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Event‑based backpropagation 
can compute exact gradients 
for spiking neural networks
Timo C. Wunderlich1,2,3* & Christian Pehle1,3*

Spiking neural networks combine analog computation with event‑based communication using 
discrete spikes. While the impressive advances of deep learning are enabled by training non‑spiking 
artificial neural networks using the backpropagation algorithm, applying this algorithm to spiking 
networks was previously hindered by the existence of discrete spike events and discontinuities. 
For the first time, this work derives the backpropagation algorithm for a continuous‑time spiking 
neural network and a general loss function by applying the adjoint method together with the proper 
partial derivative jumps, allowing for backpropagation through discrete spike events without 
approximations. This algorithm, EventProp, backpropagates errors at spike times in order to compute 
the exact gradient in an event‑based, temporally and spatially sparse fashion. We use gradients 
computed via EventProp to train networks on the Yin‑Yang and MNIST datasets using either a spike 
time or voltage based loss function and report competitive performance. Our work supports the 
rigorous study of gradient‑based learning algorithms in spiking neural networks and provides insights 
toward their implementation in novel brain‑inspired hardware.

How can we train spiking neural networks to achieve brain-like performance in machine learning tasks? The 
resounding success and pervasive use of the backpropagation algorithm in deep learning suggests an analogous 
approach. This algorithm computes the gradient of the neural network parameters with respect to a loss function 
that measures the network’s performance in a given task. The parameters of the network are iteratively updated 
using the locally optimal direction given by the gradient.

Spiking neural networks have been referred to as the third generation of neural  networks1, superseding 
artificial neural networks as commonly used in deep learning and hold the promise for efficient and robust 
processing of event-based spatio-temporal data as found in biological systems. However, spiking models are 
not widely used in machine learning applications. At the same time, the development of spiking neuromorphic 
hardware receives increasing  attention2 and learning in spiking neural networks is an active research subject, 
with a wide variety of proposed algorithms. A notorious issue in spiking neurons is the hard spiking threshold 
that does not permit a straight-forward application of differential calculus to compute gradients. Although 
exact gradients have been derived for special cases, this issue is commonly side-stepped by using smoothed or 
stochastic neuron models or by replacing the hard threshold function using a surrogate function, leading to the 
computation of surrogate  gradients3.

In contrast, this work provides an algorithm, EventProp, to compute the exact gradient for an arbitrary loss 
function defined using the state variables (spike times and membrane potentials) of a general recurrent spiking 
neural network composed of leaky integrate-and-fire neurons with hard thresholds. Since feed-forward archi-
tectures correspond to recurrent neural networks with block-diagonal weight matrices and convolutions can 
be represented as sparse linear transformations, deep feed-forward networks and convolutional networks are 
included as special cases.

The leaky integrate-and-fire neuron model describes a hybrid dynamical system that combines continu-
ous dynamics between spikes with discontinuous state variable transitions at spike times. The computation of 
partial derivatives for hybrid dynamical systems is an established topic in optimal control  theory4,5. In hybrid 
systems, the time-dependent partial derivative ∂x

∂p (t) of a state variable x with respect to a parameter p generally 
experiences jumps at the points of discontinuity (see Fig. 1A,B). The relation between the partial derivatives 
before and after a given discontinuity was first studied in the  1960s6,7. A more general theoretical framework was 
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Figure 1.  We derive the precise analogue to backpropagation for spiking neural networks by applying the 
adjoint method together with the jump conditions for partial derivatives at state discontinuities, yielding exact 
gradients with respect to loss functions based on membrane potentials or spike times. (A, B) Dynamical systems 
with parameter-dependent discontinuous state transitions typically have discontinuous partial derivatives of 
state variables with respect to system  parameters4, as is the case for the two examples shown here. Both examples 
model dynamics occurring on short timescales, namely inelastic reflection and the neuronal spike mechanism, 
using an instantaneous state transition. We denote quantities evaluated before and after a given transition by − 
and + . In A, a bouncing ball starts at height y0 > 0 and is described by ÿ = −g with gravitational acceleration g. 
It is inelastically reflected as ẏ+ = −0.8ẏ− as soon as y− = 0 holds, causing the partial derivative with respect to 
y0 to jump as ∂y

+

∂y0
= −0.8

∂y−

∂y0
 (see first methods subsection). In B, a leaky integrate-and-fire neuron described 

by the system given in Table 1 with initial conditions I(0) = w , V(0) = 0 resets its membrane potential as 
V+ = 0 when V− = ϑ holds, causing the partial derivative to jump as ∂V

+

∂w =

(

ϑ

τmemV̇−
+ 1

)

∂V−

∂w  (see methods 
for the full derivation). (C) Applying the adjoint method with partial derivative jumps to a network of leaky 
integrate-and-fire neurons (Table 1) yields the adjoint system (Table 2) that backpropagates errors in time. 
EventProp is an algorithm (Algorithm 1) returning the gradient of a loss function with respect to synaptic 
weights by computing this adjoint system. The forward pass computes the state variables V(t), I(t) and stores 
spike times tpost and each firing neuron’s synaptic current. EventProp then performs the backward pass by 
computing the adjoint system backwards in time using event-based error backpropagation and gradient 
accumulation: each time a spike was transferred across a given synaptic weight in the forward pass, EventProp 
backpropagates the error signal represented by the adjoint variables �V (tpost) , �I (tpost) of the post-synaptic 
(target) neuron and updates the corresponding component of the gradient by accumulating �I (tpost) , finally 
yielding sums as given in the figure
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developed thirty years  later8, providing existence and uniqueness theorems for the partial derivative trajectories 
∂x
∂p (t) of hybrid systems.

