
1

Vol.:(0123456789)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports

Event‑based backpropagation
can compute exact gradients
for spiking neural networks
Timo C. Wunderlich1,2,3* & Christian Pehle1,3*

Spiking neural networks combine analog computation with event‑based communication using
discrete spikes. While the impressive advances of deep learning are enabled by training non‑spiking
artificial neural networks using the backpropagation algorithm, applying this algorithm to spiking
networks was previously hindered by the existence of discrete spike events and discontinuities.
For the first time, this work derives the backpropagation algorithm for a continuous‑time spiking
neural network and a general loss function by applying the adjoint method together with the proper
partial derivative jumps, allowing for backpropagation through discrete spike events without
approximations. This algorithm, EventProp, backpropagates errors at spike times in order to compute
the exact gradient in an event‑based, temporally and spatially sparse fashion. We use gradients
computed via EventProp to train networks on the Yin‑Yang and MNIST datasets using either a spike
time or voltage based loss function and report competitive performance. Our work supports the
rigorous study of gradient‑based learning algorithms in spiking neural networks and provides insights
toward their implementation in novel brain‑inspired hardware.

How can we train spiking neural networks to achieve brain-like performance in machine learning tasks? The
resounding success and pervasive use of the backpropagation algorithm in deep learning suggests an analogous
approach. This algorithm computes the gradient of the neural network parameters with respect to a loss function
that measures the network’s performance in a given task. The parameters of the network are iteratively updated
using the locally optimal direction given by the gradient.

Spiking neural networks have been referred to as the third generation of neural networks1, superseding
artificial neural networks as commonly used in deep learning and hold the promise for efficient and robust
processing of event-based spatio-temporal data as found in biological systems. However, spiking models are
not widely used in machine learning applications. At the same time, the development of spiking neuromorphic
hardware receives increasing attention2 and learning in spiking neural networks is an active research subject,
with a wide variety of proposed algorithms. A notorious issue in spiking neurons is the hard spiking threshold
that does not permit a straight-forward application of differential calculus to compute gradients. Although
exact gradients have been derived for special cases, this issue is commonly side-stepped by using smoothed or
stochastic neuron models or by replacing the hard threshold function using a surrogate function, leading to the
computation of surrogate gradients3.

In contrast, this work provides an algorithm, EventProp, to compute the exact gradient for an arbitrary loss
function defined using the state variables (spike times and membrane potentials) of a general recurrent spiking
neural network composed of leaky integrate-and-fire neurons with hard thresholds. Since feed-forward archi-
tectures correspond to recurrent neural networks with block-diagonal weight matrices and convolutions can
be represented as sparse linear transformations, deep feed-forward networks and convolutional networks are
included as special cases.

The leaky integrate-and-fire neuron model describes a hybrid dynamical system that combines continu-
ous dynamics between spikes with discontinuous state variable transitions at spike times. The computation of
partial derivatives for hybrid dynamical systems is an established topic in optimal control theory4,5. In hybrid
systems, the time-dependent partial derivative ∂x

∂p (t) of a state variable x with respect to a parameter p generally
experiences jumps at the points of discontinuity (see Fig. 1A,B). The relation between the partial derivatives
before and after a given discontinuity was first studied in the 1960s6,7. A more general theoretical framework was

OPEN

1Kirchhoff-Institute for Physics, Heidelberg University, 69120 Heidelberg, Germany. 2Present address: Berlin
Institute of Health, Charité–Universitätsmedizin, 10117 Berlin, Germany. 3These authors contributed equally: Timo
C. Wunderlich and Christian Pehle. *email: timo.wunderlich@charite.de; christian.pehle@kip.uni-heidelberg.de

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-91786-z&domain=pdf

2

Vol:.(1234567890)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

Figure 1. We derive the precise analogue to backpropagation for spiking neural networks by applying the
adjoint method together with the jump conditions for partial derivatives at state discontinuities, yielding exact
gradients with respect to loss functions based on membrane potentials or spike times. (A, B) Dynamical systems
with parameter-dependent discontinuous state transitions typically have discontinuous partial derivatives of
state variables with respect to system parameters4, as is the case for the two examples shown here. Both examples
model dynamics occurring on short timescales, namely inelastic reflection and the neuronal spike mechanism,
using an instantaneous state transition. We denote quantities evaluated before and after a given transition by −
and + . In A, a bouncing ball starts at height y0 > 0 and is described by ÿ = −g with gravitational acceleration g.
It is inelastically reflected as ẏ+ = −0.8ẏ− as soon as y− = 0 holds, causing the partial derivative with respect to
y0 to jump as ∂y

+

∂y0
= −0.8

∂y−

∂y0
 (see first methods subsection). In B, a leaky integrate-and-fire neuron described

by the system given in Table 1 with initial conditions I(0) = w , V(0) = 0 resets its membrane potential as
V+ = 0 when V− = ϑ holds, causing the partial derivative to jump as ∂V

+

∂w =

(

ϑ

τmemV̇−
+ 1

)

∂V−

∂w (see methods
for the full derivation). (C) Applying the adjoint method with partial derivative jumps to a network of leaky
integrate-and-fire neurons (Table 1) yields the adjoint system (Table 2) that backpropagates errors in time.
EventProp is an algorithm (Algorithm 1) returning the gradient of a loss function with respect to synaptic
weights by computing this adjoint system. The forward pass computes the state variables V(t), I(t) and stores
spike times tpost and each firing neuron’s synaptic current. EventProp then performs the backward pass by
computing the adjoint system backwards in time using event-based error backpropagation and gradient
accumulation: each time a spike was transferred across a given synaptic weight in the forward pass, EventProp
backpropagates the error signal represented by the adjoint variables �V (tpost) , �I (tpost) of the post-synaptic
(target) neuron and updates the corresponding component of the gradient by accumulating �I (tpost) , finally
yielding sums as given in the figure

3

Vol.:(0123456789)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

developed thirty years later8, providing existence and uniqueness theorems for the partial derivative trajectories
∂x
∂p (t) of hybrid systems.

Discontinuous state transitions in hybrid systems occur when a transition condition is fulfilled (e.g., a bounc-
ing ball hits the floor or a neuron reaches its spiking threshold). The existence of well-defined partial derivative
jumps at the state transition times depends on the local applicability of the implicit function theorem to the
transition condition, requiring that the event time depends on the parameters in a differentiable fashion. In the
case considered here, a spiking neural network composed of leaky integrate-and-fire neurons that is param-
eterized by synaptic weights, this is fulfilled up to the null set in weight space that contains the locally defined
hypersurfaces where spikes are added or removed. At these critical points, the derivative of the time of the (dis-)
appearing spike with respect to a given active synaptic weight diverges. This implies that both the spike times
and an integral of a smooth loss function over the membrane potential are differentiable almost everywhere, up
to the null set of critical points in weight space.

Having established the jumps of partial derivatives in the leaky integrate-and-fire neuron model, the relevant
question is how to compute the gradient of a loss function for spiking neural networks, preferably with the
computational efficiency afforded by the backpropagation algorithm and retaining any potential advantages of
event-based communication. Backpropagation in discrete-time artificial neural networks can be derived as a
special case of the adjoint method9, with the adjoint variables (Lagrange multipliers) �t at each time step t corre-
sponding to the intermediate variables computed in the backpropagation algorithm. Applying the adjoint method
to continuous-time dynamical systems yields time-dependent adjoint variables �(t) (see methods section) and
their computation in reverse time is analogous to the backpropagation of errors in discrete-time artificial neural
networks. The adjoint method can be applied to hybrid systems by using the proper partial derivative jumps that
generally cause jumps in the adjoint variables10.

We combine the partial derivative jumps of the leaky integrate-and-fire neuron with the adjoint method
in order to derive the EventProp algorithm (Algorithm 1) that is the analogue to backpropagation for spik-
ing neural networks (Fig. 1C). Since EventProp backpropagates errors at spike times, the algorithm computes
gradients using an event-based communication scheme and is amenable to neuromorphic implementation. By
requiring the storage of state variables only at spike times, it provides favorable memory requirements compared
to approaches that require the full forward state trajectory to be retained for the backward pass. For example,
surrogate gradient approaches operating on a discrete time grid require storing state variables at every time step
for the backward pass. More generally, the fact that backpropagation in discrete-time artificial neural networks
requires storing activations at every time step causes a memory bottleneck and is a major concern in training
very deep architectures11–13.

