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Deep learning‑based estimation 
of Flory–Huggins parameter 
of A–B block copolymers 
from cross‑sectional images 
of phase‑separated structures
Katsumi Hagita 1*, Takeshi Aoyagi2, Yuto Abe1, Shinya Genda1 & Takashi Honda3

In this study, deep learning (DL)‑based estimation of the Flory–Huggins χ parameter of A‑B diblock 
copolymers from two‑dimensional cross‑sectional images of three‑dimensional (3D) phase‑separated 
structures were investigated. 3D structures with random networks of phase‑separated domains 
were generated from real‑space self‑consistent field simulations in the 25–40 χN range for chain 
lengths (N) of 20 and 40. To confirm that the prepared data can be discriminated using DL, image 
classification was performed using the VGG‑16 network. We comprehensively investigated the 
performances of the learned networks in the regression problem. The generalization ability was 
evaluated from independent images with the unlearned χN. We found that, except for large χN 
values, the standard deviation values were approximately 0.1 and 0.5 for A‑component fractions of 0.2 
and 0.35, respectively. The images for larger χN values were more difficult to distinguish. In addition, 
the learning performances for the 4‑class problem were comparable to those for the 8‑class problem, 
except when the χN values were large. This information is useful for the analysis of real experimental 
image data, where the variation of samples is limited.

Artificial intelligence (AI) and deep learning (DL) algorithms are expected to improve scientific  research1–6. For 
example, their application for COVID-19 diagnosis has received considerable  interest7–9. In addition, AI and 
DL are expected to serve as quantitative measurement methods for images obtained in experiments in research 
works related to polymer materials. Although material discovery based on physical properties using machine 
learning (ML) has been investigated in many  studies10–19, relatively limited research has been conducted on DL 
for  images20. Up until now, image classification and super-resolution processing have been the major tasks in 
DL for experimental images. In material science, the application of DL for image  classification21–27 and super-
resolution  processing28–33 has been extensively reported. Recently, many simulation-based studies on the inverse 
design via a generative adversarial network (GAN) with forward analyses of DL have been  reported34. Hiraide 
et al.34 tried DL-based design of phase-separated structures as continuums in two-dimensional (2D) space; 
however, for polymer materials, three-dimensional (3D) nanostructures are more desirable. In addition to the 
relationship between 3D nanostructures and mechanical properties, the effects of atomic- and molecular-level 
compositions and material processes in the formation of 3D nanostructures must be elucidated. For polymer 
materials, 2D images of stained specimens can be easily obtained using electron microscopes; however, 3D images 
can be obtained only via costly, time-consuming methods such as  tomography35–37. Thus, for research aimed at 
the development of polymer materials, developing a technology to establish a connection between experimental 
images and simulations of polymer materials with high accuracy is considered very important.

The superior DL-based image-classification performance seen at the Large-Scale Visual Recognition Chal-
lenge,  201238, has paved the way for the current AI trend:  AlexNet38 achieved improvements over traditional 
convolutional neural networks (CNNs), and it consists of five convolutional layer blocks and three fully con-
nected layers. Since then, superior algorithms such as VGG-16 and VGG-1939,  ResNet40, GoogLeNet/Inception41, 
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 Xception42,  MobileNet43, and  DenseNet44 have been proposed. As a general example, these networks have been 
used to estimate the age of a person from a photograph of their face.

According to textbooks and leading  papers45–54, the phase diagram of a block copolymer (BCP) melt is 
determined by two independent parameters: χN (where χ is the Flory–Huggins interaction parameter and N 
the total number of segments in a BCP chain) and the A-component fraction f. For the A–B diblock copolymer, 
N = NA + NB and f = NA/N  . Generally, average structures with high symmetries, such as gyroid, cylinder, 
lamellar, and sphere phases, have been confirmed via small-angle scattering  experiments54. Although highly 
controlled experiments have achieved high regularities, the actual materials may still have defects and mesoscale 
structural distortions. For these highly symmetric structures, such as lamellar structures, domain spacing is 
linked with the effective χ  parameter55–66. Here, the effective χ parameter is controlled using chemical composition 
and chain architecture. The χ value is considered to affect the process of phase separation and characterize the 
morphology of the interface. Therefore, it is expected that χ can be estimated from the morphology information 
during the phase separation process.