Discontinuous state transitions in hybrid systems occur when a transition condition is fulfilled (e.g., a bounc-
ing ball hits the floor or a neuron reaches its spiking threshold). The existence of well-defined partial derivative 
jumps at the state transition times depends on the local applicability of the implicit function theorem to the 
transition condition, requiring that the event time depends on the parameters in a differentiable fashion. In the 
case considered here, a spiking neural network composed of leaky integrate-and-fire neurons that is param-
eterized by synaptic weights, this is fulfilled up to the null set in weight space that contains the locally defined 
hypersurfaces where spikes are added or removed. At these critical points, the derivative of the time of the (dis-)
appearing spike with respect to a given active synaptic weight diverges. This implies that both the spike times 
and an integral of a smooth loss function over the membrane potential are differentiable almost everywhere, up 
to the null set of critical points in weight space.

Having established the jumps of partial derivatives in the leaky integrate-and-fire neuron model, the relevant 
question is how to compute the gradient of a loss function for spiking neural networks, preferably with the 
computational efficiency afforded by the backpropagation algorithm and retaining any potential advantages of 
event-based communication. Backpropagation in discrete-time artificial neural networks can be derived as a 
special case of the adjoint  method9, with the adjoint variables (Lagrange multipliers) �t at each time step t corre-
sponding to the intermediate variables computed in the backpropagation algorithm. Applying the adjoint method 
to continuous-time dynamical systems yields time-dependent adjoint variables �(t) (see methods section) and 
their computation in reverse time is analogous to the backpropagation of errors in discrete-time artificial neural 
networks. The adjoint method can be applied to hybrid systems by using the proper partial derivative jumps that 
generally cause jumps in the adjoint  variables10.

We combine the partial derivative jumps of the leaky integrate-and-fire neuron with the adjoint method 
in order to derive the EventProp algorithm (Algorithm 1) that is the analogue to backpropagation for spik-
ing neural networks (Fig. 1C). Since EventProp backpropagates errors at spike times, the algorithm computes 
gradients using an event-based communication scheme and is amenable to neuromorphic implementation. By 
requiring the storage of state variables only at spike times, it provides favorable memory requirements compared 
to approaches that require the full forward state trajectory to be retained for the backward pass. For example, 
surrogate gradient approaches operating on a discrete time grid require storing state variables at every time step 
for the backward pass. More generally, the fact that backpropagation in discrete-time artificial neural networks 
requires storing activations at every time step causes a memory bottleneck and is a major concern in training 
very deep  architectures11–13.

EventProp does not prescribe a specific numerical scheme to compute state variables and spike times but since 
the backward pass corresponds to the computation of a spiking network with pre-determined spike times, the 
computational complexity of the backward pass generally corresponds to that of the forward pass. While surro-
gate gradient approaches on a discrete time grid typically require the calculation of dense matrix-vector products 
at every time step in the backward pass (all neurons backpropagate error signals at every time step), EventProp 
only requires computing vector-vector products at spike events (only the firing neuron receives backpropagated 
errors at a given spike time). In this way, EventProp leverages the sparseness of spike-based communication for 
both the forward and backward pass.

We demonstrate the training of spiking neural networks with a single hidden layer using EventProp and the 
Yin-Yang and MNIST datasets, resulting in competitive classification performance.

Previous work. For a comprehensive survey of gradient-based approaches to learning in spiking neural 
networks, we refer the reader to review articles which discuss learning in deep spiking  networks2,14,15, discuss 
learning along with the history and future of neuromorphic  computing2 or focus on the surrogate gradient 
 approach3. Surrogate gradients use smooth activation functions for the purposes of backpropagation and have 
been used to train spiking networks in a variety of  settings16–19. This approach is typically derived by considering 
the Euler discretization of a spiking neural network where the Heaviside step function is used to couple neurons 
across discrete time steps. The non-differentiable Heaviside step function is then replaced by a smooth function 
in the backward pass.

Apart from surrogate gradients, several publications provide exact gradients for first-spike-time based loss 
functions and leaky integrate-and-fire neurons: a seminal  article20 provides the gradient for at most one spike 
per layer and this result was subsequently generalized to an arbitrary number of spikes as well as recurrent 
 connectivity21,22. While these publications provide recursive relations for the gradient that can be implicitly 
computed using backpropagation, we explicitly provide the dynamical system that implements backpropaga-
tion through time and show that it represents an adjoint spiking network which transmits errors at spike times, 
allowing for an event-based computation of the gradient. In addition, we also consider voltage-dependent loss 
functions and our methodology can be applied to neuron models without analytic expressions for the post-
synaptic potential kernels.

The applicability of methods from optimal control theory (i.e., partial derivative jumps and the adjoint 
method) to compute exact gradients in hard-threshold spiking neural networks was recognized in a series of 
 publications23–25. In contrast to this work, these articles consider a neuron model with a two-sided threshold 
(including negative threshold crossings), rely on the existence of analytic expressions for the post-synaptic 
potential kernels, provide specialized algorithms tailored to specific loss functions and consider minimalistic 
regression tasks.

The  chronotron26 uses a gradient-based learning rule based on the Victor-Purpura metric which enables a 
single leaky integrate-and-fire neuron to learn a target spike train. Our work, as well as the works mentioned 
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above which derive exact gradients, applies the implicit function theorem to differentiate spike times with respect 
to synaptic weights. A different approach is to consider ratios of the neuronal time constants where analytic 
expressions for first spike times can be given and to derive the corresponding gradients, as done  in27–30. Our 
work encompasses the contained methods to compute the gradient as special cases.

The seminal Tempotron model uses gradient descent to adjust the sub-threshold voltage maximum in a 
single  neuron31 and has recently been generalized to the spike threshold surface  formalism32 that uses the exact 
gradient of the critical thresholds ϑ∗

k  at which a leaky integrate-and-fire neuron transitions from emitting k to 
k − 1 spikes; computing this gradient is not considered in this work. The adjoint method was recently used to 
optimize neural ordinary differential  equations33 and neural jump stochastic differential  equations34 as well as 
to derive the gradient for a smoothed spiking neuron model without  reset35.