EventProp does not prescribe a specific numerical scheme to compute state variables and spike times but since
the backward pass corresponds to the computation of a spiking network with pre-determined spike times, the
computational complexity of the backward pass generally corresponds to that of the forward pass. While surro-
gate gradient approaches on a discrete time grid typically require the calculation of dense matrix-vector products
at every time step in the backward pass (all neurons backpropagate error signals at every time step), EventProp
only requires computing vector-vector products at spike events (only the firing neuron receives backpropagated
errors at a given spike time). In this way, EventProp leverages the sparseness of spike-based communication for
both the forward and backward pass.

We demonstrate the training of spiking neural networks with a single hidden layer using EventProp and the
Yin-Yang and MNIST datasets, resulting in competitive classification performance.

Previous work. For a comprehensive survey of gradient-based approaches to learning in spiking neural
networks, we refer the reader to review articles which discuss learning in deep spiking networks2,14,15, discuss
learning along with the history and future of neuromorphic computing2 or focus on the surrogate gradient
 approach3. Surrogate gradients use smooth activation functions for the purposes of backpropagation and have
been used to train spiking networks in a variety of settings16–19. This approach is typically derived by considering
the Euler discretization of a spiking neural network where the Heaviside step function is used to couple neurons
across discrete time steps. The non-differentiable Heaviside step function is then replaced by a smooth function
in the backward pass.

Apart from surrogate gradients, several publications provide exact gradients for first-spike-time based loss
functions and leaky integrate-and-fire neurons: a seminal article20 provides the gradient for at most one spike
per layer and this result was subsequently generalized to an arbitrary number of spikes as well as recurrent
 connectivity21,22. While these publications provide recursive relations for the gradient that can be implicitly
computed using backpropagation, we explicitly provide the dynamical system that implements backpropaga-
tion through time and show that it represents an adjoint spiking network which transmits errors at spike times,
allowing for an event-based computation of the gradient. In addition, we also consider voltage-dependent loss
functions and our methodology can be applied to neuron models without analytic expressions for the post-
synaptic potential kernels.

The applicability of methods from optimal control theory (i.e., partial derivative jumps and the adjoint
method) to compute exact gradients in hard-threshold spiking neural networks was recognized in a series of
 publications23–25. In contrast to this work, these articles consider a neuron model with a two-sided threshold
(including negative threshold crossings), rely on the existence of analytic expressions for the post-synaptic
potential kernels, provide specialized algorithms tailored to specific loss functions and consider minimalistic
regression tasks.

The chronotron26 uses a gradient-based learning rule based on the Victor-Purpura metric which enables a
single leaky integrate-and-fire neuron to learn a target spike train. Our work, as well as the works mentioned

4

Vol:.(1234567890)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

above which derive exact gradients, applies the implicit function theorem to differentiate spike times with respect
to synaptic weights. A different approach is to consider ratios of the neuronal time constants where analytic
expressions for first spike times can be given and to derive the corresponding gradients, as done in27–30. Our
work encompasses the contained methods to compute the gradient as special cases.

The seminal Tempotron model uses gradient descent to adjust the sub-threshold voltage maximum in a
single neuron31 and has recently been generalized to the spike threshold surface formalism32 that uses the exact
gradient of the critical thresholds ϑ∗

k at which a leaky integrate-and-fire neuron transitions from emitting k to
k − 1 spikes; computing this gradient is not considered in this work. The adjoint method was recently used to
optimize neural ordinary differential equations33 and neural jump stochastic differential equations34 as well as
to derive the gradient for a smoothed spiking neuron model without reset35.

We first define the used spiking neuron model and then proceed to state our main results.

Leaky integrate‑and‑fire neural network model. We define a network of N leaky integrate-and-fire
neurons with arbitrary (up to self-connections) recurrent connectivity (Table 1). We set the leak potential to
zero and choose parameter-independent initial conditions. Note that the Spike-Response Model (SRM)36 with
double-exponential or α-shaped PSPs is generally an integral expression of the model given in Table 1 with cor-
responding time constants.

Gradient via backpropagation. Consider smooth loss functions lV (V , t) , lp(tpost) that depend on the
membrane potentials V, time t and the set of post-synaptic spike times tpost . The total loss is given by

 Our main result is that the derivative of the total loss with respect to a specific weight wji = (W)ji that con-
nects pre-synaptic neuron i (the firing neuron) to post-synaptic neuron j (the receiving neuron) is given by a
sum over the spikes caused by i,

where �I is the adjoint variable (Lagrange multiplier) corresponding to the synaptic current I. Equation (2)
therefore samples the post-synaptic neuron’s adjoint variable (�I)j at the spike times caused by neuron i.

After the neuron dynamics given by Table 1 have been computed from t = 0 to t = T , the adjoint state variable
�I is computed in reverse time (i.e., from t = T to t = 0) as the solution of the system of adjoint equations defined
in Table 2. The dynamical system defined by Table 2 is the adjoint spiking network to the leaky integrate-and-fire
network (Table 1) which backpropagates error signals at the spike times tpost.

(1)L = lp(t
post)+

∫ T

0
lV (V(t), t)dt.

(2)
dL

dwji
= −τsyn

∑

spikes from i

(�I)j ,

Table 1. The leaky integrate-and-fire spiking neural network model. Inbetween spikes, the vectors of
membrane potentials V and synaptic currents I evolve according to the free dynamics. When some neuron
n ∈ [1..N] crosses the threshold ϑ , the transition condition is fulfilled, causing a spike. This leads to a reset of
the membrane potential as well as post-synaptic current jumps. W ∈ R

N×N is the weight matrix with zero
diagonal and en ∈ R

N is the unit vector with a 1 at index n and 0 at all other indices. We use − and + to denote
quantities before and after a given spike

Free dynamics Transition condition Jumps at transition

τmem
d

dt
V = −V + I

τsyn
d

dt
I = −I

(V)n − ϑ = 0

(V̇)n �= 0

for any n

(V+)n = 0

I+ = I− +Wen

Table 2. The adjoint spiking network to Table 1 that computes the adjoint variable �I needed for the gradient
[Eq. (2)]. The adjoint variables are computed in reverse time (i.e., from t = T to t = 0) with ′ = −

d
dt denoting

the reverse time derivative. (�−
V
)n(k) experiences jumps at the spikes times tpost

k
 , where n(k) is the index of the

neuron that caused the kth spike. Computing this system amounts to the backpropagation of errors in time.
The initial conditions are �V (T) = �I (T) = 0 and we provide �−

V
 in terms of �+

V
 because the computation

happens in reverse time

Free dynamics Transition condition Jump at transition

τmem�
′
V = −�V −

∂ lV

∂V

τsyn�
′
I = −�I + �V

t − t
post
k = 0

for any k

(�−V)n(k) = (�+V)n(k) +
1

τmem(V̇−)n(k)

[

ϑ(�+V)n(k)

+

(

W⊤(�+V − �I)

)

n(k)
+

∂ lp

∂t
post
k

+ l−V − l+V

]

5

Vol.:(0123456789)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

Equation (2) and Table 2 suggest a simple algorithm, EventProp, to compute the gradient (Algorithm 1).
Notably, if the loss is voltage-independent (i.e., lV = 0), the backward pass of the algorithm requires only the
spike times tpost and the synaptic current of the firing neurons at their respective firing times to be retained
from the forward pass. The membrane potential at spike times is fixed to the threshold ϑ and therefore implicitly
retained; the synaptic current therefore determines the temporal derivative of the membrane potential at the
spike time, V̇− , and needs to be stored for the backward pass. The memory requirement of the algorithm scales
as O(S) , where S is the number of post-synaptic spikes in the network. A feed-forward architecture corresponds
to a block matrix W with each block being a strictly triangular matrix that connects two given layers. In that
case, the forward and backward pass can be computed in a layer-wise fashion.

In case of a voltage-dependent loss lV = 0 , the algorithm has to store the non-zero components of ∂ lV
∂V

along the forward trajectory. The loss lV may depend on the voltage at a discrete time ti using the Dirac delta,
lV (V(t), t) = V(t)δ(ti − t) , causing a jump of �V of magnitude τ−1

mem at time ti . Note that in many practical
scenarios as found in deep learning, the loss lV depends only on the state of a constant number of neurons,
irrespective of network size. If lV depends on the voltage of non-firing readout neurons, we have l+V = l−V and
the corresponding term in the jump given in Table 2 vanishes.