Advanced controls in the phase-separated structure of BCPs are important for industrial applications, such 
as directed self-assemblies (DSAs) for semiconductor processes and soft materials such as high-performance 
mechanical rubbers. Concerning  DSA67–70, regular lamellar and cylindrical structures were required for line/space 
arrangements and contact-hole patterning, respectively. The implementation of DSAs on substrates has involved a 
rigorous study of nanoimprinting  lithography71, electron beam  lithography72,73, and solvent-vapor  annealing74–76. 
Solvent-vapor annealing requires effective interactions among polymers, substrates, and  solvents74–76. To achieve 
sub-20 nm periods, the control of high χ parameters with custom chemical synthesis is  important77,78. In contrast, 
to obtain the optimum mechanical response to the deformation of high-performing soft materials, skillful con-
trols of the “random network of phase-separated domains” frozen in a non-equilibrium state are  needed79,80. Here, 
asymmetric styrene-isoprene-styrene tri-block copolymers were used to obtain industrial materials with high 
elasticity and moduli. Morphologies of asymmetric tri-block copolymers have been extensively  investigated81–87. 
Recently,  Aoyagi27 investigated the DL-based predictions of phase  diagrams82. Note that the relationships between 
morphologies and mechanical properties under stretching were investigated using coarse-grained molecular 
dynamics  simulations88–90. Further research on the random network of phase-separated domains governed by 
χN is of great interest for the development of high-performing soft materials; estimating χN values from the 
observed images is an impactful way to enhance this research. Since analytical approaches were limited for non-
equilibrium states compared to a well phase-separated structures, χN estimation using AI techniques such as 
ML and DL is recommended.

The estimation of these two characteristic parameters (χN and f) from cross-sectional images of 3D structures 
is desirable for analyzing experimental images. Discrimination of images with different f values is a relatively easy 
problem when image sizes are not small because this problem corresponds to the estimation of volume density 
from surface density of images. However, it is not clear whether images with the same f value but different χN 
values can be discriminated. The problem of estimating χN from images is a simple and fundamental problem 
in the experimental science of materials. The interaction parameter, χ is important for understanding the solu-
bility and microphase separation structures of various polymer chains. The value of χN can be experimentally 
determined from the correspondence with theoretical prediction by obtaining a highly symmetric structure in 
a highly controlled experiment and creating a precise phase  diagram54. However, it would be very efficient if χN 
could be determined from images of non-equilibrium phase-separated structures, which are easy to observe. In 
this study, we investigated the basic relationship between the accuracy and errors of χN estimation.

On one hand, if the relationship between a certain feature of cross-sectional images and estimated χN is 
simple (e.g., linear relationship), the interpolation-estimation accuracy is higher for a lower mean absolute 
error (MAE) in regression training. On the other hand, if the relationship is not simple, a significantly low 
MAE through regression training leads to overfitting, wherein the error in the estimation of χN becomes large. 
Herein, we clarify the type of relationship between a certain feature of cross-sectional images and estimated χN.

χN can be estimated from local high-resolution images by observing the concentration gradient at the 
interface and/or the interfacial width. Theoretically, the interfacial width is expected to be of the form (χN)−0.5 
in the weakly segregated  region91. However, there exists a problem: the density-gradient information is lost 
owing to staining, which is indispensable for electron-microscope observation, and the binarized image only 
contains morphology information. This binarization problem is considered more serious than familiar image 
problems such as those related to noise and focus. In this study, we examined the potential of estimating χN 
from the morphology information and density profiles in cross-sectional images of global 3D nanostructures 
with interfacial width of a small number of pixels. Regarding binarized images of stained specimens observed 
via transmission electron microscopy (TEM), an AI technique that performs estimations only from morphology 
without a density profile is developed.