We first define the used spiking neuron model and then proceed to state our main results.

Leaky integrate‑and‑fire neural network model. We define a network of N leaky integrate-and-fire 
neurons with arbitrary (up to self-connections) recurrent connectivity (Table 1). We set the leak potential to 
zero and choose parameter-independent initial conditions. Note that the Spike-Response Model (SRM)36 with 
double-exponential or α-shaped PSPs is generally an integral expression of the model given in Table 1 with cor-
responding time constants.

Gradient via backpropagation. Consider smooth loss functions lV (V , t) , lp(tpost) that depend on the 
membrane potentials V, time t and the set of post-synaptic spike times tpost . The total loss is given by

 Our main result is that the derivative of the total loss with respect to a specific weight wji = (W)ji that con-
nects pre-synaptic neuron i (the firing neuron) to post-synaptic neuron j (the receiving neuron) is given by a 
sum over the spikes caused by i,

where �I is the adjoint variable (Lagrange multiplier) corresponding to the synaptic current I. Equation (2) 
therefore samples the post-synaptic neuron’s adjoint variable (�I )j at the spike times caused by neuron i.

After the neuron dynamics given by Table 1 have been computed from t = 0 to t = T , the adjoint state variable 
�I is computed in reverse time (i.e., from t = T to t = 0 ) as the solution of the system of adjoint equations defined 
in Table 2. The dynamical system defined by Table 2 is the adjoint spiking network to the leaky integrate-and-fire 
network (Table 1) which backpropagates error signals at the spike times tpost.

(1)L = lp(t
post)+

∫ T

0
lV (V(t), t)dt.

(2)
dL

dwji
= −τsyn

∑

spikes from i

(�I )j ,

Table 1.  The leaky integrate-and-fire spiking neural network model. Inbetween spikes, the vectors of 
membrane potentials V and synaptic currents I evolve according to the free dynamics. When some neuron 
n ∈ [1..N] crosses the threshold ϑ , the transition condition is fulfilled, causing a spike. This leads to a reset of 
the membrane potential as well as post-synaptic current jumps. W ∈ R

N×N is the weight matrix with zero 
diagonal and en ∈ R

N is the unit vector with a 1 at index n and 0 at all other indices. We use − and + to denote 
quantities before and after a given spike

Free dynamics Transition condition Jumps at transition

τmem
d

dt
V = −V + I

τsyn
d

dt
I = −I

(V)n − ϑ = 0

(V̇)n �= 0

for any n

(V+)n = 0

I+ = I− +Wen

Table 2.  The adjoint spiking network to Table 1 that computes the adjoint variable �I needed for the gradient 
[Eq. (2)]. The adjoint variables are computed in reverse time (i.e., from t = T to t = 0 ) with ′ = −

d
dt denoting 

the reverse time derivative. (�−
V
)n(k) experiences jumps at the spikes times tpost

k
 , where n(k) is the index of the 

neuron that caused the kth spike. Computing this system amounts to the backpropagation of errors in time. 
The initial conditions are �V (T) = �I (T) = 0 and we provide �−

V
 in terms of �+

V
 because the computation 

happens in reverse time

Free dynamics Transition condition Jump at transition

τmem�
′
V = −�V −

∂ lV

∂V

τsyn�
′
I = −�I + �V

t − t
post
k = 0

for any k

(�−V )n(k) = (�+V )n(k) +
1

τmem(V̇−)n(k)

[

ϑ(�+V )n(k)

+

(

W⊤(�+V − �I )

)

n(k)
+

∂ lp

∂t
post
k

+ l−V − l+V

]
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Equation (2) and Table 2 suggest a simple algorithm, EventProp, to compute the gradient (Algorithm 1). 
Notably, if the loss is voltage-independent (i.e., lV = 0 ), the backward pass of the algorithm requires only the 
spike times tpost and the synaptic current of the firing neurons at their respective firing times to be retained 
from the forward pass. The membrane potential at spike times is fixed to the threshold ϑ and therefore implicitly 
retained; the synaptic current therefore determines the temporal derivative of the membrane potential at the 
spike time, V̇− , and needs to be stored for the backward pass. The memory requirement of the algorithm scales 
as O(S) , where S is the number of post-synaptic spikes in the network. A feed-forward architecture corresponds 
to a block matrix W with each block being a strictly triangular matrix that connects two given layers. In that 
case, the forward and backward pass can be computed in a layer-wise fashion.

In case of a voltage-dependent loss lV  = 0 , the algorithm has to store the non-zero components of ∂ lV
∂V  

along the forward trajectory. The loss lV may depend on the voltage at a discrete time ti using the Dirac delta, 
lV (V(t), t) = V(t)δ(ti − t) , causing a jump of �V  of magnitude τ−1

mem at time ti . Note that in many practical 
scenarios as found in deep learning, the loss lV  depends only on the state of a constant number of neurons, 
irrespective of network size. If lV depends on the voltage of non-firing readout neurons, we have l+V = l−V and 
the corresponding term in the jump given in Table 2 vanishes.

If lV is either zero or depends only on voltages at discrete points in time, EventProp can be computed in a 
purely event-based manner. Figure 2 illustrates how EventProp computes the gradient of a spike time based loss 
function for two leaky integrate-and-fire neurons where one neuron receives Poisson spike trains via 100 synapses 
and is connected to the other neuron via a single feed-forward weight w.