If lV is either zero or depends only on voltages at discrete points in time, EventProp can be computed in a
purely event-based manner. Figure 2 illustrates how EventProp computes the gradient of a spike time based loss
function for two leaky integrate-and-fire neurons where one neuron receives Poisson spike trains via 100 synapses
and is connected to the other neuron via a single feed-forward weight w.

Figure 2. Illustration of EventProp-based gradient calculation in two leaky integrate-and-fire neurons
connected with weight w and a spike-time dependent loss L . The forward pass (B, C) computes the spike times
for both neurons and the backward pass (D–G) backpropagates errors at spike times, yielding the gradient as
given in Eq. (2). (A) The upper neuron receives 100 independent Poisson spike trains with frequency 200 Hz
across randomly initialized weights and is connected to the lower neuron via a single weight w. The loss L is a
sum of the spike times of the lower neuron. (B, C) Membrane potential of upper and lower neuron. Spike times
of the upper neuron are indicated using arrows. (D, E) Adjoint variable �I of upper and lower neuron. The lower
neuron backpropagates its error signal �V − �I at the upper neuron’s spike times (indicated by arrows). (F, G)
Accumulated gradient for one of the 100 input weights of the upper neuron and the weight w connecting the
upper and lower neuron. EventProp computes the adjoint variables from t = T to t = 0 and accumulates the
gradients by sampling −τsyn�I when spikes are transmitted across the respective weight. The gradients computed
in this way match the gradients computed via central differences (dashed lines) up to a relative deviation of less
than 10−7

6

Vol:.(1234567890)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

Simulation results. We demonstrate learning using EventProp using a custom event-based simulator and
the Yin-Yang37 and MNIST38 datasets. In both cases, we use a single hidden layer and spike latency encoding
of the input data. The Yin-Yang dataset is classified using the time to first spike of a layer of readout neurons
while the MNIST dataset is classified using the voltage maxima of a layer of non-firing readout neurons. The
simulator computes gradients using EventProp as described in Algorithm 1; specifically, it uses an event queue
and root-bracketing to compute post-synaptic spike times in the forward pass (using exact integration of the
membrane potential39) and backpropagates errors by attaching error signals to spikes in the backward pass and
using reverse traversal of the event queue. We optimized synaptic weights using the calculated gradients via the
Adam optimizer40, without clipping gradients.

By initializing synaptic weights such that the network started in a non-quiescent state, we found that no
explicit regularization of firing rates was needed to obtain the reported results in both cases. Hyperparameters
were optimized using Gaussian process optimization41 and manual tuning using the validation set of the respec-
tive dataset. The resulting parameters (see Table 3) were then evaluated using the test set.

Table 3. Simulation parameters used for the results described in the main text

Symbol Description Value (Yin-Yang dataset) Value (MNIST dataset)

τmem Membrane time constant 20 ms 20 ms

τsyn Synaptic time constant 5 ms 5 ms

ϑ Threshold 1 1

Input size 5 784

Hidden size 200 350

Output size 3 10

tbias Bias time 0 ms n/a

tmax Maximum time 30 ms 20 ms

Hidden weights mean 1.5 0.078

Hidden weights standard deviation 0.78 0.045

Output weights mean 0.93 0.2

Output weights standard deviation 0.1 0.37

Minibatch size 32 5

Optimizer Adam Adam

β1 Adam parameter 0.9 0.9

β2 Adam parameter 0.999 0.999

ǫ Adam parameter 1× 10−8 1× 10−8

η Learning rate 5× 10−3 5× 10−3

Learning rate decay factor 0.95 0.95

Learning rate decay step 1 epoch 1 epoch

pdrop Prob. of dropping input spike n/a 0.2

α Regularization factor 3× 10−3 n/a

τ0 First loss time constant 0.5 ms n/a

τ1 Second loss time constant 6.4 ms n/a

7

Vol.:(0123456789)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

Yin‑Yang dataset. The Yin-Yang dataset37 is a two-dimensional non-linearly separable dataset, with a shallow
classifier achieving around 64% accuracy, and it therefore requires a hidden layer and backpropagation of errors
for high classification accuracy. Consider that in contrast, the MNIST dataset can be classified using a linear
classifier with at least 88% accuracy38.

Each two-dimensional data point of the dataset (x, y) was transformed into four dimensions as
(x, 1− x, y, 1− y) and encoded using spike latencies in the interval [0, tmax] (see Fig. 3D). We added a fixed bias
spike at time tbias for a total of five input spikes per data point. The resulting spike patterns were used as input to
a two-layer network composed of leaky integrate-and-fire neurons. The output layer consisted of three neurons
that each encoded one of the three classes, with each data point being assigned the class of the neuron that fired
the earliest spike.

In analogy to27, we used a cross-entropy loss defined using the first output spike times per neuron,

where tposti,k is the first spike time of neuron k for the ith sample, l(i) is the index of the correct label for the ith
sample, Nbatch is the number of samples in a given batch and τ0 and τ1 are hyperparameters of the loss function.
The first term corresponds to a cross-entropy loss function over the softmax function applied to the negative
spike times (we use negative spike times as the class assignment is determined by the smallest spike time) and
encourages an increase of the spike time difference between the label neuron and all other neurons. As the first
term depends only on the relative spike times, the second term is a regularization term that encourages early
spiking of the label neuron.

Training results are shown in Fig. 3. After training, the test accuracy was 98.1(2)% (mean and standard devia-
tion over 10 different random seeds). This is comparable to the results shown in27, who report 95.9(7)% accuracy
with a smaller hidden layer (200 vs. 120 neurons).

MNIST dataset. We encoded each digit of the MNIST dataset38 by transforming each of the 28 · 28 = 784
pixels into spike latencies in the interval [0, tmax] (pixels corresponding to a value of 0 or 1 out of 255 were not
converted to spikes). The resulting spike patterns were used as input to a two-layer network composed of a hid-

(3)L = −
1

Nbatch

Nbatch
�

i=1

log

exp
�

−t
post
i,l(i)/τ0

�

�3
k=1 exp

�

−t
post
i,k /τ0

�

+ α

�

exp

�

t
post
i,l(i)

τ1

�

− 1

�

,

Figure 3. We used EventProp and a time-to-first-spike loss function to train a two-layer leaky integrate-
and-fire network on the Yin-Yang dataset. (A) Illustration of the two-dimensional training dataset. The three
different classes are shown in red, green and blue. This dataset was encoded using spike time latencies (see
D). (B, C) Training results in terms of test error and loss averaged over 10 different random seeds (individual
traces shown as grey lines). (D) Data points (x, y) were transformed into (x, 1− x, y, 1− y) and encoded using
spike time latencies. We added a fixed spike at time tbias . (E) Spike time latencies �t of the three output neurons
(encoding the blue, red or green class) after training, for all samples in the test set and a specific random
seed. Latencies are relative to the first spike among the three neurons and given in units of tmax . A latency of
zero (bright yellow dots) implies that the corresponding neuron fired the first spike, determining the class
assignment. Missing spikes are denoted using green crosses

8

Vol:.(1234567890)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

den layer of leaky integrate-and-fire neurons and a readout layer of non-firing leaky integrator neurons. We used
a cross-entropy loss function over the softmax function applied to the voltage maxima of the readout neurons
(max-over-time),

where Vk(t) is the voltage trace of the kth readout neuron, l(i) is the index of the correct label for the ith
sample and Nbatch is the number of samples in a given batch. Note that we can write the maximum voltage as
maxt Vk(t) =

∫

Vk(t)δ(t − tmax)dt with the time of the maximum tmax and the Dirac delta δ , allowing us to
apply the chain rule to find the jump of �Vk

 (cf. Table 2) at time tmax (terms containing the distributional deriva-
tive of δ are always zero).

During training, input spikes were dropped with probability pdrop in order to avoid overfitting. To obtain a
validation set, we extracted and removed 5000 samples from the training set.

Training results are shown in Fig. 4. After training, the test accuracy was 97.6(1)% (mean and standard devia-
tion over 10 different random seeds). This represents competitive classification performance when compared
with previously published results using spiking networks with a single, fully connected hidden layer (Table 4).

