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Identifying molecular targets 
for reverse aging using integrated 
network analysis of transcriptomic 
and epigenomic changes 
during aging
Hwang‑Yeol Lee1,2, Yeonsu Jeon3,4, Yeon Kyung Kim3,4, Jae Young Jang3,4, Yun Sung Cho2, 
Jong Bhak2,3,4,5* & Kwang‑Hyun Cho1*

Aging is associated with widespread physiological changes, including skeletal muscle weakening, 
neuron system degeneration, hair loss, and skin wrinkling. Previous studies have identified numerous 
molecular biomarkers involved in these changes, but their regulatory mechanisms and functional 
repercussions remain elusive. In this study, we conducted next-generation sequencing of DNA 
methylation and RNA sequencing of blood samples from 51 healthy adults between 20 and 74 years 
of age and identified aging-related epigenetic and transcriptomic biomarkers. We also identified 
candidate molecular targets that can reversely regulate the transcriptomic biomarkers of aging by 
reconstructing a gene regulatory network model and performing signal flow analysis. For validation, 
we screened public experimental data including gene expression profiles in response to thousands 
of chemical perturbagens. Despite insufficient data on the binding targets of perturbagens and their 
modes of action, curcumin, which reversely regulated the biomarkers in the experimental dataset, 
was found to bind and inhibit JUN, which was identified as a candidate target via signal flow analysis. 
Collectively, our results demonstrate the utility of a network model for integrative analysis of omics 
data, which can help elucidate inter-omics regulatory mechanisms and develop therapeutic strategies 
against aging.

Aging is a process that accompanies external (physical appearance) and internal (physiological functions) changes 
in an organism, which are affected by molecular interactions across multiple omics layers. Clinical studies 
of human aging have identified aging-related biomarkers associated with metabolic disorder1, loss of skeletal 
muscle2, neurodegeneration3, skin wrinkles4, and hair loss5 as well as an increased risk of aging-related diseases6,7 
such as type 2 diabetes, cancers, and Alzheimer’s disease. With the development of next-generation sequencing 
(NGS) technologies, molecular genetic studies have accumulated large quantities of omics data on aging and 
aging-related diseases7–9.

In particular, blood is easier to collect from living human body than other tissues, and also actively studied 
in forensic science to estimate the age of suspects10,11. Based on the advantages, numerous association studies on 
human aging have conducted with blood samples, and revealed aging-related changes in DNA methylation12–16 
and gene expression15–19, and their application as biological clocks to estimate chronological age from the iden-
tified aging signatures20,21. However, the causal relationship between variations in biomarkers and the specific 
cellular dysfunction or phenotypes related to aging remains largely unknown. To investigate these molecular 
mechanisms and causal relationships, molecular dynamics studies have been conducted to predict and con-
trol gene expression or protein phosphorylation changes in diseases22–26 such as cancer and diabetes from the 
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perspective of network biology. Several studies have employed ordinary differential equations22,23 or Boolean 
logical models24–26, which require specific parameter fitting or logical rule inference using accumulated experi-
mental data. Recently, a signal flow analysis27,28 method was developed, in which the influence of signals of 
perturbed nodes on the activity changes of the other nodes can be estimated based on the network structure 
and mode of action of each edge.

For integrative analysis, investigating the changes in methylation and gene expression in a network model 
requires understanding the causal relationships between two different omics layers. Changes in DNA methyla-
tion states and mRNA expression levels are closely related29. Typically, CpG methylations occurring in TFBSs 
regulate target gene expression by inhibiting or promoting the binding of specific transcription factors (TFs)30. 
Furthermore, a decrease in the expression of a gene involved in methylation/demethylation can cause changes 
in the overall methylation pattern31. It is difficult to determine which methylation/expression event is the leading 
cause and which is the result of the causal relationship represented in the feedback structures, as DNA methyla-
tion and gene expression are regulated by each other.

In this study, we assumed that the gene regulatory network is a closed system and that DNA methylation 
events are external input signals. Based on this assumption, we investigated the regulation of differentially 
expressed gene (DEG) markers, which results from changes in the methylation states of differentially methyl-
ated position (DMP) markers. First, we conducted paired methyl-seq and RNA-seq analysis of blood samples 
obtained from 51 Korean individuals aged 21–74 years and identified the DMP and DEG markers associated 
with age-related changes in methylation states or expression levels. Based on the blood gene regulatory network 
(GRN) constructed using a tissue-specific network inference study32, we reconstructed an aging-related gene 
regulatory subnetwork that can explain the changes in gene expression identified via RNA-seq. We further per-
formed signal flow analysis to explore the mechanism by which the methylation states of DMP markers regulate 
the expression of DEG markers. Furthermore, via signal flow analysis, we identified candidate molecular targets 
that can reversely regulate the aging-related gene expression changes.