Figure 2.  Illustration of EventProp-based gradient calculation in two leaky integrate-and-fire neurons 
connected with weight w and a spike-time dependent loss L . The forward pass (B, C) computes the spike times 
for both neurons and the backward pass (D–G) backpropagates errors at spike times, yielding the gradient as 
given in Eq. (2). (A) The upper neuron receives 100 independent Poisson spike trains with frequency 200 Hz 
across randomly initialized weights and is connected to the lower neuron via a single weight w. The loss L is a 
sum of the spike times of the lower neuron. (B, C) Membrane potential of upper and lower neuron. Spike times 
of the upper neuron are indicated using arrows. (D, E) Adjoint variable �I of upper and lower neuron. The lower 
neuron backpropagates its error signal �V − �I at the upper neuron’s spike times (indicated by arrows). (F, G) 
Accumulated gradient for one of the 100 input weights of the upper neuron and the weight w connecting the 
upper and lower neuron. EventProp computes the adjoint variables from t = T to t = 0 and accumulates the 
gradients by sampling −τsyn�I when spikes are transmitted across the respective weight. The gradients computed 
in this way match the gradients computed via central differences (dashed lines) up to a relative deviation of less 
than 10−7
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Simulation results. We demonstrate learning using EventProp using a custom event-based simulator and 
the Yin-Yang37 and  MNIST38 datasets. In both cases, we use a single hidden layer and spike latency encoding 
of the input data. The Yin-Yang dataset is classified using the time to first spike of a layer of readout neurons 
while the MNIST dataset is classified using the voltage maxima of a layer of non-firing readout neurons. The 
simulator computes gradients using EventProp as described in Algorithm 1; specifically, it uses an event queue 
and root-bracketing to compute post-synaptic spike times in the forward pass (using exact integration of the 
membrane  potential39) and backpropagates errors by attaching error signals to spikes in the backward pass and 
using reverse traversal of the event queue. We optimized synaptic weights using the calculated gradients via the 
Adam  optimizer40, without clipping gradients.

By initializing synaptic weights such that the network started in a non-quiescent state, we found that no 
explicit regularization of firing rates was needed to obtain the reported results in both cases. Hyperparameters 
were optimized using Gaussian process  optimization41 and manual tuning using the validation set of the respec-
tive dataset. The resulting parameters (see Table 3) were then evaluated using the test set.

Table 3.  Simulation parameters used for the results described in the main text

Symbol Description Value (Yin-Yang dataset) Value (MNIST dataset)

τmem Membrane time constant 20 ms 20 ms

τsyn Synaptic time constant 5 ms 5 ms

ϑ Threshold 1 1

Input size 5 784

Hidden size 200 350

Output size 3 10

tbias Bias time 0 ms n/a

tmax Maximum time 30 ms 20 ms

Hidden weights mean 1.5 0.078

Hidden weights standard deviation 0.78 0.045

Output weights mean 0.93 0.2

Output weights standard deviation 0.1 0.37

Minibatch size 32 5

Optimizer Adam Adam

β1 Adam parameter 0.9 0.9

β2 Adam parameter 0.999 0.999

ǫ Adam parameter 1× 10−8 1× 10−8

η Learning rate 5× 10−3 5× 10−3

Learning rate decay factor 0.95 0.95

Learning rate decay step 1 epoch 1 epoch

pdrop Prob. of dropping input spike n/a 0.2

α Regularization factor 3× 10−3 n/a

τ0 First loss time constant 0.5 ms n/a

τ1 Second loss time constant 6.4 ms n/a
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Yin‑Yang dataset. The Yin-Yang  dataset37 is a two-dimensional non-linearly separable dataset, with a shallow 
classifier achieving around 64% accuracy, and it therefore requires a hidden layer and backpropagation of errors 
for high classification accuracy. Consider that in contrast, the MNIST dataset can be classified using a linear 
classifier with at least 88%  accuracy38.

Each two-dimensional data point of the dataset (x,  y) was transformed into four dimensions as 
(x, 1− x, y, 1− y) and encoded using spike latencies in the interval [0, tmax] (see Fig. 3D). We added a fixed bias 
spike at time tbias for a total of five input spikes per data point. The resulting spike patterns were used as input to 
a two-layer network composed of leaky integrate-and-fire neurons. The output layer consisted of three neurons 
that each encoded one of the three classes, with each data point being assigned the class of the neuron that fired 
the earliest spike.

In analogy  to27, we used a cross-entropy loss defined using the first output spike times per neuron,

where tposti,k  is the first spike time of neuron k for the ith sample, l(i) is the index of the correct label for the ith 
sample, Nbatch is the number of samples in a given batch and τ0 and τ1 are hyperparameters of the loss function. 
The first term corresponds to a cross-entropy loss function over the softmax function applied to the negative 
spike times (we use negative spike times as the class assignment is determined by the smallest spike time) and 
encourages an increase of the spike time difference between the label neuron and all other neurons. As the first 
term depends only on the relative spike times, the second term is a regularization term that encourages early 
spiking of the label neuron.

Training results are shown in Fig. 3. After training, the test accuracy was 98.1(2)% (mean and standard devia-
tion over 10 different random seeds). This is comparable to the results shown  in27, who report 95.9(7)% accuracy 
with a smaller hidden layer (200 vs. 120 neurons).

MNIST dataset. We encoded each digit of the MNIST  dataset38 by transforming each of the 28 · 28 = 784 
pixels into spike latencies in the interval [0, tmax] (pixels corresponding to a value of 0 or 1 out of 255 were not 
converted to spikes). The resulting spike patterns were used as input to a two-layer network composed of a hid-

(3)L = −
1

Nbatch





Nbatch
�

i=1

log





exp
�

−t
post
i,l(i)/τ0

�

�3
k=1 exp

�

−t
post
i,k /τ0

�



+ α

�
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�

t
post
i,l(i)