Discussion
We have derived and provided an algorithm (EventProp) to compute the gradient of a general loss function
for a spiking neural network composed of leaky integrate-and-fire neurons. The parameter-dependent spike
discontinuities were treated in a well-defined manner using the adjoint method in combination with partial
derivative jumps, without approximations or smoothing operations. EventProp uses the resulting adjoint spik-
ing network to backpropagate errors in order to compute the exact gradient. Its forward pass requires comput-
ing the spike times of pre-synaptic neurons that transmit spikes to post-synaptic neurons, while the backward
pass backpropagates errors at these spike times using the reverse path (i.e., from post-synaptic to pre-synaptic
neurons). The rigorous treatment of spike discontinuities in combination with an event-based computation of
the exact gradient represent a significant conceptual advance in the study of gradient-based learning methods
for spiking neural networks.

An apparent issue with gradient descent based learning in the context of spiking networks is that the magni-
tude of the gradient diverges at the critical points in parameter space (note the v̇−1 term in the jump term given
in Table 2; this term diverges as the membrane potential becomes tangent to the threshold and we have v̇ → 0).
Indeed, this is a known issue in the broader context of optimal control of dynamical systems with parameter-
dependent state transitions4,8. While this divergence can be mitigated using gradient clipping in practice, exact

(4)L = −
1

Nbatch

Nbatch
∑

i=1

log

[

exp
(

maxt Vl(i)(t)
)

∑10
k=1 exp (maxt Vk(t))

]

,

Figure 4. We used EventProp and a two-layer network composed of a hidden layer of leaky integrate-and-fire
neurons and a readout layer of non-firing neurons to classify the MNIST dataset, with the readout neuron with
the largest voltage deflection determining the class assignment. (A, B) Training results in terms of test error
and loss averaged over 10 different random seeds (individual traces shown as grey lines). (C) Confusion matrix
after training for a specific random seed and using the test set. (D) Voltage traces of all readout layer neurons
for three different samples from the test set, where voltage traces of neurons corresponding to wrong labels are
plotted using dashed lines

9

Vol.:(0123456789)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

gradients of commonly considered loss functions lead to learning dynamics that are ignorant with respect to
these critical points and are therefore unable to selectively recruit additional spikes or dismiss existing spikes.
In contrast, surrogate gradient methods continuously transmit errors across neurons and combine these with
a non-linear function of the distance of the membrane potential to the threshold. It is therefore plausible that
surrogate gradients represent a form of implicit regularization. Neftci et al.3 reports that the surrogate gradient
approximates the true gradient in a minimalistic binary classification task while at the same time remaining finite
and continuous along an interpolation path in weight space. Hybrid algorithms that combine the exact gradient
with explicit regularization techniques could be a direction for future research and provide more principled
learning algorithms as compared to ad-hoc replacements of threshold functions.

This work is based on the widely used leaky integrate-and-fire neuron model. Extensions to this model, such
as fixed refractory periods, adaptive thresholds or multiple compartments can be treated in an analogous way46.
While the absence of explicit solutions to the resulting differential equations can require the use of sophisticated
numerical techniques for event-based simulations, such extensions can significantly enhance the computational
capabilities of spiking networks. For example17, uses adaptive thresholds to implement LSTM-like memory cells
in a recurrent spiking neural network.

Neuromorphic hardware is an increasingly active research subject47–57 and implementing EventProp on such
hardware is a natural consideration. The adjoint dynamics as given in Table 2 represent a type of spiking neural
network which, instead of spiking dynamically, transmits errors at fixed times tpost that are scaled with factors
v̇−1 retained from the forward pass. Therefore, a neuromorphic implementation could store spike times and
scaling factors locally at each neuron, where they could be combined with the dynamic error signal (�V − �I in
Table 2) in the backward pass. This requires a possibility to read out neuronal state variables both in the forward
and backward pass (membrane potential and synaptic current). The resulting error signals could be distributed
across the network using event-based communication schemes similar to, for example, the address-event rep-
resentation protocol58. As mentioned above, EventProp can be extended to multi-compartment neuron models
as used in a recent neuromorphic architecture59.

We used a two-layer feed-forward architecture to demonstrate learning using EventProp. The algorithm can,
however, compute the gradient for arbitrary recurrent or convolutional architectures. Its computational and spa-
tial complexity scales linearly with network size (assuming constant average firing rates per neuron), analogous
to backpropagation in non-spiking artificial neural networks. The performance in more complex tasks therefore
hinges on the general efficacy of gradient-based optimization in spiking networks. As mentioned above, gradients
with respect to loss functions defined in terms of spike times or membrane potentials ignores the presence of
critical parameters where spikes appear or disappear. We suggest that studying regularization techniques which
deal with this fundamental issue in a targeted manner could enable powerful learning algorithms for spiking
networks. By providing a theoretical foundation for backpropagation in spiking networks, we support future
research that combines such regularization techniques with the computation of exact gradients.

Methods
Partial derivatives in a hybrid system. In the following, we use the example of a bouncing ball (Fig. 1A)
to illustrate the calculation of partial derivatives in a dynamical system with state discontinuities. A general
treatment of the topic is given in other literature8,60. The discontinuities occurring in the leaky integrate-and-fire
neuron are treated analogously in our derivation of the gradient (see corresponding methods subsection).

The differential equation describing the bouncing ball with height y is

with gravitational acceleration g. Defining the ball’s velocity as v ≡ ẏ , this is equivalent to a two-dimensional
system

(5)ÿ = −g

(6a)v̇ = −g ,

Table 4. Comparison of previously published classification results on the MNIST dataset for spiking neural
networks that are trained using supervised learning with a single, fully connected (non-convolutional) hidden
layer and temporal encoding of input data. The second column provides the number of hidden neurons

Publication # Hidden Test accuracy Comments

This Work 350 97.6(1)%

Cramer et al.42 246 97.5(1)% Downsampled to 16 by 16 pixels

Zenke and Vogels43 512 98.3(9)% Including recurrent connections

Kheradpisheh and Masquelier30 400 97.4(2)%

Comsa et al.28 340 97.9% (Max.) Bias spikes at learned times

Göltz et al.27 350 97.5(1)%

Mostafa29 800 97.55%

Neftci et al.44 500 97.77% (Max.)

Lee et al.45 800 98.71% (Max.)

10

Vol:.(1234567890)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

 The initial conditions are

 where y0 > 0 is the parameter of interest defining the ball’s initial height. The given equations determine the
state trajectory y(t) up to the moment of impact with the ground at y = 0 . Likewise, the trajectories of the partial
derivatives with respect to y0 are given by differentiation of Eqs. (6) and (7)61,

 with initial conditions

 The state discontinuity occurs when the ball hits the ground and we have

at the time of impact tr . The ball is inelastically reflected, losing a fraction of its energy. Specifically, the system
is re-initialized as

 where − and + denote the state before and after the transition (v± , y± are functions of tr and y0). Equations (10)
and (11) together uniquely determine the partial derivatives after the reflection. The implicit function theorem62
applied to Eq. (10) guarantees (because v = 0) the existence of a function tr(y0) that locally describes how the
impact time changes with y0 , with its derivative given by

 Likewise, the implicit function theorem applies to Eq. (11) (because v = 0 , v̇ �= 0), yielding after
differentiation

The partial derivatives after the transition can now be found by solving the system of equations given by Eqs.
(11) and (12) and (13),

 where we have used ÿ = −g . Equation (14) provides the initial conditions for the integration of the partial
derivatives after the transition; subsequent ground impacts can be treated equivalently. Figure 1A illustrates the
behaviour of y(t) and ∂y

∂y0
(t) using trajectories calculated numerically using the equations given here.

(6b)ẏ = v.

(7a)v(0) = 0,

(7b)y(0) = y0

(8a)
d

dt

∂v

∂y0
= 0,

(8b)
d

dt

∂y

∂y0
=

∂v

∂y0
,

(9a)
∂v

∂y0
(0) = 0,

(9b)
∂y

∂y0
(0) = 1.

(10)y− = 0

(11a)v+ = −0.8v−,

(11b)y+ = y−,

(12)
dtr

dy0
= −

1

ẏ−
∂y−

∂y0
= −

1

v−
∂y−

∂y0
.

(13a)
∂v+

∂y0
+ v̇+

dtr

dy0
=

∂v−

∂y0
+ v̇−

dtr

dy0
,

(13b)
∂y+

∂y0
+ ẏ+

dtr

dy0
=

∂y−

∂y0
+ ẏ−

dtr

dy0
.