Results
Data characterization through Image classification. To generate image data with f = 0.2 and 0.35 , 
3D field data of the phase-separated structure of A-B BCP were obtained using OCTA/SUSHI92,93 based on 
the real-space self-consistent field (SCF)  calculation52,53. Figure 1 shows examples of the images generated for 
χN ≥ 25 . A lower value of χN was chosen based on the mean field  prediction94 for f = 0.2 . We obtained density 
fields after convergence of the SCF calculation or 100,000 SCF steps. Although the highly symmetric structure 
of triply periodic minimal surface (TPMS) was reported by the experiments, SCF calculations were performed 
in this study to obtain “random network of phase-separated domains.” Although cell-size  optimization95 is 
required to avoid the system-size effect under periodic boundary conditions (PBCs) in case of structures with 
high symmetries, this study did not optimize for the same and instead used a PBC box of fixed size. Conceptu-
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Figure 1.  Snapshots of generated structures. (a) 3D isosurface and (b) cross-sectional images.
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ally, it is considered that a highly symmetric structure can be obtained by using a sufficiently large system size or 
by optimizing the system size. From another point of view, the images shown in Fig. 1 can be regarded as struc-
tures trapped in the metastable state during the phase separation process. Although these images are not trivial 
and have certain complexities, they have features that are governed by the interaction parameter, χN. Although 
the highly symmetric structure under TPMS can be classified by a mathematical index such as the Betti number, 
there is no mathematical index to classify and express these metastable features. This absence may reveal a case 
where ML is difficult but DL may prove to be successful. As a result, these images were considered to be suitable 
to evaluate the potential of estimating χN from their morphology information and density profiles.

For understanding the basic characteristics of the examined data system, image classification was performed 
before regression. We performed the image classification using  Keras96 and  TensorFlow97 packages based on the 
VGG-16 network. For performance comparison, we performed several ML-based image classifications using 
Scikit-learn98. In the ML-based image classifications, we used support vector machine (SVM) with a radial 
basis function (rbf) kernel for two features: (1) the histogram of brightness and (2) the histogram of oriented 
gradients (HoG). In the DL-based image classifications, binarized images were also examined for comparison. 
To summarize, the present work performed the following image classifications:

(1) ML with SVM for histogram of brightness
(2) ML with SVM for HoG features
(3) DL with VGG-16 for binarized images
(4) DL with VGG-16

First, to confirm the superior performance of the VGG-16 model for image classification, we estimated 
learning curves until 100 epochs and confusion matrices at 100 epochs. For f = 0.2 and 0.35 , and N = 20 and 
40 , three problems were investigated: (1) 4-class problem with χN = 25, 30, 35, and 40 ; (2) 6-class problem with 
χN = 25, 28, 31, 34, 37, and 40 ; and (3) 8-class problem with χN = 26, 28, 30, 32, 34, 36, 38, and 40 . To avoid 
redundancy, results for the 6- and 8-class problems are presented in Section S1 of the Supplementary Information.

Figure 2 shows the learning curves of the trainings performed. We found that 100 epochs are enough to 
obtain a reasonable accuracy. Comparisons among f and N suggest that training for f = 0.2 is less difficult than 
training for f = 0.35 . For f = 0.35 , training with N = 20 appears to be more difficult than that with N = 40.

Table 1 presents confusion matrices of the 4-class problem at 100 epochs. For confusion matrix Mi,j , accu-
racy A =

∑
i Mi,i/

∑
i,j Mi,j and error rate E = 1− A . For f = 0.2 , E = 1.25× 10−4 and 0.0 for N = 20 and 40 , 

respectively. When f = 0.35 , E = 1.13× 10−2 and 1.63× 10−3 for N = 20 and 40 , respectively. It was found 
that E for f = 0.2 is lower than that with f = 0.35 . This tendency is also found in the 6- and 8-class problems 
presented in Section S1 of the Supplementary Information. These behaviors suggest that the images for f = 0.35 
are more difficult to learn than for f = 0.2.