Results
Identification of aging‑related DMPs and DEGs.  A schematic workflow of multi-dimensional inves-
tigation in this study is shown in Fig. 1. NGS analysis was conducted using blood samples obtained from 51 
healthy Korean individuals aged 20–74 years. Methyl-seq analysis identified 2,682,537 methylated CpGs from 
each sample. Of these, the beta values of 222,032 DMPs significantly (P < 0.05) increased or decreased according 
to age. These DMPs included all 32 aging-related epigenetic markers identified from 100 Korean and 300 Polish 
samples33 (hypergeometric test, P = 2.3e−35). To use the DMP markers whose methylation states are correlated 
with expression levels of TF genes as inputs in signal flow analysis of the GRN, we calculated the correlation 
between the methylation states of each DMP marker and the expression levels of nearby TF genes. The expres-
sion levels of 29 TF genes were found to be significantly correlated with the methylation states of 127 DMP 
markers (P < 0.05). When multiple DMPs were correlated with the same gene, the DMP with the most significant 
correlation was selected as a representative for calculating the expression level of the gene based on the methyla-
tion state of the DMP (Fig. 2c, Supplementary Table S1).

In RNA-seq analysis, we measured the expression levels of 19,229 protein-coding genes in each sample, 
and found 188 significantly up- or down-regulated DEGs according to age (adjusted P < 0.05; Supplementary 
Table S2). Of these, 20 DEGs overlapped with 50 aging-related transcriptomic markers identified through a 
meta-analysis of the blood transcriptome19 (hypergeometric test, P = 8.3e−28).

Reconstruction of an aging‑related GRN.  To investigate the mechanism underlying how DMP-derived 
TF expression regulates downstream DEGs through the network, we constructed an aging-related, blood tissue-
specific, GRN. Based on a previously constructed blood GRN—comprising 398,283 regulation events between 
15,293 genes—in a tissue-specific network inference study32, we reconstructed a subnetwork composed of DMP, 
DEG markers, and the intermediate nodes via which DMPs regulate downstream DEGs. After filtered out genes 
and regulations whose expression change or regulatory relationship is not significant based on our RNA-seq 
experiment, the final aging-related gene regulatory subnetwork was composed of 1,198 regulations among 235 
genes (Fig. 3A), including 22 input DMPs (Fig. 2a) and 46 output DEGs (Fig. 2b).

Effect of differentially methylated TFs on differentially expressed target genes.  To investigate 
the regulation of the transcriptome layer induced by changes in the epigenomic layer, we performed signal flow 
analysis, which can predict the direction of activity changes (DAC) of network nodes affected by a given initial 
signal input. The age-dependent changes in methylation of DMP markers were used as signal input, and their 
effect on DEG markers via the reconstructed GRN were predicted as DACs. As GRN concerns regulation of gene 
expression between TFs and their target genes, the initial signal of DMP markers were converted into expression 
levels of relevant TF genes based on the correlation between DMP marker methylation states and neighboring 
TF expression levels (Fig. 2c). As a result of signal flow analysis performed on 51 blood samples, the predicted 
DACs of 26 out of 46 DEGs were significantly altered according to age (P < 0.05). Of these 26 DEGs, the DACs 
of 22 DEGs were consistent with the increasing/decreasing directions of the DEG markers identified via RNA-
seq (Fig. 3B, Supplementary Fig. S1). The remaining four DEGs were inconsistent with the RNA-seq results, 
although the DAC increased or decreased in a certain direction according to age (Supplementary Figs. S2, S3A). 
The remaining 20 DEG markers were not compared with the RNA-seq results because their DACs showed non-
significant correlation with age (P > 0.05; Supplementary Fig. S3B). The 22 DEG markers whose DACs by meth-
ylation input were significant and consistent with the RNA-seq results were considered adequately regulated via 
signal flow analysis of the constructed network model. We accordingly used these markers as targets for reverse 
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regulation to delay or attenuate aging. The relative influence of each DMP in determining the DAC of 22 DEGs 
was further compared (Fig. 3C).

