6 − 1.56183 0.002004

55686 MREG − 1.61191 0.006915

10184 LHFPL2 − 1.63614 0.009076

3899 AFF3 − 1.69853 0.002341

4145 MATK − 1.71664 0.00016

2034 EPAS1 − 1.75365 0.011568

11320 MGAT4A − 1.79541 7.39E−05

2012 EMP1 − 1.80654 0.004605

6196 RPS6KA2 − 1.86465 1.08E−05

6285 S100B − 1.97875 0.000442

5176 SERPINF1 − 1.98061 0.003015

7280 TUBB2A − 2.22182 0.028914

6696 SPP1 − 2.25565 0.000888

3725 JUN − 2.87946 5.74E−07
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PELI2 interacts with IRAK1 and can be a kinase substrate of IRAK140. In addition, it efficiently mediates poly-
ubiquitination of IRAK1 in both Lys-63 and Lys-48 and induces TAK1-dependent JNK and ERK (Extracellular 
signal-regulated kinase) activation38–40. However, it appears that PELI2 involves in various cascades with a cell-
type specific manner41. Recently, it was reported that PELI2 has a positive role in regulation of signaling-mediated 
NLRP3 inflammasome and increase caspase1-mediated activation of two immunoregulatory cytokines from IL-1 
family, IL-1β and IL-18, in post-translational stage. PELI2 activates inflammasome complex through concur-
rent of ubiquitination of two parallel targets, NLRP3 and IRAK1. The inactivation of IRAK1 could suppress the 
activation of inflammasome38. Based on observations that IL-1β and IL-18 can contribute to AML anti-cancer 
drug resistance, and based on our data showing enhanced expression of PELI2 gene, mediating IL-1β and IL-18 
activation may be a distinct plausible important mechanism by which PELI2 involved in emergence of drug 
resistance42–45. In spite of this, some studies highlighted the central role of dysregulated IRAK1 and IRAK4 signal-
ing in chemotherapy resistance46. Understanding the relationship between deregulated expression of PELI2 gene 
and AML chemotherapy failure remains a challenge and further in vitro studies can provide important clues for 
its potential therapeutic usefulness.

The second gene in TLR signaling pathway was RPS6KA2 (also known as RSK3) which belongs to the ribo-
somal S6 kinase family. Our data showed a reduced expression of RPS6KA2 in chemo-resistant AML group. A 
previous study reported that RPS6KA2 was activated in vitro by c-Jun N-terminal kinase (JNK). Moreover, ROC 
curve analysis revealed the importance of RPS6KA2 as a biomarker for AML chemo-resistance (AUC, 0.9634, 
P value < 0.0001) (Fig. 6c).

JNK signaling pathway has been shown to be activated by multiple receptors including GPCRs, TLRs, neuro-
trophin receptors (Trks), and estrogen receptors (ER), which generally promotes cell death and apoptosis through 
activation of c-Jun, an important pro-apoptotic protein, and inhibition of Akt-inducing survival signaling47–50. 
Interestingly, as illustrated in Fig. 8, consistent with the above facts, our meta- and gene set enrichment analysis 
in AML chemo-resistance samples showed significant inhibition of JNK signaling due to simultaneous down-
regulation of c-Jun and up-regulation of AKT3 expression.

Several studies have highlighted the critical role of JNK in Anthracycline induced apoptosis in AML cells51,52. 
These studies hypothesized that failure in JNK activation could be one of the main cause of resistance of AML 
cells to Anthracycline-containing treatment protocols51,52. These reports can further support our in silico find-
ings that overexpression of AKT3 and down-regulation of c-Jun could function as one of the main molecular 
mechanism for resistance of AML patients to chemotherapeutic protocols. Moreover, recently the importance 
of Akt inhibitors to improve the efficacy of DNA-targeting drugs has been suggested32. Therefore, we can sug-
gest that reduced impact of JNK signaling at the intersection between multiple signaling pathways in AML cell 
may strengthen survival signaling in these cells against DNA-damaging drugs, resulting in chemo-resistance 
phenotype.

Figure 5.   Heatmap and bar plot of Log fold changes of the most significantly DEGs. (a) The heatmap indicates 
the normalized relative expression value of the 34 most significantly differentially expressed genes (DEGs) 
between AML chemo-resistance and AML chemo-sensitive samples. Each column represents AML samples and 
all samples were divided to two clusters based on their characteristic (chemo-resistant and chemo-sensitive) 
by a hierarchical clustering analysis. Hierarchical clustering for the scaled gene expression matrix was based 
on the Euclidean correlation. The gradual color from orange to blue represents the expression changes from 
upregulated to downregulated genes. (b) The plot shows fold change of differential expression genes including 
17 downregulated (pink) and 17 upregulated (blue) statuses in resistance group in compared to sensitive group. 
The Figure was created using the ggplot2 package version 3.3.3 in R74.
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Furthermore, following down regulation of c-Jun expression, the expression of some multidrug efflux trans-
porters (MDR) such as ABCB1 might be decreased as well53–55. Supporting this notion, in the present meta-
analysis no overexpression of these MDR genes observed in chemo-resistance samples (supplementary Table S1).