(14a)
∂v+

∂y0
= −0.8

∂v−

∂y0
− 1.8g

1

v−
∂y−

∂y0
,

(14b)
∂y+

∂y0
= −0.8

∂y−

∂y0
,

11

Vol.:(0123456789)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

Adjoint method. We apply the adjoint method to a continuous, first order system of ordinary differential
equations and refer the reader to63,64 for a more general setting. Consider an N-dimensional dynamical system
x : t �→ x(t) ∈ R

N with parameters p ∈ R
P defined by the system of implicit first order ordinary differential

equations

and constant initial conditions G(x(0)) = 0 where F, G are smooth vector-valued functions.
We are interested in computing the gradient of a loss that is the integral of a smooth function l over the

trajectory of x,

We have

where · is the dot product and the dynamics of the partial derivatives ∂x
∂pi

 are given by applying Gronwall’s
 theorem61,

Computing x(t) along with ∂x
∂pi

(t) using Eqs. (15) and (18) allows us to calculate the gradient in Eq. (17) in a single
forward pass. However, this procedure can incur prohibitive computational cost. When considering a recurrent
neural network with N neurons and P = N2 synaptic weights, computing ∂x

∂pi
(t) for all parameters requires stor-

ing and integrating PN = N3 partial derivatives.
The adjoint method allows us to avoid computing PN partial derivatives in the forward pass by instead com-

puting N adjoint variables �(t) in an additional backward pass. We add a Lagrange multiplier � : t �→ �(t) ∈ R
N

that constrains the system dynamics as given in Eq. (15),

Along trajectories where Eq. (15) holds, � can be chosen arbitrarily without changing L or its derivative. We
get

Using partial integration, we have

By setting �(T) = 0 , the boundary term vanishes because we chose parameter independent initial conditions
(∂x
∂pi

(0) = 0). The gradient becomes

By choosing � to fulfill the adjoint differential equation

we are left with

The gradient can therefore be computed using Eq. (24), where the adjoint state variable � is computed from
t = T to t = 0 as the solution of the adjoint differential equation Eq. (23) with initial condition �(T) = 0 . This
corresponds to backpropagation through time (BPTT) in discrete time artificial neural networks.

Derivation of gradient. We apply the adjoint method (see previous methods subsection) to the case of a
spiking neural network (i.e., a hybrid, discontinuous system with parameter dependent state transitions). The
following derivation is specific to the model given in Table 1. A fully general treatment of (adjoint) sensitivity
analysis in hybrid systems can be found in8 or10.

(15)ẋ − F(x, p) = 0

(16)L =

∫ T

0
l(x, t)dt.

(17)
dL

dpi
=

∫ T

0

∂ l

∂x
·
∂x

∂pi
dt,

(18)
d

dt

∂x

∂pi
=

∂F

∂x

∂x

∂pi
+

∂F

∂pi
.

(19)L =

∫ T

0

[

l(x, t)+ � ·
(

ẋ − F(x, p)
)]

dt.

(20)
dL

dpi
=

∫ T

0

[

∂ l

∂x
·
∂x

∂pi
+ � ·

(

d

dt

∂x

∂pi
−

∂F

∂x

∂x

∂pi
−

∂F

∂pi

)]

dt.

(21)
∫ T

0
� ·

d

dt

∂x

∂pi
dt = −

∫ T

0
�̇ ·

∂x

∂pi
dt +

[

� ·
∂x

∂pi

]T

0

.

(22)
dL

dpi
=

∫ T

0

[(

∂ l

∂x
− �̇−

∂F

∂x
�

)

·
∂x

∂pi
− � ·

∂F

∂pi

]

dt.

(23)�̇ =
∂ l

∂x
−

∂F

∂x
�

(24)
dL

dpi
= −

∫ T

0
� ·

∂F

∂pi
dt.

12

Vol:.(1234567890)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

The differential equations defining the free dynamics in implicit form are

 where fV , fI are again vectors of size N. We now split up the loss integral in Eq. (1) at the spike times tpost and
use vectors of Lagrange multipliers �V , �I that fix the system dynamics fV , fI between transitions.

where we set tpost0 = 0 and tpostNpost+1 = T and x · y is the dot product of two vectors x, y. Note that because fV , fI
vanish along all considered trajectories, �V and �I can be chosen arbitrarily without changing L or its derivative.
Using Eq. (25) we have, as per Gronwall’s theorem61,

 where we have used the fact that the derivatives commute, ∂
∂wji

d
dt =

d
dt

∂
∂wji

 (the weights are fixed and have no
time dependence). The gradient then becomes, by application of the Leibniz integral rule,

where l±V ,k is the voltage-dependent loss evaluated before (−) or after (+) the transition and we have used that
fV = fI = 0 along all considered trajectories. Using partial integration, we have

Collecting terms in ∂V
∂wji

 , ∂I
∂wji

 , we have

Since the Lagrange multipliers �V (t) , �I (t) can be chosen arbitrarily, this form allows us to set the dynamics of
the adjoint variables between transitions. Since the integration of the adjoint variables is done from t = T to
t = 0 in practice (i.e., reverse in time), it is practical to transform the time derivative as ddt → −

d
dt . Denoting

the new time derivative by ′ , we have

 The integrand in Eq. (31) therefore vanishes along the trajectory and we are left with a sum over the transitions.
Since the initial conditions of V and I are assumed to be parameter independent, we have ∂V

∂wji
=

∂I
∂wji

= 0 at
t = 0 . We set the initial condition for the adjoint variables to be �V (T) = �I (T) = 0 to eliminate the boundary
term for t = T . We are therefore left with a sum over transitions ξk evaluated at the transition times tpostk ,

(25a)fV ≡ τmemV̇ + V − I = 0,

(25b)fI ≡ τsyn İ + I = 0,

(26)
dL

dwji
=

d

dwji

lp(t
post)+

Npost
�

k=0

� t
post
k+1

t
post
k

�

lV (V , t)+ �V · fV + �I · fI
�

dt

,

(27a)
∂fV

∂wji
= τmem

d

dt

∂V

∂wji
+

∂V

∂wji
−

∂I

∂wji
,

(27b)
∂fI

∂wji
= τsyn

d

dt

∂I

∂wji
+

∂I

∂wji
,

(28)

dL

dwji
=

Npost
∑

k=0

[
∫ t

post
k+1

t
post
k

[

∂ lV

∂V
·
∂V

∂wji
+ �V ·

(

τmem
d

dt

∂V

∂wji
+

∂V

∂wji
−

∂I

∂wji

)

+ �I ·

(

τsyn
d

dt

∂I

∂wji
+

∂I

∂wji

)]

dt

+
∂ lp

∂t
post
k

dt
post
k

dwji
+ l−V ,k+1

dt
post
k+1

dwji
− l+V ,k

dt
post
k

dwji

]

,

(29)
∫ t

post
k+1

t
post
k

�V ·
d

dt

∂V

∂wji
dt = −

∫ t
post
k+1

t
post
k

�̇V ·
∂V

∂wji
dt +

[

�V ·
∂V

∂wji

]t
post
k+1

t
post
k

,

(30)
∫ t

post
k+1

t
post
k

�I ·
d

dt

∂I

∂wji
dt = −

∫ t
post
k+1

t
post
k

�̇I ·
∂I

∂wji
dt +

[

�I ·
∂I

∂wji

]t
post
k+1

t
post
k

.

(31)

dL

dwji
=

Npost
∑

k=0

[
∫ t

post
k+1

t
post
k

[(

∂ lV

∂V
− τmem�̇V + �V

)

·
∂V

∂wji
+

(

−τsyn�̇I + �I − �V

)

·
∂I

∂wji

]

dt

+
∂ lp

∂t
post
k

dt
post
k

dwji
+ τmem

[

�V ·
∂V

∂wji

]t
post
k+1

t
post
k

+ τsyn
[

�I ·
∂I

∂wji

]t
post
k+1

t
post
k

+ l−V ,k+1

dt
post
k+1

dwji
− l+V ,k

dt
post
k

dwji

]

.

(32a)τmem�
′
V = −�V −

∂ lV

∂V
,

(32b)τsyn�
′
I = −�I + �V .

13

Vol.:(0123456789)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

with the definition

We proceed by deriving the relationship between the adjoint variables before and after each transition. Since
the computation of the adjoint variables happens in reverse time in practice, we provide �− in terms of �+.