Candidate molecular targets and drugs to reverse aging‑related DEG expression.  We inves-
tigated candidate molecular targets that reversely regulate the aging-related DEG expression. We performed 
signal flow analysis assuming up-/down-regulation of each intermediate node as an input signal, and ranked 
the candidate targets based on the number of DEGs whose DAC are calculated in the opposite direction to its 
aging-related expression change. We identified top 5% of them as candidate molecular targets (Fig. 4A). Down-
regulation of GMEB1 or NR3C2 were predicted to reversely regulate 20 of 22 output DEGs, and 15 of them more 
significantly compared to other input signals. We visualized the calculated DAC of 22 output DEGs for each 
signal input and the aging-related DEG expression (Fig. 4B).

We also investigated candidate drugs that reversely regulate the aging-related expression of the DEGs found 
in this study, based on a LINCS database34. Of the 12,328 genes with available expression changes in the LINCS 
database, 19 of the 22 DEG markers found in this study were included. We investigated the drugs and conditions 
that can reversely regulate these 19 DEGs, and identified 11 candidate drugs, which induced the opposite direc-
tion of expression change for more than half of the DEGs (Fig. 4C). We visualized the drug-induced expression 
change of 19 DEGs and their aging-related expression changes observed in the RNA-seq analysis (Fig. 4D).

Figure 1.   Schematic workflow of multi-dimensional investigation for identifying candidate targets to reversely 
regulate the DEG markers.
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Validation of candidate control targets.  We investigated the binding targets of the candidate drugs 
identified with LINCS database to determine whether the drugs regulate the DEG expression by binding to the 
candidate targets using the PubChem database35,36. We obtained a list of assays in which drug-target binding, 
and agonist/antagonist experiments were conducted for the LINCS dataset candidate drugs. However, among 
the eight candidate target genes (Fig. 4A, E), high throughput screening assays were conducted only for NR3C2 
and JUN, which can determine target-binding drugs and examine whether they have agonistic or antagonistic 
action. In the case of NR3C2, 243 assays were conducted for 506 drugs; however, the 11 candidate drugs identi-
fied from the LINCS database were not examined in PubChem assays. On the other hand, out of 69 assays where 
the binding ability of JUN to 7857 drugs was tested, curcumin, which has been found to notably modulate 10 
aging-related DEGs in the LINCS database, was observed to bind to JUN and act as an antagonist. Previous 
studies have shown that administering curcumin increases the life span of model organisms such as mouse37, 
Drosophila38,39, and Caenorhabditis elegans40; moreover, numerous studies have been conducted on curcumin 
as a candidate target in aging41,42. For the other candidate genes, PubChem assays were conducted to examine 
siRNA activity instead of drug compounds, and we could not directly investigate whether drug-target binding 
occurred. To validate the candidate genes whose drug targets were not directly confirmed due to the lack of drug 
binding experimental data on the PubChem BioAssay, we further investigated the connection between them and 
aging via a literature survey; we found changes in aging-related phenotypes following changes in the expression 
level of relevant genes predicted by signal flow analysis (Table 1).

Discussion
Recent advances in multi-omics integrative analysis have facilitated a detailed understanding of aging-related 
diseases and the development of therapeutic strategies. Numerous studies have used multi-omics data to estimate 
chronological age43, identify distinct stages of aging44, investigate interconnectivity of aging-related diseases45, 
and discover anti-aging drug compounds46. Many of these studies integrated multi-omics data using network 
approaches; however, there are limitations to analyzing undirected networks based on similarity, conditional 
dependency, or co-expression as exploring causal relationships among biomolecules is unfeasible. In the present 
study, we conducted methyl-seq and RNA-seq analysis as well as integrated multi-omics analysis to investigate 
the regulatory mechanism between methylation and expression according to a GRN.