Methods
Dataset selection strategy.  In order to retrieve related AML drug resistance published array expres-
sion datasets, the Gene Expression Omnibus (GEO) (https://​www.​ncbi.​nlm.​nih.​gov/​gds) and the ArrayExpress 
(https://​www.​ebi.​ac.​uk/​array​expre​ss) repositories were investigated. The search query included “AML” and 
“resistance/refractory/relapse” and “cytarabine (or Ara-C)” and “anthracycline”. The filters were “Homo sapiens” 
and “Expression profiling by array”. After removing duplicates and irrelevant datasets based upon inclusion of 
different criteria, such as tissue (bone marrow or peripheral blood), treatment (at least one course of induction 
chemotherapy with DNA-targeting drugs like anthracycline and cytarabine regimen) and platforms of microar-
ray experiments, five microarray datasets with two different platforms including (Affymetrix and Agilent single 
channel arrays) were considered. Moreover, studies with unavailable raw data and poor quality were excluded.

The chemotherapeutic regimen considered in this study was composed of cytarabine, either alone or in 
combination with anthracyclines and other anti-cancer agents with DNA-damaging effect such as gemtuzumab 
ozogamicin. According to the outcome of the treatment with the above drugs, samples were classified into two 
groups: chemo-sensitive (complete remission after initial therapy) and chemo-resistance (relapse or refractory). 
The data included in this study were from AML patient’s samples as well as patient’s cells with blast or leukemic 
stem cell irrespective of their origin (bone marrow or peripheral blood).

Meta-analysis was first implemented on all five datasets regardless of age and sample source. Then samples 
were analyzed based on sample source (only patient’s samples not patient’s cells) as well as the patient’s age (only 
samples from adult patients were used). In each condition, separate cross integrative analysis was performed 
and gene set enrichment analysis was fulfilled for common DEGs. The overall workflow of the study design is 
illustrated in Fig. 9.

Figure 6.   ROC curve analysis for DEGs. Receiver operating characteristics (ROC) curve was constructed and 
performed using GraphPad.Prism.9 (https://​www.​graph​pad.​com) to assess the predictive accuracy of gene 
signature for AML chemo-resistance. The AUC value was 0.7 demonstrating predictive power of the identified 
genes.

https://www.ncbi.nlm.nih.gov/gds
https://www.ebi.ac.uk/arrayexpress
https://www.graphpad.com
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Microarray data processing.  The process of microarray data analysis including raw data quality control 
(QC), data pre-processing, assessing the effects of normalization, individual data annotation and analysis were 
performed using the R program56,57. The major stages of the workflow were shown in Fig. 9.

Raw data normalization and quality control.  Each of the selected datasets was individually preproc-
essed using normalization approaches including the background correction to define and remove possible back-
ground noise, non-specific binding, and a log2 transformation. Raw intensity signals from Affymetrix (*.CEL 
files) were first normalized by applying either the GC Robust Multi-array Average (GCRMA) algorithm from the 
Bio-conductor R packages, gcrma, or Robust Multi-array Average (RMA) in oligo package58–61. Similarly, Agilent 
expression data was pre-processed by implementing background correction and quantile normalization (QN) 
from the R package LIMMA62,63. In both cases, highly variable genes at low intensities were removed to reduce 
false-positive rates. Furthermore, several plots and quality indicators were applied as a cyclic process prior to and 
after normalization to evaluate the quality of the datasets.

Figure 7.   Pathway enrichment among AML deregulated genes associated with chemotherapeutic resistance. 
(a) Protein–protein interaction (PPI) network of dysregulated genes with more significance based on KEGG 
biological pathways. The protein–protein association network was retrieved from the STRING enrichment 
web service (https://​string-​db.​org/) using the StringApp in the Cytoscape v3.7.0 (https://​cytos​cape.​org/) and 
additional interactors were added. (b) Circos diagram depicts KEGG (https://​www.​kegg.​jp/​kegg/​kegg1.​html) 
and Reactome (https://​react​ome.​org/) signaling pathways enriched for DEGs with probable contribution to 
chemotherapy resistance. The Circos diagram was generated using the ggplot2 package version 3.3.3 in R74.

Table 4.   Functional annotation using chart tool of DAVID.