τ1

�
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,

Figure 3.  We used EventProp and a time-to-first-spike loss function to train a two-layer leaky integrate-
and-fire network on the Yin-Yang dataset. (A) Illustration of the two-dimensional training dataset. The three 
different classes are shown in red, green and blue. This dataset was encoded using spike time latencies (see 
D). (B, C) Training results in terms of test error and loss averaged over 10 different random seeds (individual 
traces shown as grey lines). (D) Data points (x, y) were transformed into (x, 1− x, y, 1− y) and encoded using 
spike time latencies. We added a fixed spike at time tbias . (E) Spike time latencies �t of the three output neurons 
(encoding the blue, red or green class) after training, for all samples in the test set and a specific random 
seed. Latencies are relative to the first spike among the three neurons and given in units of tmax . A latency of 
zero (bright yellow dots) implies that the corresponding neuron fired the first spike, determining the class 
assignment. Missing spikes are denoted using green crosses
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den layer of leaky integrate-and-fire neurons and a readout layer of non-firing leaky integrator neurons. We used 
a cross-entropy loss function over the softmax function applied to the voltage maxima of the readout neurons 
(max-over-time),

where Vk(t) is the voltage trace of the kth readout neuron, l(i) is the index of the correct label for the ith 
sample and Nbatch is the number of samples in a given batch. Note that we can write the maximum voltage as 
maxt Vk(t) =

∫

Vk(t)δ(t − tmax)dt with the time of the maximum tmax and the Dirac delta δ , allowing us to 
apply the chain rule to find the jump of �Vk

 (cf. Table 2) at time tmax (terms containing the distributional deriva-
tive of δ are always zero).

During training, input spikes were dropped with probability pdrop in order to avoid overfitting. To obtain a 
validation set, we extracted and removed 5000 samples from the training set.

Training results are shown in Fig. 4. After training, the test accuracy was 97.6(1)% (mean and standard devia-
tion over 10 different random seeds). This represents competitive classification performance when compared 
with previously published results using spiking networks with a single, fully connected hidden layer (Table 4).

Discussion
We have derived and provided an algorithm (EventProp) to compute the gradient of a general loss function 
for a spiking neural network composed of leaky integrate-and-fire neurons. The parameter-dependent spike 
discontinuities were treated in a well-defined manner using the adjoint method in combination with partial 
derivative jumps, without approximations or smoothing operations. EventProp uses the resulting adjoint spik-
ing network to backpropagate errors in order to compute the exact gradient. Its forward pass requires comput-
ing the spike times of pre-synaptic neurons that transmit spikes to post-synaptic neurons, while the backward 
pass backpropagates errors at these spike times using the reverse path (i.e., from post-synaptic to pre-synaptic 
neurons). The rigorous treatment of spike discontinuities in combination with an event-based computation of 
the exact gradient represent a significant conceptual advance in the study of gradient-based learning methods 
for spiking neural networks.

An apparent issue with gradient descent based learning in the context of spiking networks is that the magni-
tude of the gradient diverges at the critical points in parameter space (note the v̇−1 term in the jump term given 
in Table 2; this term diverges as the membrane potential becomes tangent to the threshold and we have v̇ → 0 ). 
Indeed, this is a known issue in the broader context of optimal control of dynamical systems with parameter-
dependent state  transitions4,8. While this divergence can be mitigated using gradient clipping in practice, exact 

(4)L = −
1

Nbatch

Nbatch
∑

i=1

log

[

exp
(

maxt Vl(i)(t)
)

∑10
k=1 exp (maxt Vk(t))

]

,

Figure 4.  We used EventProp and a two-layer network composed of a hidden layer of leaky integrate-and-fire 
neurons and a readout layer of non-firing neurons to classify the MNIST dataset, with the readout neuron with 
the largest voltage deflection determining the class assignment. (A, B) Training results in terms of test error 
and loss averaged over 10 different random seeds (individual traces shown as grey lines). (C) Confusion matrix 
after training for a specific random seed and using the test set. (D) Voltage traces of all readout layer neurons 
for three different samples from the test set, where voltage traces of neurons corresponding to wrong labels are 
plotted using dashed lines
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gradients of commonly considered loss functions lead to learning dynamics that are ignorant with respect to 
these critical points and are therefore unable to selectively recruit additional spikes or dismiss existing spikes. 
In contrast, surrogate gradient methods continuously transmit errors across neurons and combine these with 
a non-linear function of the distance of the membrane potential to the threshold. It is therefore plausible that 
surrogate gradients represent a form of implicit regularization. Neftci et al.3 reports that the surrogate gradient 
approximates the true gradient in a minimalistic binary classification task while at the same time remaining finite 
and continuous along an interpolation path in weight space. Hybrid algorithms that combine the exact gradient 
with explicit regularization techniques could be a direction for future research and provide more principled 
learning algorithms as compared to ad-hoc replacements of threshold functions.

This work is based on the widely used leaky integrate-and-fire neuron model. Extensions to this model, such 
as fixed refractory periods, adaptive thresholds or multiple compartments can be treated in an analogous  way46. 
While the absence of explicit solutions to the resulting differential equations can require the use of sophisticated 
numerical techniques for event-based simulations, such extensions can significantly enhance the computational 
capabilities of spiking networks. For  example17, uses adaptive thresholds to implement LSTM-like memory cells 
in a recurrent spiking neural network.

Neuromorphic hardware is an increasingly active research  subject47–57 and implementing EventProp on such 
hardware is a natural consideration. The adjoint dynamics as given in Table 2 represent a type of spiking neural 
network which, instead of spiking dynamically, transmits errors at fixed times tpost that are scaled with factors 
v̇−1 retained from the forward pass. Therefore, a neuromorphic implementation could store spike times and 
scaling factors locally at each neuron, where they could be combined with the dynamic error signal ( �V − �I in 
Table 2) in the backward pass. This requires a possibility to read out neuronal state variables both in the forward 
and backward pass (membrane potential and synaptic current). The resulting error signals could be distributed 
across the network using event-based communication schemes similar to, for example, the address-event rep-
resentation  protocol58. As mentioned above, EventProp can be extended to multi-compartment neuron models 
as used in a recent neuromorphic  architecture59.