Consider a spike caused by the nth neuron, with all other neurons m = n remaining silent. We start by first
deriving the relationships between ∂V

+

∂wji
 , ∂V

−

∂wji
 and ∂I

+

∂wji
 , ∂I

−

∂wji
.

Membrane potential transition. By considering the relations between V+ , V− and V̇+ , V̇− , we can derive the
relation between ∂V

+

∂wji
 and ∂V

−

∂wji
 at each spike. Each spike at tpost is triggered by a neuron’s membrane potential

crossing the threshold. We therefore have, at tpost,

This relation defines tpost as a differentiable function of wji via the implicit function theorem (illustrated in
Fig. 5, see also65), under the condition that (V̇−)n �= 0 . Differentiation of this relation yields

Since we only allow transitions for (V̇−)n �= 0 , we have

Note that corresponding relations were previously used to derive gradient-based learning rules for spiking
neuron models20–22,26,66; in contrast to the suggestion in20, Eq. (37) is not an approximation but rather an exact
relation at all non-critical parameters and invalid at all critical parameters.

Because the spiking neuron’s membrane potential is reset to zero, we have

This implies by differentiation

(33)
dL

dwji
=

Npost
∑

k=1

ξk

(34)

ξk ≡
∂ lp

∂t
post
k

dt
post
k

dwji
+ l−V ,k

dt
post
k

dwji
− l+V ,k

dt
post
k

dwji

+

[

τmem

(

�
−
V ·

∂V−

∂wji
− �

+
V ·

∂V+

∂wji

)

+ τsyn

(

�
−
I ·

∂I−

∂wji
− �

+
I ·

∂I+

∂wji

)]∣

∣

∣

∣

t
post
k

.

(35)(V−)n − ϑ = 0.

(36)
(

∂V−

∂wji

)

n

+ (V̇−)n
dtpost

dwji
= 0.

(37)
dtpost

dwji
= −

1

(V̇−)n

(

∂V−

∂wji

)

n

.

(38)(V+)n = 0.

(39)
(

∂V+

∂wji

)

n

+ (V̇+)n
dtpost

dwji
= 0.

Figure 5. In this sketch, the relation v(t,w)− ϑ = 0 defines an implicit function (black line along which
dv = 0). The critical point where the gradient diverges is shown in red

14

Vol:.(1234567890)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

Using Eq. (37), this allows us to relate the partial derivative after the spike to the partial derivative before
the spike,

Since we have (V+)m = (V−)m for all other, non-spiking neurons m = n , it holds that

Because the spiking neuron n causes the synaptic current of all neurons m = n to jump by wmn , we have

and therefore get with Eq. (36)

Synaptic current transition. The spiking neuron n causes the synaptic current of all neurons m = n to jump by
the corresponding weight wmn . We therefore have

By differentiation, this relation implies the consistency equations for the partial derivatives ∂I
∂wji

 with respect to
the considered weight wji,

where δji is the Kronecker delta. Because

we get with Eq. (36)

With (I+)n = (I−)n and (İ+)n = (İ−)n , we have

Using the relations of the partial derivatives from Eqs. (37), (40), (44), (49) and (50) in the transition equation
Eq. (34), we now derive relations between the adjoint variables. Collecting terms in the partial derivatives and
writing the index of the spiking neuron for the kth spike as n(k), we have

(40)
(

∂V+

∂wji

)

n

=
(V̇+)n

(V̇−)n

(

∂V−

∂wji

)

n

.

(41)
(

∂V+

∂wji

)

m

+ (V̇+)m
dtpost

dwji
=

(

∂V−

∂wji

)

m

+ (V̇−)m
dtpost

dwji
.

(42)τmem(V̇
+)m = τmem(V̇

−)m + wmn

(43)
(

∂V+

∂wji

)

m

=

(

∂V−

∂wji

)

m

− τ−1
memwmn

dtpost

dwji

(44)=

(

∂V−

∂wji

)

m

+
1

τmem(V̇−)n
wmn

(

∂V−

∂wji

)

n

.

(45)(I+)m = (I−)m + wmn.

(46)
(

∂I+

∂wji

)

m

+ (İ+)m
dtpost

dwji
=

(

∂I−

∂wji

)

m

+ (İ−)m
dtpost

dwji
+ δinδjm,

(47)τsyn(İ
+)m = τsyn(İ

−)m − wmn,

(48)
(

∂I+

∂wji

)

m

=

(

∂I−

∂wji

)

m

+ τ−1
synwmn

dtpost

dwji
+ δinδjm

(49)=

(

∂I−

∂wji

)

m

−
1

τsyn(V̇−)n
wmn

(

∂V−

∂wji

)

n

+ δinδjm.

(50)
(

∂I+

∂wji

)

n

=

(

∂I−

∂wji

)

n

.

(51)

ξk =

�

�

m �=n(k)

�

τmem(�
−
V − �

+
V)m

�

∂V−

∂wji

�

m

+ τsyn(�
−
I − �

+
I)m

�

∂I−

∂wji

�

m

− τsynδin(k)δjm(�
+
I)m

�

+

�

∂V−

∂wji

�

n(k)

�

τmem

�

�
−
V −

(V̇+)n(k)

(V̇−)n(k)
�
+
V

�

n(k)

+
1

(V̇−)n(k)

�

m �=n(k)

wn(k)m(�
+
I − �

+
V)m −

∂ lp

∂t
post
k

+ l+V − l−V

+ τsyn(�
−
I − �

+
I)

�

∂I−

∂wji

�

n(k)

�
�

�

�

�

t
post
k

.

15

Vol.:(0123456789)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

This form dictates the jumps of the adjoint variables for the spiking neuron n and all other, silent neurons m,

 With these jumps, the gradient reduces to

Summary. The free adjoint dynamics between spikes are given by Eq. (32) while spikes cause jumps given
by Eq. (52). The gradient for a given weight samples the post-synaptic neuron’s �I when spikes are transmitted
across the corresponding synapse [Eq. (53)]. Since we can identify, with (V̇+)n − (V̇−)n = τ−1

memϑ,

the derived solution is equivalent to Eq. (2) and Table 2.

Fixed Input Spikes. If a given neuron i is subjected to a fixed pre-synaptic spike train across a synapse with
weight winput , the transition times are fixed and the adjoint variables do not experience jumps. The gradient
simply samples the neuron’s �I at the times of spike arrival,

Coincident spikes. The derivation above assumes that only a single neuron of the recurrent network spikes at
a given tpostk . In general, coincident spikes may occur. If neurons a and b spike at the same time and the times of
their respective threshold crossing vary independently as function of wji , the derivation above still holds, with
both neuron’s �V experiencing a jump as in Eq. (52a).

Code availability
Code to reproduce the shown results will be made available at https:// github. com/ event prop.

Received: 13 November 2020; Accepted: 28 May 2021

References
 1. Maass, W. Networks of spiking neurons: the third generation of neural network models. Neural Netw. 10, 1659–1671. https:// doi.

org/ 10. 1016/ S0893- 6080(97) 00011-7 (1997).
 2. Roy, K., Jaiswal, A. & Panda, P. Towards spike-based machine intelligence with neuromorphic computing. Nature 575, 607–617.

https:// doi. org/ 10. 1038/ s41586- 019- 1677-2 (2019).
 3. Neftci, E. O., Mostafa, H. & Zenke, F. Surrogate gradient learning in spiking neural networks: Bringing the power of gradient-based

optimization to spiking neural networks. IEEE Signal Process. Mag. 36, 51–63 (2019).
 4. Barton, P. I. & Lee, C. K. Modeling, simulation, sensitivity analysis, and optimization of hybrid systems. ACM Trans. Model. Comput.

Simul. 12, 256–289. https:// doi. org/ 10. 1145/ 643120. 643122 (2002).
 5. Rozenwasser, E. & Yusupov, R. Sensitivity of Automatic Control Systems. Control Series (CRC Press, 2019).
 6. De Backer, W. Jump conditions for sensitivity coefficients. IFAC Proceedings Volumes1, 168–175. https:// doi. org/ 10. 1016/ S1474-

6670(17) 69603-4 (1964) International Symposium on Sensitivity Methods in Control Theory, Dubrovnik, Yugoslavia, August
31-September 5 (1964).

 7. Rozenvasser, E. General sensitivity equations of discontinuous systems. Automatika i telemekhanika 3, 52–56 (1967).
 8. Galán, S., Feehery, W. F. & Barton, P. I. Parametric sensitivity functions for hybrid discrete/continuous systems. Appl. Numer. Math.