In network analysis, constructing an accurate network structure is crucial, particularly for signal flow analysis, 
which mainly relies on the topology information of the network. In general, GRNs that are constructed from 
databases such as TRANSFAC and STRING can be regarded as canonical networks containing the entire set 
of gene regulations that can be partially activated or deactivated depending on the conditions. To investigate 

Figure 2.   Aging-related DMP and DEG markers identified via NGS. Blood samples were collected from 
51 individuals for NGS. (a, b) Heatmap of 22 DMP markers and 46 DEG markers in the aging-related gene 
regulatory network (GRN). (c) Correlation between the methylation states of DMP markers and the expression 
levels of neighboring genes. The 22 input DMP markers in the GRN model are indicated as red circles. DEG, 
differentially expressed gene; DMP, differentially methylated position.
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the GRN in terms of aging, we reconstructed a subnetwork—based on a previously constructed blood-specific 
GRN—to include genes whose methylation and expression levels changed with age. The observation that TF 
genes affected by DMP markers modulate downstream genes in a direction consistent with DEG markers dem-
onstrated the existence of a regulatory relationship between the two omics layers.

Based on this regulatory relationship, we identified the candidate control targets (i.e., intermediate nodes) that 
can reversely regulate the DEG markers. JUN, one candidate target identified via network analysis (Fig. 5A), was 
validated using the expression profile and binding assay data found in experimental databases. We then found 
that curcumin, which reversely regulated DEG markers, binds to JUN and inhibits its activity. This indicates 
that a connection to aging can be discovered by performing additional research or accumulating data on other 
candidate target genes that have not yet been sufficiently investigated.

In searching for direct downstream genes of JUN (Fig. 5B), we found that a few downstream genes are regu-
lated in the direction of accelerating aging or promoting aging-related diseases (Table 2). However, whether 

Figure 3.   Signal flow analysis of the aging-related GRN constructed with 22 DMP markers and 46 DEG 
markers. (A) Methylation changes during aging were considered as initial signals for visualization of the aging-
related GRN. An increase in edge thickness and node size is based on the intensity of the signal transmitted to 
the DEG markers via the network. DMP input nodes are indicated in blue; DEG output nodes are indicated 
in yellow; edges representing up-regulated and down-regulated TG expression are indicated in green and red, 
respectively. (B) The direction of activity change (DAC) and aging-related fold change in RNA-seq analysis were 
consistent for the 22 output DEGs. (C) Relative influence of the 22 input DMPs on the DAC of the 22 output 
DEGs. SFA, signal flow analysis.
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Figure 4.   Candidate target genes identified by signal flow analysis and candidate drugs screened from the LINCS 
database. (A) List of candidate molecular targets predicted to reversely regulate the aging-related DEG expression. 
(B) Heatmap of the calculated DACs of the output DEGs for the candidate molecular target. (C) List of candidate 
drugs identified from the LINCS database that reversely regulate the DEG markers. (D) Heatmap of the observed 
expression changes of the output DEGs induced by candidate drugs. (E) Subnetwork visualization of candidate targets 
that reversely regulate the aging-related DEG expression, considering the initial signal that down-regulates JUN (blue). 
Signals from the candidate target genes (nodes with a black bold boundary) are transmitted via the network with 
up-regulating (red) or down-regulating (blue) downstream genes, and eventually regulate the aging-related expression 
of the output DEGs (the color of boundary denotes the expression fold change during aging).
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controlling expression of a specific gene can regulate most downstream genes in the direction of reversing aging 
does not indicate that all downstream genes are regulated in a consistent direction. Several studies have reported 
that TF regulation of downstream genes can exert opposing effects on biological processes47 and that a TF can 
bi-directionally regulate a target gene depending on the cofactor to which it binds48; this is beneficial for achieving 
homeostasis. Therefore, candidate targets from computational studies should be examined in vitro and in vivo in 
animals and humans to identify their effects on phenotypes, side effects, and optimal doses in the target tissue.

Finally, regulation of gene expression in this network study only considered part of the epigenome and tran-
scriptome; however, other omics layers involved in modulation before or after transcription, such as chromatin 
remodeling and protein conformation, can ultimately affect the behavior of biomolecules. Recently, multi-omics 
data across various other layers have been successfully accumulated on a large scale and with a longitudinal 
design49,50. When multi-omics network becomes complex and elaborate with the accumulation of data, other 
network theories can be applied such as reducing the size of biological networks51 or identifying robust control 
targets that are less affected by timing52. Additionally, clustering methods53,54 developed for time-series profiles 
can also be applied with the longitudinal data to infer regulatory mechanisms55 or functional annotations56 
of molecular markers in each omics layer. Along with advances in theoretical frameworks, employing these 
qualitative and quantitative multi-omics datasets and phenotype data can improve integrated omics analysis of 
a network biology and provide new insights that could not be discovered at the level of individual markers or 
a single omics layer.