We used a two-layer feed-forward architecture to demonstrate learning using EventProp. The algorithm can, 
however, compute the gradient for arbitrary recurrent or convolutional architectures. Its computational and spa-
tial complexity scales linearly with network size (assuming constant average firing rates per neuron), analogous 
to backpropagation in non-spiking artificial neural networks. The performance in more complex tasks therefore 
hinges on the general efficacy of gradient-based optimization in spiking networks. As mentioned above, gradients 
with respect to loss functions defined in terms of spike times or membrane potentials ignores the presence of 
critical parameters where spikes appear or disappear. We suggest that studying regularization techniques which 
deal with this fundamental issue in a targeted manner could enable powerful learning algorithms for spiking 
networks. By providing a theoretical foundation for backpropagation in spiking networks, we support future 
research that combines such regularization techniques with the computation of exact gradients.

Methods
Partial derivatives in a hybrid system. In the following, we use the example of a bouncing ball (Fig. 1A) 
to illustrate the calculation of partial derivatives in a dynamical system with state discontinuities. A general 
treatment of the topic is given in other  literature8,60. The discontinuities occurring in the leaky integrate-and-fire 
neuron are treated analogously in our derivation of the gradient (see corresponding methods subsection).

The differential equation describing the bouncing ball with height y is

with gravitational acceleration g. Defining the ball’s velocity as v ≡ ẏ , this is equivalent to a two-dimensional 
system 

(5)ÿ = −g

(6a)v̇ = −g ,

Table 4.  Comparison of previously published classification results on the MNIST dataset for spiking neural 
networks that are trained using supervised learning with a single, fully connected (non-convolutional) hidden 
layer and temporal encoding of input data. The second column provides the number of hidden neurons

Publication # Hidden Test accuracy Comments

This Work 350 97.6(1)%

Cramer et al.42 246 97.5(1)% Downsampled to 16 by 16 pixels

Zenke and  Vogels43 512 98.3(9)% Including recurrent connections

Kheradpisheh and  Masquelier30 400 97.4(2)%

Comsa et al.28 340 97.9% (Max.) Bias spikes at learned times

Göltz et al.27 350 97.5(1)%

Mostafa29 800 97.55%

Neftci et al.44 500 97.77% (Max.)

Lee et al.45 800 98.71% (Max.)
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 The initial conditions are 

 where y0 > 0 is the parameter of interest defining the ball’s initial height. The given equations determine the 
state trajectory y(t) up to the moment of impact with the ground at y = 0 . Likewise, the trajectories of the partial 
derivatives with respect to y0 are given by differentiation of Eqs. (6) and (7)61, 

 with initial conditions 

 The state discontinuity occurs when the ball hits the ground and we have

at the time of impact tr . The ball is inelastically reflected, losing a fraction of its energy. Specifically, the system 
is re-initialized as 

 where − and + denote the state before and after the transition ( v± , y± are functions of tr and y0 ). Equations (10) 
and (11) together uniquely determine the partial derivatives after the reflection. The implicit function  theorem62 
applied to Eq. (10) guarantees (because v  = 0 ) the existence of a function tr(y0) that locally describes how the 
impact time changes with y0 , with its derivative given by

 Likewise, the implicit function theorem applies to Eq. (11) (because v  = 0 , v̇ �= 0 ), yielding after 
differentiation 

The partial derivatives after the transition can now be found by solving the system of equations given by Eqs. 
(11) and (12) and (13), 

 where we have used ÿ = −g . Equation (14) provides the initial conditions for the integration of the partial 
derivatives after the transition; subsequent ground impacts can be treated equivalently. Figure 1A illustrates the 
behaviour of y(t) and ∂y

∂y0
(t) using trajectories calculated numerically using the equations given here.

(6b)ẏ = v.

(7a)v(0) = 0,

(7b)y(0) = y0

(8a)
d

dt

∂v

∂y0
= 0,

(8b)
d

dt

∂y

∂y0
=

∂v

∂y0
,

(9a)
∂v

∂y0
(0) = 0,

(9b)
∂y

∂y0
(0) = 1.

(10)y− = 0

(11a)v+ = −0.8v−,

(11b)y+ = y−,

(12)
dtr

dy0
= −

1

ẏ−
∂y−

∂y0
= −

1

v−
∂y−

∂y0
.

(13a)
∂v+

∂y0
+ v̇+

dtr

dy0
=

∂v−

∂y0
+ v̇−

dtr

dy0
,

(13b)
∂y+

∂y0
+ ẏ+

dtr

dy0
=

∂y−

∂y0
+ ẏ−

dtr

dy0
.

(14a)
∂v+

∂y0
= −0.8

∂v−

∂y0
− 1.8g

1

v−
∂y−

∂y0
,

(14b)
∂y+

∂y0
= −0.8

∂y−

∂y0
,
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Adjoint method. We apply the adjoint method to a continuous, first order system of ordinary differential 
equations and refer the reader  to63,64 for a more general setting. Consider an N-dimensional dynamical system 
x : t �→ x(t) ∈ R

N with parameters p ∈ R
P defined by the system of implicit first order ordinary differential 

equations

and constant initial conditions G(x(0)) = 0 where F, G are smooth vector-valued functions.
We are interested in computing the gradient of a loss that is the integral of a smooth function l over the 

trajectory of x,

We have

where · is the dot product and the dynamics of the partial derivatives ∂x
∂pi

 are given by applying Gronwall’s 
 theorem61,

Computing x(t) along with ∂x
∂pi

(t) using Eqs. (15) and (18) allows us to calculate the gradient in Eq. (17) in a single 
forward pass. However, this procedure can incur prohibitive computational cost. When considering a recurrent 
neural network with N neurons and P = N2 synaptic weights, computing ∂x

∂pi
(t) for all parameters requires stor-

ing and integrating PN = N3 partial derivatives.
The adjoint method allows us to avoid computing PN partial derivatives in the forward pass by instead com-

puting N adjoint variables �(t) in an additional backward pass. We add a Lagrange multiplier � : t �→ �(t) ∈ R
N 

that constrains the system dynamics as given in Eq. (15),

Along trajectories where Eq. (15) holds, � can be chosen arbitrarily without changing L or its derivative. We 
get

Using partial integration, we have

By setting �(T) = 0 , the boundary term vanishes because we chose parameter independent initial conditions 
( ∂x
∂pi

(0) = 0 ). The gradient becomes

By choosing � to fulfill the adjoint differential equation

we are left with

The gradient can therefore be computed using Eq. (24), where the adjoint state variable � is computed from 
t = T to t = 0 as the solution of the adjoint differential equation Eq. (23) with initial condition �(T) = 0 . This 
corresponds to backpropagation through time (BPTT) in discrete time artificial neural networks.