Category Term P value Fold enrichment

KEGG_PATHWAY​ hsa04722:Neurotrophin signaling pathway 1.04E−04 17.91406

GOTERM_CC_DIRECT GO:0048471~perinuclear region of cytoplasm 0.003684 5.502415

GOTERM_BP_DIRECT GO:0008283~cell proliferation 0.004387 7.168716

KEGG_PATHWAY​ hsa04024:cAMP signaling pathway 0.008276 8.685606

KEGG_PATHWAY​ hsa05211:Renal cell carcinoma 0.008783 19.54261

UP_KEYWORDS Polymorphism 0.012066 1.357115

GOTERM_CC_DIRECT GO:0005829~cytosol 0.016845 2.061538

KEGG_PATHWAY​ hsa04915:Estrogen signaling pathway 0.019058 13.02841

KEGG_PATHWAY​ hsa04620:Toll-like receptor signaling pathway 0.021672 12.16804

GOTERM_MF_DIRECT GO:0005515~protein binding 0.025396 1.381129

UP_SEQ_FEATURE Sequence variant 0.031799 1.280429

UP_KEYWORDS Golgi apparatus 0.039739 3.727362

GOTERM_CC_DIRECT GO:0005667~transcription factor complex 0.042441 8.852332

https://string-db.org/
https://cytoscape.org/
https://www.kegg.jp/kegg/kegg1.html
https://reactome.org/
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For quality assessment, open-source packages in Bioconductor such as affyPLM and simpleaffy for the Affy-
metrix platform, and LIMMA for Agilent platform were used63–65. Furthermore, relative log expression (RLE) 
plots, boxplots of deviations from gene medians, as the other quality assessment tool was applied to determine 
probe sets homogeneity. In addition, the correlation between arrays was evaluated using hierarchical clustering 
of arrays, principal component analysis (PCA) and heatmap.

Intra‑datasets filtering.  After removing poor quality arrays, hgu133a.db and hgu133plus2.db R pack-
ages were used to annotate the probe IDs of the individual datasets to gene-level identifier (Entrez Gene IDs or 
official gene symbols) and to increase cross-platform concordance66–69. Genefilter package was used to filter out 
genes with different options of filtering including insufficient annotation, very low counts across all the arrays 
(low variance in intensities across samples) as well as control probe sets and other internal controls70. Finally, the 
normalized expression gene list of each dataset was integrated for downstream analysis.

Integrative meta‑analysis.  Before merging datasets values and statistical analysis, the probe values of 
the same genes were averaged (summarized) to produce an expression value for each gene. Then datasets were 
reduced by Entrez Gene ID to cross-map genes among different platforms and extract the common genes from 
all studies. Integration of data from all platforms was done by using several cross-platform batch effect correc-
tion methods. We performed several exploratory analyses on the integrated data such as relative log expression 
(RLE) plots and PCA plots to assess the amount of batch (or unwanted variation) on the data.

Chemo-resistance and -sensitive AML groups were compared to identify differentially expressed genes regard-
less of sex, the French-American-British (FAB) classification and drug dosage. Besides, to uncover a more 
accurate set of differentially expressed genes involved in AML chemo-resistance two additional meta-analyses 
was performed using arrays of patient’s sample. Analysis on AML children was not performed due to lack of 
availability of pediatric patient’s arrays with complete remission. Finally, common DEGs among all meta-analyses 
were used.

Statistical analysis.  All statistical analysis was performed using R statistical software57. The CEL files were 
normalized and summarized with RMA method. Differential gene expression analyses for genes in sensitive and 
resistance cells were performed using linear regression models in the LIMMA R package63. P value < 0.05 and 
|fold change (FC)|> 1.5 were considered as the threshold of significance for DEGs. Benjamini–Hochberg (B–H) 
method was also used to analyze the results of t-statistics test and reduce false positive results.

Predictive value analysis of hub genes.  We constructed receiver operating characteristic (ROC) curve 
using GraphPad.Prism.9 software (https://​www.​graph​pad.​com) to evaluate the predictive accuracy of DEGs for 
chemo-resistance development. Predictive ability of the gene signature for clinical outcomes was evaluated by 
calculating the area under a ROC curve.

Table 5.   Pathways and genes identified using StringApp (related to Fig. 7b). FDR false discovery rate.