Material and methods
Study design and participants.  Healthy adult volunteers between 20 and 80 years of age were recruited 
from two cities in Republic of Korea: Ulsan and Miryang by Welfare Genome Project (WGP)57. Of these, the 51 
samples with 24 males (47.1%) and 27 females (52.9%) were sequenced. Their mean age was 44.73 ± 15.02 years. 
All participants took an empty stomach 9 h before blood collection. The blood samples were frozen at − 80 °C 
and 15 ml of them were used for Methyl-seq and RNA-seq. Smoking status of participants were collected using 
a questionnaire, and classified as “smokers” or “non-smokers” (including both former and current smokers). 
We adjusted for sex bias in identifying DMP and DEG markers, but not for smoking status, since only 8 of 51 
participants were smokers and only males (Supplementary Fig. S4).

Ethics, consent, and permissions.  All 51 blood samples were obtained from Ulsan University Hospital, 
and written informed consent was obtained from all participants. This study was approved by the Institutional 
Review Board of Ulsan National Institute of Science and Technology (approval no. UNISTIRB-16-13-C). All 
experiments were performed in accordance with relevant guidelines and regulations.

DNA methyl‑sequencing.  Genomic DNA was isolated from blood using the DNeasy Blood & Tissue Kit 
(Qiagen, Hilden, Germany) according to manufacturer’s instructions. Extracted DNA was quantified using the 
Quant-iT BR Assay Kit (Invitrogen, Carlsbad, CA). Genomic libraries were prepared using the SureSelectXT 
Methyl-Seq Target Enrichment System for Illumina Multiplexed Sequencing (Agilent Technologies, Santa Clara, 
CA). Briefly, genomic DNA (3  μg per sample) was randomly sheared using an ultrasonicator (Covaris Inc., 
Woburn, MA), after which DNA fragments were extracted. Samples were then subjected to end repair, methyl-
ated adapter ligation, hybridization to SureSelectXT Methyl-Seq Capture Library, streptavidin bead enrichment, 
bisulfite conversion, and PCR amplification. Sample genomic libraries were indexed and pooled for multiplexed 
sequencing on an Illumina HiSeq 2500 platform (Illumina, San Diego, CA) using 101 bp paired-end reads.

Read mapping and methylation analysis.  The sequenced methyl-seq reads were filtered using the 
IlluQCPRLL.pl script of NGSQCToolkit (v. 2.3.3)58, and then reads with Q20 > 70% were used. Using Bismark 
(v.0.14.5)59, the filtered reads were mapped to the human reference genome (hg38; ENSEMBL v.95) and dupli-
cated reads were removed. Methylation values at each site were obtained using MethylExtract (v.1.9.1)60. We fil-
tered out sex chromosome regions to reduce sex bias. The methylation values were normalized per sample using 
MethylKit package in R (v.3.5.0)61, and adjusted for sex bias using Combat algorithm from SVA package62 in R 
(v. 3.5.0). Pearson’s correlation coefficient was calculated to identify aging-related DMPs. Multiple test correc-

Table 1.   Supporting evidence from the literature regarding candidate genes that regulate aging.

Candidate target Change in expression Aging-related phenotype References

GMEB1 ↓ Inhibition of cell growth in non-small cell lung cancer (human); increased expression upon nicotine exposure after 
smoking (human)

70,71

NR3C2 ↓ Reduced risk of high blood pressure and skin aging (mouse); downregulated by Sirt-1 (monkey) 72–74

JUN ↓ Binding target of curcumin (mouse, human); increased life span through JUN downregulation (worm, fly, mouse) 37–40,75

KLF4 ↓ Inhibition of cell senescence in bone marrow stem cells (human); improvement in heart function (human) 76,77

FOXJ3 ↓ Facilitates neurogenesis (jellyfish); facilitates differentiation of embryonic stem cells into neurons (mouse) 78,79

NFYB ↑ Increased life span (worm); impaired regulation in Parkinson’s and Alzheimer’s diseases (human) 80,81

ZBTB33 ↑ Maintenance of vascular endothelial cell homeostasis (human) and blood pressure homeostasis (mouse) 82,83