The results of the 8-class problem, presented in Section S1of Supplementary Information, suggest that the 
accuracy for a larger χN is lower when f = 0.2 . This tendency is maintained for (f ,N) = (0.35, 20) , although it 
is not clear for (f ,N) = (0.35, 40) because of the large error. This tendency is consistent with that of the 4-class 
problem in Table 1. We expect that the accuracy of each class group on χN in the image-classification problems 
corresponds to the error of the estimated χN values in the regression problems.

Next, for comparison, we performed ML-based image classifications. Table 2 presents the error rates of the 
4-class problem with SVM for the histogram of brightness and the HoG features. Here, 6000 and 2000 images for 
each χN class were used for the training and evaluation of generalization ability, respectively. Moreover, DL-based 
image-classification results for binarized images are presented for later consideration. The results for the 8-class 
problem are also presented in Table 3. The confusion matrices for the 4- and 8-class problems are presented in 
Sections S2 and S3 of the Supplementary Information. The DL-based image classification exhibits highly superior 
performance (low error rate) compared to that achieved with ML. Therefore, we consider that regression by ML 
is not realistic for these datasets. Moreover, it is clear that DL for binarized images outperforms ML.

ML results for the brightness histogram suggest that the prepared images for f = 0.35 are more dependent 
on brightness than the images for f = 0.2 . The error rate of ML for the HoG feature for these images is worse 
than that for the histogram of the brightness. These ML models exhibit inferior performance because the area 
of each image is small. The image-classification performance improves for larger image sizes in both ML and DL 
models. One of the  authors99 investigated the effect of image size on generalization ability of image classifica-
tion for morphologies of nanoparticles in rubber matrices, where the morphologies were modeled based on the 
ultra-small X-ray scattering  spectrum100.

These image-classification results confirm that the prepared dataset has some features that can be distin-
guished by DL; however, the performance of ML was not good. In the next section, we have used these datasets 
for the regression problem in the estimation of the Flory–Huggins χ parameter.

Regression to estimate the Flory–Huggins parameter. As mentioned previously, to investigate the 
characteristics of regression to estimate the Flory–Huggins χ parameter, we performed regression using the 
VGG-16 model. When preparing training images via electron microscopy for actual materials, such as stained 
phased-separated diblock copolymers, the number of prepared materials for the observations is limited to a 
small value (e.g., less than a few tens of specimens). Thus, in turn, the number of χN classes is limited to a small 
value. Therefore, in the present regression problem, discrete χN rather than continuous χN is used for the train-
ing images. Here, we considered the 8-class problem with training images of χN = 26, 28, 30, 32, 34, 36, 38, and 
40 . In the classification problem, the generalization ability was evaluated from independent images that belonged 
to the same χN classes and were independent of the training images. For the regression problem, two types of 
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generalization abilities can be evaluated from (1) independent images generated with the same χN value (the 
8-classes) and (2) independent images with unlearned χN value. Here, we selected χN = 27, 29, 31, 33, 35, 37, 
and 39 as the unlearned χN values. In this study, we evaluated these two generalization abilities.

As a first test, we performed training with 100 epochs. Figure 3 presents the learning curves until 100 epochs. 
At f = 0.35 , a discrepancy between training MAE and validation MAE was observed, although a similar dis-
crepancy was not observed for f = 0.2 . We consider that learning from the given training images was saturated 
(i.e., overfitting tendency). In the learning curve of the validation MAE, the trend comprising the minimum and 
a subsequent increment can be considered as an indicator of overfitting. In the cases of Fig. 3c and d, the curve 
around 60 epochs appears to be the minimum. For comparison with the learned network before overfitting, 
we present the results of an independent run with 50 epochs in Section S4 of the Supplementary Information.

Figure 4 presents distributions of the estimated χN for independent images whose χN values are the same 
values as those for the training images. The distribution proceeds differently at f = 0.2 and 0.35 . These tenden-
cies are the same as those in the image-classification problem as mentioned in the previous section, and they are 
considered to be related to the difficulty encountered in estimating the χN value. The behavior is similar to that 
of an independent run with 50 epochs presented in Section S4 of the Supplementary Information.