Category Description FDR value Genes

KEGG pathways Neurotrophin signaling pathway 2.60E−04 SORT1|AKT3|JUN|MATK|RPS6KA2

Reactome pathways MyD88:MAL(TIRAP) cascade initiated on plasma 
membrane 0.0041 PELI2|S100B|JUN|RPS6KA2

Reactome pathways TRAF6 mediated induction of NFkB and MAP kinases 
upon TLR7/8 or 9 activation 0.0041 PELI2|S100B|JUN|RPS6KA2

Reactome pathways MyD88 cascade initiated on plasma membrane 0.0041 PELI2|S100B|JUN|RPS6KA2

Reactome pathways Toll Like Receptor 3 (TLR3) Cascade 0.012 S100B|JUN|RPS6KA2

Reactome pathways TRIF(TICAM1)-mediated TLR4 signaling 0.012 S100B|JUN|RPS6KA2

Reactome pathways Cytokine Signaling in Immune system 0.0131 PELI2|S100B|GBP2|JUN|ALOX5|RPS6KA2

Reactome pathways Signaling by Interleukins 0.0134 PELI2|S100B|JUN|ALOX5|RPS6KA2

Reactome pathways Signaling by Receptor Tyrosine Kinases 0.0134 AKT3|S100B|MATK|SPP1|RPS6KA2

Reactome pathways Downregulation of ERBB2 signaling 0.015 AKT3|MATK

KEGG pathways cAMP signaling pathway 0.0162 ARAP3|AKT3|JUN|GABBR1

KEGG pathways Renal cell carcinoma 0.0162 EPAS1|AKT3|JUN

Reactome pathways MAPK targets/ Nuclear events mediated by MAP 
kinases 0.0185 JUN|RPS6KA2

Reactome pathways Interleukin-1 family signaling 0.0202 PELI2|S100B|ALOX5

KEGG pathways Toll-like receptor signaling pathway 0.0256 AKT3|JUN|SPP1

Reactome pathways Recycling pathway of L1 0.034 TUBB2A|RPS6KA2

KEGG pathways Estrogen signaling pathway 0.0431 AKT3|JUN|GABBR1

Reactome pathways Cellular responses to stress 0.0456 EPAS1|JUN|TUBB2A|RPS6KA2

https://www.graphpad.com
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Gene set enrichment analysis.  Gene Ontology (GO) and pathway enrichment analysis were conducted 
for DEGs using the web-based enrichment analysis tool, Enrichr (https://​maaya​nlab.​cloud/​Enric​hr/), which 
contains > 180,000 curated gene sets in multiple categories from > 100 gene set libraries. DAVID (The Data-
base for Annotation, Visualization and Integrated Discovery, https://​david.​ncifc​rf.​gov) was also used as another 
enrichment analysis tool which have two shared collections of libraries including the Gene Ontology (GO) (gene 
set database) and KEGG (pathway database, https://​www.​kegg.​jp/​kegg/​kegg1.​html) with Enrichr71,72.

PPI network construction and module analysis.  To represent the molecular interactions between 
various cellular processes through AML chemo-resistance, and also visualize the network of DEGs encoded 

Figure 8.   A schematic interplay of signaling pathways that influence/associate with AML drug resistance. 
The various molecular signaling pathways may very intricately involve in development of chemo-resistance 
including: neurotrophin signaling pathway, cAMP signaling pathway, TLR signaling pathway and estrogen 
receptor signaling pathways. JUN, AKT3, ARAP3, SORT1, GABBR1, and PELI2 are deregulated genes 
contributed to AML drug resistance. In AML cells under treatment, concurrent up-regulation of AKT3 and 
down-regulation of Jun, downstream of all pathways, suppress apoptosis-induced JNK. JNK signaling is one 
of the deaths responses downstream of these pathways. Therefore, failure in JNK activation could be one of 
the main causes of chemo-resistance in AML. Up-regulation of AKT3 in PI3K/AKT signaling cascade induces 
expression of genes involved in cell survival, cell proliferation and angiogenesis. Also, down-regulation of Jun 
leads to decreased expression of pro-apoptotic genes. Participation of ARAP3 as well as AKT3 in angiogenesis 
can intensify resistance to chemotherapy. In neurotrophin signaling pathway, the high contribution of SORT1 
with Trk receptors may have an oncogenic effect for AML cells and can promote cell survival. Downstream of 
TLR signaling pathway, PELI2 can activate inflammasome complex through concurrent of ubiquitination of 
two parallel targets, NLRP3 and IRAK1. The IRAK1 inactivation leads to the release of IL-1β and IL-18 through 
activation of inflammasome. IL-1β and IL-18 activation may be a distinct plausible important mechanism by 
which PELI2 was involved in emergence of drug resistance. The Figure was created using BioRender (https://​
biore​nder.​com/).

https://maayanlab.cloud/Enrichr/
https://david.ncifcrf.gov
https://www.kegg.jp/kegg/kegg1.html
https://biorender.com/
https://biorender.com/
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proteins and protein–protein interactions (PPIs), we applied StringApp which is a visualization plug-in imple-
mented in Cytoscape v3.7.0 environment73.
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