ZEB1 ↑ Reduced expression upon UV ray-induced skin irritation (human); reduced risk of myoatrophy (mouse) 84,85
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Figure 5.   Subnetwork visualization. (A) Subnetwork showing the regulation of expression of DEG outputs 
by DMP inputs; 17 out of 22 DEG output nodes are reversely regulated by JUN inhibition. (B) A subnetwork 
showing the regulation of output DEGs by JUN inhibition and its downstream regulation. An increase in edge 
thickness and node size is based on the intensity of the signal transmitted to the DEG markers via the network. 
Up-regulated and down regulated genes are denoted with red and blue, respectively.
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tions were not applied in the methyl-seq analysis due to the small sample size compared to the large number of 
CpG positions. To explore the regulatory impact of DMPs on TF expression, we calculated Pearson’s correlation 
coefficient between DMPs and the expression levels of their neighboring genes of which transcription start site 
or gene body region are located within 5 kb.

RNA sequencing.  Total RNA was extracted using the PAXgene Blood RNA Kit (Qiagen) according to 
manufacturer’s instructions. RNA quality was assessed using the Bioanalyzer 4200 system to determine the RNA 
integrity number and rRNA ratio. We purified mRNA from total RNA using polyA selection followed by frag-
mentation. The fragmented mRNAs were synthesized into single-stranded and double-stranded cDNA using 
random hexamer priming. RNA sequencing libraries were constructed from double-stranded cDNA using an 
Illumina TruSeq Stranded mRNA Library Prep Kit. Libraries of the 51 samples were sequenced on the Illumina 
HiSeq 2500 platform using 101 bp paired-end reads.

Read mapping and expression analysis.  The sequenced RNA-seq reads were filtered using the same 
criteria for methyl-seq analysis with the IlluQCPRLL.pl script of NGSQCToolkit. The filtered reads were aligned 
to the human genome (hg38; ENSEMBL v.95) by STAR (v. 2.6.0a)63. Gene expression was calculated with the 
htseq-count tool of the HTSeq software suite (v. 0.11.2)64. DEGs, whose expression varied significantly with age 
(treated as a continuous variable), were identified with adjusting for sex bias by DESeq2 (v. 1.26.0)65. DESeq2 cal-
culates the log2 fold change of gene expression per unit of age (year) using generalized linear models. Adjusted 
P value was calculated based on Benjamini–Hochberg correction66.

Blood tissue‑specific GRN.  To investigate the regulatory relationship between the DMP and DEG mark-
ers identified in the blood samples, a blood tissue-specific GRN constructed with the Passing Attributes between 
Networks for Data Assimilation (PANDA) algorithm67 was used. PANDA is an algorithm that can infer the 
structure of a GRN from a certain gene expression profile based on previously known TF-target gene bind-
ing and protein–protein interaction information. Using 38 tissues in the Genotype-Tissue Expression (GTEx) 
database68, Sonawane et al.32 constructed tissue-specific GRNs, from which we downloaded the blood tissue-
specific GRN (https://​zenodo.​org/​record/​83873​4#.​XALkr​y3MxTZ) and reconstructed an aging-related subnet-
work that comprised our identified DMP and DEG markers. Based on our RNA-seq experiment, we refined 
the subnetwork by filtering out lower 5% genes in their expression variance among 51 blood samples as well as 
regulations whose correlation and partial correlation of TF-target gene expression were not significant (P > 0.05), 
so that the refined network structure can better reflect the expression profiles conducted in context of aging.

Determining the direction of gene regulation.  In the aging-related GRN constructed based on the 
GTEx-PANDA network, edges include directional information in terms of source and target; however, they 
do not include information on the regulatory mode that informs whether a source node promotes or inhibits a 
target node, which is required to apply signal flow analysis. To explore the regulatory mechanism of gene expres-
sion, we assigned the mode of action of each edge according to the correlation of expression levels observed in 
the RNA-seq experiment of the gene pair to which each edge connects to from the established aging-related 
GRN. In the aging-related GRN, which has a dense structure of regulatory edges, one target gene was often regu-
lated by multiple TFs. This complex regulatory structure renders the correlation between target gene expression 
and a certain TF less significant because changes in target gene expression levels via regulation by other TFs acts 
as noise. In case of a target gene regulated by multiple upstream TF genes, to identify the direction in which a 
certain TF regulates the target gene, we assigned the mode of action in the direction that corresponds to the 

Table 2.   Aging-related phenotypes regulated downstream of JUN. *Downstream genes that appeared to be 
regulated in the direction of accelerating aging or promoting aging-related diseases.