Derivation of gradient. We apply the adjoint method (see previous methods subsection) to the case of a 
spiking neural network (i.e., a hybrid, discontinuous system with parameter dependent state transitions). The 
following derivation is specific to the model given in Table 1. A fully general treatment of (adjoint) sensitivity 
analysis in hybrid systems can be found  in8  or10.

(15)ẋ − F(x, p) = 0

(16)L =

∫ T

0
l(x, t)dt.

(17)
dL

dpi
=

∫ T

0

∂ l

∂x
·
∂x

∂pi
dt,

(18)
d

dt

∂x

∂pi
=

∂F

∂x

∂x

∂pi
+

∂F

∂pi
.

(19)L =

∫ T

0

[

l(x, t)+ � ·
(

ẋ − F(x, p)
)]

dt.

(20)
dL

dpi
=

∫ T

0

[

∂ l

∂x
·
∂x

∂pi
+ � ·

(

d

dt

∂x

∂pi
−

∂F

∂x

∂x

∂pi
−

∂F

∂pi

)]

dt.

(21)
∫ T

0
� ·

d

dt

∂x

∂pi
dt = −

∫ T

0
�̇ ·

∂x

∂pi
dt +

[

� ·
∂x

∂pi

]T

0

.

(22)
dL

dpi
=

∫ T

0

[(

∂ l

∂x
− �̇−

∂F

∂x
�

)

·
∂x

∂pi
− � ·

∂F

∂pi

]

dt.

(23)�̇ =
∂ l

∂x
−

∂F

∂x
�

(24)
dL

dpi
= −

∫ T

0
� ·

∂F

∂pi
dt.
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The differential equations defining the free dynamics in implicit form are 

 where fV , fI are again vectors of size N. We now split up the loss integral in Eq. (1) at the spike times tpost and 
use vectors of Lagrange multipliers �V , �I that fix the system dynamics fV , fI between transitions.

where we set tpost0 = 0 and tpostNpost+1 = T and x · y is the dot product of two vectors x, y. Note that because fV , fI 
vanish along all considered trajectories, �V and �I can be chosen arbitrarily without changing L or its derivative. 
Using Eq. (25) we have, as per Gronwall’s  theorem61, 

 where we have used the fact that the derivatives commute, ∂
∂wji

d
dt =

d
dt

∂
∂wji

 (the weights are fixed and have no 
time dependence). The gradient then becomes, by application of the Leibniz integral rule,

where l±V ,k is the voltage-dependent loss evaluated before (−) or after ( + ) the transition and we have used that 
fV = fI = 0 along all considered trajectories. Using partial integration, we have

Collecting terms in ∂V
∂wji

 , ∂I
∂wji

 , we have

Since the Lagrange multipliers �V (t) , �I (t) can be chosen arbitrarily, this form allows us to set the dynamics of 
the adjoint variables between transitions. Since the integration of the adjoint variables is done from t = T to 
t = 0 in practice (i.e., reverse in time), it is practical to transform the time derivative as ddt → −

d
dt . Denoting 

the new time derivative by ′  , we have 

 The integrand in Eq. (31) therefore vanishes along the trajectory and we are left with a sum over the transitions. 
Since the initial conditions of V and I are assumed to be parameter independent, we have ∂V

∂wji
=

∂I
∂wji

= 0 at 
t = 0 . We set the initial condition for the adjoint variables to be �V (T) = �I (T) = 0 to eliminate the boundary 
term for t = T . We are therefore left with a sum over transitions ξk evaluated at the transition times tpostk ,

(25a)fV ≡ τmemV̇ + V − I = 0,

(25b)fI ≡ τsyn İ + I = 0,

(26)
dL

dwji
=

d

dwji



lp(t
post)+

Npost
�

k=0

� t
post
k+1

t
post
k

�

lV (V , t)+ �V · fV + �I · fI
�

dt



,

(27a)
∂fV

∂wji
= τmem

d

dt

∂V

∂wji
+

∂V

∂wji
−

∂I

∂wji
,

(27b)
∂fI

∂wji
= τsyn

d

dt

∂I

∂wji
+

∂I

∂wji
,

(28)

dL

dwji
=

Npost
∑

k=0

[
∫ t

post
k+1

t
post
k

[

∂ lV

∂V
·
∂V

∂wji
+ �V ·

(

τmem
d

dt

∂V

∂wji
+

∂V

∂wji
−

∂I

∂wji

)

+ �I ·

(

τsyn
d

dt

∂I

∂wji
+

∂I

∂wji

)]

dt

+
∂ lp

∂t
post
k

dt
post
k

dwji
+ l−V ,k+1

dt
post
k+1

dwji
− l+V ,k

dt
post
k

dwji

]

,

(29)
∫ t

post
k+1

t
post
k

�V ·
d

dt

∂V

∂wji
dt = −

∫ t
post
k+1

t
post
k

�̇V ·
∂V

∂wji
dt +

[

�V ·
∂V

∂wji

]t
post
k+1

t
post
k

,

(30)
∫ t

post
k+1

t
post
k

�I ·
d

dt

∂I

∂wji
dt = −

∫ t
post
k+1

t
post
k

�̇I ·
∂I

∂wji
dt +

[

�I ·
∂I

∂wji

]t
post
k+1

t
post
k

.