31, 17–47. https:// doi. org/ 10. 1016/ S0168- 9274(98) 00125-1 (1999).
 9. LeCun, Y., Touresky, D., Hinton, G. & Sejnowski, T. A theoretical framework for back-propagation. In Proceedings of the 1988

Connectionist Models Summer School, vol. 1, 21–28 (1988).
 10. Serban, R. & Recuero, A. Sensitivity analysis for hybrid systems and systems with memory. J. Comput. Nonlinear Dyn.https:// doi.

org/ 10. 1115/1. 40440 28 (2019).
 11. Pleiss, G. et al. Memory-efficient implementation of densenets. arXiv: 1707.06990 (2017).

(52a)(�−V)n =
(V̇+)n

(V̇−)n
(�+V)n +

1

τmem(V̇−)n

�

m �=n

wmn(�
+
V − �

+
I)m +

∂ lp

∂t
post
k

+ l−V − l+V

,

(52b)(�−V)m = (�+V)m,

(52c)�
−
I = �

+
I .

(53)
dL

dwji
= −τsyn

Npost
∑

k=1

δin(k)(�I)j

(54)= −τsyn
∑

spikes from i

(�I)j .

(55)
(V̇+)n

(V̇−)n
=

(V̇+)n − (V̇−)n

(V̇−)n
+ 1 =

ϑ

τmem(V̇−)n
+ 1

(56)
dL

dwinput
= −τsyn

∑

input spikes

(�I)i .

https://github.com/eventprop
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1145/643120.643122
https://doi.org/10.1016/S1474-6670(17)69603-4
https://doi.org/10.1016/S1474-6670(17)69603-4
https://doi.org/10.1016/S0168-9274(98)00125-1
https://doi.org/10.1115/1.4044028
https://doi.org/10.1115/1.4044028

16

Vol:.(1234567890)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

 12. Kumar, R., Purohit, M., Svitkina, Z., Vee, E. & Wang, J. Efficient rematerialization for deep networks. In Advances in Neural Infor‑
mation Processing Systems Vol. 32 (eds Wallach, H. et al.) (Curran Associates Inc, 2019).

 13. Ojika, D. et al. Addressing the memory bottleneck in AI model training. arXiv:2003.08732 (2020).
 14. Pfeiffer, M. & Pfeil, T. Deep learning with spiking neurons: opportunities and challenges. Front. Neurosci. 12, 774. https:// doi. org/

10. 3389/ fnins. 2018. 00774 (2018).
 15. Tavanaei, A., Ghodrati, M., Kheradpisheh, S. R., Masquelier, T. & Maida, A. Deep learning in spiking neural networks. Neural

Netw. 111, 47–63. https:// doi. org/ 10. 1016/j. neunet. 2018. 12. 002 (2019).
 16. Esser, S. K. et al. Convolutional networks for fast, energy-efficient neuromorphic computing. Proc. Natl. Acad. Sci. 113, 11441–

11446. https:// doi. org/ 10. 1073/ pnas. 16048 50113 (2016).
 17. Bellec, G., Salaj, D., Subramoney, A., Legenstein, R. & Maass, W. Long short-term memory and learning-to-learn in networks of

spiking neurons. In Advances in Neural Information Processing Systems 787–797 (2018).
 18. Zenke, F. & Ganguli, S. Superspike: supervised learning in multilayer spiking neural networks. Neural Comput. 30, 1514–1541

(2018).
 19. Shrestha, S. B. & Orchard, G. Slayer: Spike layer error reassignment in time. In Advances in Neural Information Processing Systems

1412–1421 (2018).
 20. Bohte, S. M., Kok, J. N. & La Poutré, J. A. Spikeprop: backpropagation for networks of spiking neurons. ESANN 48, 17–37 (2000).
 21. Booij, O. & TatNguyen, H. A gradient descent rule for spiking neurons emitting multiple spikes. Inf. Process. Lett. 95, 552–558.

https:// doi. org/ 10. 1016/j. ipl. 2005. 05. 023 (2005).
 22. Xu, Y., Zeng, X., Han, L. & Yang, J. A supervised multi-spike learning algorithm based on gradient descent for spiking neural

networks. Neural Netw. 43, 99–113. https:// doi. org/ 10. 1016/j. neunet. 2013. 02. 003 (2013).
 23. Kuroe, Y. & Ueyama, T. Learning methods of recurrent spiking neural networks based on adjoint equations approach. In The 2010

International Joint Conference on Neural Networks (IJCNN), 1–8. https:// doi. org/ 10. 1109/ IJCNN. 2010. 55969 14 (2010).
 24. Kuroe, Y. & Iima, H. A learning method for synthesizing spiking neural oscillators. In The 2006 IEEE International Joint Conference

on Neural Network Proceedings, 3882–3886. https:// doi. org/ 10. 1109/ IJCNN. 2006. 246885 (2006).
 25. Selvaratnam, K., Kuroe, Y. & Mori, T. Learning methods of recurrent spiking neural networks. Trans. Inst. Syst. Control Inf. Eng.

13, 95–104. https:// doi. org/ 10. 5687/ iscie. 13.3_ 95 (2000).
 26. Florian, R. V. The chronotron: a neuron that learns to fire temporally precise spike patterns. PLoS ONE 7, 1–27. https:// doi. org/

10. 1371/ journ al. pone. 00402 33 (2012).
 27. Göltz, J. et al. Fast and deep: energy-efficient neuromorphic learning with first-spike times (2019).
 28. Comsa, I. M. et al. Temporal coding in spiking neural networks with alpha synaptic function. In ICASSP 2020 ‑ 2020 IEEE Inter‑

national Conference on Acoustics, Speech and Signal Processing (ICASSP), 8529–8533 (2020).
 29. Mostafa, H. Supervised learning based on temporal coding in spiking neural networks. IEEE Trans. Neural Netw. Learn. Syst.https://

doi. org/ 10. 1109/ tnnls. 2017. 27260 60 (2017).
 30. Kheradpisheh, S. R. & Masquelier, T. Temporal backpropagation for spiking neural networks with one spike per neuron. Int. J.

Neural Syst. 30, 2050027. https:// doi. org/ 10. 1142/ S0129 06572 05002 76 (2020).
 31. Gütig, R. & Sompolinsky, H. The tempotron: a neuron that learns spike timing-based decisions. Nat. Neurosci. 9, 420–428. https://

doi. org/ 10. 1016/ S0893- 6080(97) 00011-72 (2006).
 32. Gütig, R. Spiking neurons can discover predictive features by aggregate-label learning. Science 351, 115. https:// doi. org/ 10. 1126/

scien ce. aab41 13 (2016).
 33. Chen, T. Q., Rubanova, Y., Bettencourt, J. & Duvenaud, D. K. Neural ordinary differential equations. In Advances in Neural Infor‑

mation Processing Systems6571–6583 (2018).
 34. Jia, J. & Benson, A. R. Neural jump stochastic differential equations. In Advances in Neural Information Processing Systems 9843–

9854 (2019).
 35. Huh, D. & Sejnowski, T. J. Gradient descent for spiking neural networks. In Advances in Neural Information Processing Systems

Vol. 31 (eds Bengio, S. et al.) 1433–1443 (Curran Associates Inc, 2018).
 36. Gerstner, W. & Kistler, W. Spiking Neuron Models: Single Neurons, Populations (Single Neurons, Populations, Plasticity (Cambridge

University Press, Plasticity. Spiking Neuron Models, 2002).
 37. Kriener, L. Yin-yang dataset. https:// doi. org/ 10. 1016/ S0893- 6080(97) 00011-74 (2020).
 38. Lecun, Y., Bottou, L., Bengio, Y. & Haffner, P. Gradient-based learning applied to document recognition. Proc. IEEE 86, 2278–2324

(1998).
 39. Rotter, S. & Diesmann, M. Exact digital simulation of time-invariant linear systems with applications to neuronal modeling. Biol.