Downstream gene Change in expression Aging-related phenotype References

NFATC2 ↓ Reduced risk of inflammation in Alzheimer’s disease (mouse); maintenance of cardiac homeostasis (mouse) 86,87

GATA3 ↓ Reduced expression by salidroside (fly, mouse, human); involved in B cell differentiation and immune response 
(mouse)

88–91

MYBL2 ↑ Recovery of heart cell senescence after cardiac infarction (human); inhibition of cellular senescence in multiple cell 
types (human)

92,93

RREB1 ↓ Inhibition of tumor suppression in multiple cancer types (human); a master regulator in Alzheimer’s disease 
(human)

94,95

TERF2 ↓ Premature skin aging and increased risk of skin cancer (mouse); acceleration of telomere loss in fibroblasts 
(human)

96,97

HSF1** ↓ Proliferation of cells with damaged DNA (mouse); potential therapeutic target in cancer (human) 98–100

PPARA​ ↑ Increased risk of Alzheimer’s disease and cognitive decline (mouse); reduced risk of osteoarthritis (human) 101,102

DNMT1 ↑ Recovery of UV-induced skin cell senescence (human); involved in ovarian aging and infertility (mouse) 84,103

SIX5 ↓ Increased proliferation of muscle satellite cells (mouse); recovery of muscular dystrophic phenotype and life span 
(mouse)

104,105

ZBTB4* ↓ Facilitates tumorigenesis (mouse); inhibition of apoptosis in response to p53 activation (human) 106,107

https://zenodo.org/record/838734#.XALkry3MxTZ
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partial correlation coefficient69, via which expression changes regulated by other TFs were excluded. Edges with 
no significant partial correlation were excluded from subsequent analysis.

Signal flow analysis.  Signal flow analysis27 is an algorithm that can predict the influence of input signals 
from specific nodes on the other nodes based on the network structure and the mode of action of each regula-
tion. To use the methylation states of DMP markers as expression signal input given to TF genes in the GRN, 
the beta values measured in 51 blood samples were normalized as Z-score for each position, and converted into 
values in a range between − 1 and + 1. DACs of output DEGs were calculated by signal flow analysis. The DEGs 
whose DAC were concordant with the aging-related expression change in the RNA-seq experiment were consid-
ered to be potentially regulated by DMP markers. To determine candidate molecular targets that can reversely 
regulate the 22 significant DEGs, + 1 and − 1 input signals were assigned to each intermediate node except for the 
DMP input and DEG output nodes. The DEGs whose DAC were opposite to aging-related change were consid-
ered to be controlled in direction to reverse aging. Signal flow analysis was performed with a default parameter 
(α = 0.5), which adjust the influence of signal flow from upstream genes and the basal activity of their target gene. 
DACs of output DEGs were calculated as previously described27.

Drug‑target profile database.  To determine candidate drugs that can reverse DEG marker expression, 
we used the LINCS database34, which provides the expression level changes of 12,328 genes for a given drug per-
turbation under different doses and time conditions in various cell lines; expression levels of 978 landmark genes 
were measured using an array and those of the other genes were inferred from the landmark genes. We down-
loaded the level 5 modZ score of blood cell-derived B266 cell lines from GEO(GSE92742) data, which included 
271 conditions of 47 drug perturbations at different dose and time conditions. We transformed the modZ score 
of the expression level into percentiles, and counted the number DEGs regulated in the opposite direction to 
changes with aging with a greater influence than those of the upper/lower tertile (Fig. 3C,D). To compare the 
capacity for reverse regulation of aging-related DEGs among the different drug compounds, we selected the dos-
age and time condition that controls the most DEGs in the opposite direction of aging in each drug perturbation.

To validate the candidate targets identified by signal flow analysis, we used PubChem Bioassay35,36, which 
provide the results of quantitative high-throughput screening assays, wherein a fluorescent target protein reacts 
with different doses of drug perturbations, and the trend of changes in fluorescence and cell viabilities are 
measured to examine whether the protein binds to the drug and exhibits an agonistic or antagonistic function.

Data availability
Raw sequencing data of methyl-seq and RNA-seq analysis are freely available upon request and after approval 
from the Korean Genomics Center’s review board of UNIST. Information regarding data sharing can be found 
at http://​korea​ngeno​me.​org.
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