(31)

dL

dwji
=

Npost
∑

k=0

[
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post
k+1

t
post
k

[(

∂ lV

∂V
− τmem�̇V + �V

)

·
∂V

∂wji
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−τsyn�̇I + �I − �V

)

·
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∂wji

]
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+
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∂t
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[
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t
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�I ·
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t
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(32a)τmem�
′
V = −�V −

∂ lV

∂V
,

(32b)τsyn�
′
I = −�I + �V .
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with the definition

We proceed by deriving the relationship between the adjoint variables before and after each transition. Since 
the computation of the adjoint variables happens in reverse time in practice, we provide �− in terms of �+.

Consider a spike caused by the nth neuron, with all other neurons m  = n remaining silent. We start by first 
deriving the relationships between ∂V

+

∂wji
 , ∂V

−

∂wji
 and ∂I

+

∂wji
 , ∂I

−

∂wji
.

Membrane potential transition. By considering the relations between V+ , V− and V̇+ , V̇− , we can derive the 
relation between ∂V

+

∂wji
 and ∂V

−

∂wji
 at each spike. Each spike at tpost is triggered by a neuron’s membrane potential 

crossing the threshold. We therefore have, at tpost,

This relation defines tpost as a differentiable function of wji via the implicit function theorem (illustrated in 
Fig. 5, see  also65), under the condition that (V̇−)n �= 0 . Differentiation of this relation yields

Since we only allow transitions for (V̇−)n �= 0 , we have

Note that corresponding relations were previously used to derive gradient-based learning rules for spiking 
neuron  models20–22,26,66; in contrast to the suggestion  in20, Eq. (37) is not an approximation but rather an exact 
relation at all non-critical parameters and invalid at all critical parameters.

Because the spiking neuron’s membrane potential is reset to zero, we have

This implies by differentiation

(33)
dL

dwji
=

Npost
∑

k=1

ξk

(34)

ξk ≡
∂ lp

∂t
post
k

dt
post
k

dwji
+ l−V ,k

dt
post
k

dwji
− l+V ,k

dt
post
k

dwji

+

[

τmem

(

�
−
V ·

∂V−

∂wji
− �

+
V ·

∂V+

∂wji

)

+ τsyn

(

�
−
I ·

∂I−

∂wji
− �

+
I ·

∂I+

∂wji

)]∣

∣

∣

∣

t
post
k

.

(35)(V−)n − ϑ = 0.

(36)
(

∂V−

∂wji

)

n

+ (V̇−)n
dtpost

dwji
= 0.

(37)
dtpost

dwji
= −

1

(V̇−)n

(

∂V−

∂wji

)

n

.

(38)(V+)n = 0.

(39)
(

∂V+

∂wji

)

n

+ (V̇+)n
dtpost

dwji
= 0.

Figure 5.  In this sketch, the relation v(t,w)− ϑ = 0 defines an implicit function (black line along which 
dv = 0 ). The critical point where the gradient diverges is shown in red
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Using Eq. (37), this allows us to relate the partial derivative after the spike to the partial derivative before 
the spike,

Since we have (V+)m = (V−)m for all other, non-spiking neurons m  = n , it holds that

Because the spiking neuron n causes the synaptic current of all neurons m  = n to jump by wmn , we have

and therefore get with Eq. (36)

Synaptic current transition.  The spiking neuron n causes the synaptic current of all neurons m  = n to jump by 
the corresponding weight wmn . We therefore have

By differentiation, this relation implies the consistency equations for the partial derivatives ∂I
∂wji

 with respect to 
the considered weight wji,

where δji is the Kronecker delta. Because

we get with Eq. (36)

With (I+)n = (I−)n and (İ+)n = (İ−)n , we have

Using the relations of the partial derivatives from Eqs. (37), (40), (44), (49) and (50) in the transition equation 
Eq. (34), we now derive relations between the adjoint variables. Collecting terms in the partial derivatives and 
writing the index of the spiking neuron for the kth spike as n(k), we have

(40)
(

∂V+

∂wji

)

n

=
(V̇+)n

(V̇−)n

(

∂V−

∂wji

)

n

.
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(
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)
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.

(42)τmem(V̇
+)m = τmem(V̇

−)m + wmn

(43)
(

∂V+

∂wji

)

m

=

(

∂V−

∂wji

)

m

− τ−1
memwmn

dtpost

dwji

(44)=

(

∂V−

∂wji

)

m

+
1

τmem(V̇−)n
wmn

(

∂V−

∂wji

)

n

.
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This form dictates the jumps of the adjoint variables for the spiking neuron n and all other, silent neurons m, 

 With these jumps, the gradient reduces to

Summary.  The free adjoint dynamics between spikes are given by Eq. (32) while spikes cause jumps given 
by Eq. (52). The gradient for a given weight samples the post-synaptic neuron’s �I when spikes are transmitted 
across the corresponding synapse [Eq. (53)]. Since we can identify, with (V̇+)n − (V̇−)n = τ−1

memϑ,

the derived solution is equivalent to Eq. (2) and Table 2.

Fixed Input Spikes.  If a given neuron i is subjected to a fixed pre-synaptic spike train across a synapse with 
weight winput , the transition times are fixed and the adjoint variables do not experience jumps. The gradient 
simply samples the neuron’s �I at the times of spike arrival,

Coincident spikes.  The derivation above assumes that only a single neuron of the recurrent network spikes at 
a given tpostk  . In general, coincident spikes may occur. If neurons a and b spike at the same time and the times of 
their respective threshold crossing vary independently as function of wji , the derivation above still holds, with 
both neuron’s �V experiencing a jump as in Eq. (52a).

Code availability
Code to reproduce the shown results will be made available at https:// github. com/ event prop.
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