Cybern. 81, 381–402. https:// doi. org/ 10. 1016/ S0893- 6080(97) 00011-75 (1999).
 40. Kingma, D. P. & Ba, J. Adam: a method for stochastic optimization (2014).
 41. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).
 42. Cramer, B. et al. Surrogate gradients for analog neuromorphic computing (2021). arXiv: 2006. 07239.
 43. Zenke, F. & Vogels, T. P. The remarkable robustness of surrogate gradient learning for instilling complex function in spiking neural

networks. Neural Comput. 33, 899–925. https:// doi. org/ 10. 1162/ neco_a_ 01367 (2021).
 44. Neftci, E. O., Augustine, C., Paul, S. & Detorakis, G. Event-driven random back-propagation: enabling neuromorphic deep learning

machines. Front. Neurosci. 11, 324. https:// doi. org/ 10. 3389/ fnins. 2017. 00324 (2017).
 45. Lee, J. H., Delbruck, T. & Pfeiffer, M. Training deep spiking neural networks using backpropagation. Front. Neurosci. 10, 508.

https:// doi. org/ 10. 1016/ S0893- 6080(97) 00011-78 (2016).
 46. Pehle, C.-G. Adjoint equations of spiking neural networks. Ph.D. thesis, Heidelberg University (2021). https:// doi. org/ 10. 11588/

heidok. 00029 866.
 47. Aamir, S. A. et al. An accelerated lif neuronal network array for a large-scale mixed-signal neuromorphic architecture. IEEE Trans.

Circuits Syst. I Regul. Pap. 65, 4299–4312 (2018).
 48. Davies, M. et al. Loihi: a neuromorphic manycore processor with on-chip learning. IEEE Micro 38, 82–99 (2018).
 49. Furber, S. B., Galluppi, F., Temple, S. & Plana, L. A. The spinnaker project. Proc. IEEE 102, 652–665 (2014).
 50. Neckar, A. et al. Braindrop: a mixed-signal neuromorphic architecture with a dynamical systems-based programming model. Proc.

IEEE 107, 144–164 (2019).
 51. Moradi, S., Qiao, N., Stefanini, F. & Indiveri, G. A scalable multicore architecture with heterogeneous memory structures for

dynamic neuromorphic asynchronous processors (dynaps). IEEE Trans. Biomed. Circuits Syst. 12, 106–122 (2018).
 52. Merolla, P. A. et al. A million spiking-neuron integrated circuit with a scalable communication network and interface. Science 345,

668–673 (2014).
 53. Pei, J. et al. Towards artificial general intelligence with hybrid tianjic chip architecture. Nature 572, 106. https:// doi. org/ 10. 1016/

S0893- 6080(97) 00011-79 (2019).
 54. Billaudelle, S. et al. Versatile emulation of spiking neural networks on an accelerated neuromorphic substrate. In 2020 IEEE Inter‑

national Symposium on Circuits and Systems (ISCAS), 1–5. https:// doi. org/ 10. 1109/ ISCAS 45731. 2020. 91807 41 (2020).
 55. Feldmann, J., Youngblood, N., Wright, C., Bhaskaran, H. & Pernice, W. All-optical spiking neurosynaptic networks with self-

learning capabilities. Nature 569, 208–214. https:// doi. org/ 10. 1038/ s41586- 019- 1677-20 (2019).
 56. Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun.https:// doi. org/ 10. 1038/ s41467- 018-

04933-y (2017).

https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.3389/fnins.2018.00774
https://doi.org/10.1016/j.neunet.2018.12.002
https://doi.org/10.1073/pnas.1604850113
https://doi.org/10.1016/j.ipl.2005.05.023
https://doi.org/10.1016/j.neunet.2013.02.003
https://doi.org/10.1109/IJCNN.2010.5596914
https://doi.org/10.1109/IJCNN.2006.246885
https://doi.org/10.5687/iscie.13.3_95
https://doi.org/10.1371/journal.pone.0040233
https://doi.org/10.1371/journal.pone.0040233
https://doi.org/10.1109/tnnls.2017.2726060
https://doi.org/10.1109/tnnls.2017.2726060
https://doi.org/10.1142/S0129065720500276
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1126/science.aab4113
https://doi.org/10.1126/science.aab4113
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
http://arxiv.org/abs/2006.07239
https://doi.org/10.1162/neco_a_01367
https://doi.org/10.3389/fnins.2017.00324
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.11588/heidok.00029866
https://doi.org/10.11588/heidok.00029866
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1016/S0893-6080(97)00011-7
https://doi.org/10.1109/ISCAS45731.2020.9180741
https://doi.org/10.1038/s41586-019-1677-2
https://doi.org/10.1038/s41467-018-04933-y
https://doi.org/10.1038/s41467-018-04933-y

17

Vol.:(0123456789)

Scientific Reports | (2021) 11:12829 | https://doi.org/10.1038/s41598-021-91786-z

www.nature.com/scientificreports/

 57. Wunderlich, T. et al. Demonstrating advantages of neuromorphic computation: a pilot study. Front. Neurosci.https:// doi. org/ 10.
3389/ fnins. 2019. 00260 (2019).

 58. Chan, V., Liu, S. & van Schaik, A. AER EAR: a matched silicon cochlea pair with address event representation interface. IEEE
Trans. Circuits Syst. I Regul. Pap. 54, 48–59 (2007).

 59. Schemmel, J., Kriener, L., Müller, P. & Meier, K. An accelerated analog neuromorphic hardware system emulating NMDA-and
calcium-based non-linear dendrites. In 2017 International Joint Conference on Neural Networks (IJCNN), 2217–2226 (IEEE, 2017).

 60. Barton, P. I., Allgor, R. J., Feehery, W. F. & Galán, S. Dynamic optimization in a discontinuous world. Ind. Eng. Chem. Res. 37,
966–981. https:// doi. org/ 10. 1021/ ie970 738y (1998).

 61. Gronwall, T. H. Note on the derivatives with respect to a parameter of the solutions of a system of differential equations. Ann.
Math. 20, 292–296 (1919).

 62. Krantz, S. & Parks, H. The Implicit Function Theorem: History, Theory, and Applications. Modern Birkhäuser Classics (Springer,
2012).

 63. Pontryagin, L. S. Mathematical Theory of Optimal Processes (Routledge, 1962).
 64. Bradley, A. M. PDE-constrained optimization and the adjoint method (2019).
 65. Yang, W., Yang, D. & Fan, Y. A proof of a key formula in the error-backpropagation learning algorithm for multiple spiking neural

networks. In Zeng, Z., Li, Y. & King, I. (eds.) Advances in Neural Networks—ISNN 2014, 19–26 (Springer International Publishing,
2014).

 66. Bell, A. J. & Parra, L. C. Maximising sensitivity in a spiking network. In Advances in Neural Information Processing Systems Vol. 17
(eds Saul, L. K. et al.) 121–128 (MIT Press, 2005).

Acknowledgements
We would like to express gratitude to Eric Mülller and Johannes Schemmel for discussions, continued support
and encouragement during the preparation of this work. We thank Laura Kriener and Julian Göltz for their
support regarding time to first spike experiments and helpful discussions. We thank Korbinian Schreiber and
Mihai Petrovici for helpful discussions.

Author contributions
C.P. conceived of the presented idea and outlined the application of sensitivity analysis to spiking neuron mod-
els. C.P. and T.W. derived the adjoint equations for LIF neurons and the resulting EventProp algorithm. T.W.
implemented the event based simulation code. T.W. conducted and analyzed the presented simulations. C.P. and
T.W. wrote and edited the manuscript.

Funding
The research has received funding from the EC Horizon 2020 Framework Programme under Grant Agreements
785907 and 945539 (HBP) and by the Deutsche Forschungsgemeinschaft (DFG, German Research Fundation)
under Germany’s Excellence Strategy EXC 2181/1 - 390900948 (the Heidelberg STRU CTU RES Excellence Clus-
ter) and was financially supported by the Joachim Herz foundation.

Competing interests
The authors declare no competing interests.

Additional information
Correspondence and requests for materials should be addressed to T.C.W. or C.P.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons licence, and indicate if changes were made. The images or other third party material in this
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the
material. If material is not included in the article’s Creative Commons licence and your intended use is not
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.3389/fnins.2019.00260
https://doi.org/10.1021/ie970738y
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Event-based backpropagation can compute exact gradients for spiking neural networks
	Previous work.
	Leaky integrate-and-fire neural network model.
	Gradient via backpropagation.
	Simulation results.
	Yin-Yang dataset.
	MNIST dataset.

	Discussion
	Methods
	Partial derivatives in a hybrid system.
	Adjoint method.
	Derivation of gradient.
	Membrane potential transition.
	Synaptic current transition.
	Summary.
	Fixed Input Spikes.
	Coincident spikes.

	References
	Acknowledgements