Table 4 presents the average and standard deviation values of the estimated χN for each χN class. In all cases, 
the absolute value of the difference from the true value is approximately 0.1. The standard deviation values are 
approximately 0.1–0.2 and 0.2–0.8 for f = 0.2 and 0.35 , respectively. The standard deviation values become 
larger for larger χN values, as presented in Fig. 4.

Figure 5 and Table 5 present the distribution, average, and standard deviation values of the estimated χN for 
independent images of unlearned χN, which are different from those of the training images. We find that the 
average of estimated χN for the images with χN = 39 for (f ,N) = (0.35, 20) differs from the true χN values 
of the images. The difference from the true value is approximately 0.9. The other estimations are found to be as 
accurate as the estimations for independent images in the same χN class as the training images. These results 
indicate that superior regression estimation is possible for f = 0.2 . For f = 0.35 , the error is relatively large, 
but regression estimation is possible, except for χN > 38 when (f ,N) = (0.35, 20) . For a detailed investigation 
on large χN, see Section S5 of the Supplementary Information, which presents the results of the regression for 
χN = 36.5, 37.5, 38.5, and 39.5 and the image classification of the 3-class problem with χN = 38, 39, and 40.

Figure 2.  Learning curves of the 4-class image classification under training until 100 epochs.
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Cases with long learning times and transfer learning. In some cases, to obtain small MAEs, long 
learning times (epochs) and/or transfer learning are applied. In this study, we also attempted to perform learn-
ing with large epochs and transfer learning. However, both the cases showed overfitting and poor generalization 
ability. The detailed results are presented in Sections S6–S9 of the Supplementary Information.

These results indicate that it is a realistic solution to use a trained network, wherein overfitting does not occur 
in the generalization-ability evaluation of the unlearned χN.

Confirmation for the binarized images. To confirm the effects of interfacial density gradients on the 
regression problem and feasibility of χN estimation for stained specimens, we investigated the regression per-

Table 1.  Confusion matrices of the 4-class problem at 100 epochs.

(a) f = 0.2, N = 20

Estimated χN class

25 30 35 40

Actual

χN = 25 2000 0 0 0

χN = 30 0 2000 0 0

χN = 35 0 0 1999 1

χN = 40 0 0 0 2000

(b) f = 0.2, N = 40

Estimated χN class

25 30 35 40

Actual

χN = 25 2000 0 0 0

χN = 30 0 2000 0 0

χN = 35 0 0 2000 0

χN = 40 0 0 0 2000

(c) f = 0.35, N = 20

Estimated χN class

25 30 35 40

Actual

χN = 25 1985 15 0 0

χN = 30 0 1967 33 0

χN = 35 1 2 1966 31

χN = 40 0 0 8 1992

(d) f = 0.35, N = 40

Estimated χN class

25 30 35 40

Actual

χN = 25 1999 1 0 0

χN = 30 2 1997 1 0

χN = 35 0 2 1992 6

χN = 40 0 0 1 1999

Table 2.  Error rates for image classification for the 4-class problem.

f = 0.2 f = 0.35

N = 20 N = 40 N = 20 N = 40

(1) ML-based for histogram of brightness 0.525 0.512 0.150 0.254

(2) ML-based for HoG features 0.512 0.748 0.545 0.612

(3) DL-based for binarized images 0.134 0.137 0.168 0.251

(4) DL-based 1.25 ×  10–4 0.0 1.13 ×  10–2 1.63 ×  10–3

Table 3.  Error rates for image classification for the 8-class problem.

f = 0.2 f = 0.35

N = 20 N = 40 N = 20 N = 40

(1) ML-based for histogram of brightness 0.763 0.757 0.299 0.387

(2) ML-based for HoG features 0.719 0.721 0.791 0.805

(3) DL-based for binarized images 0.455 0.442 0.515 0.515

(4) DL-based 2.50 ×  10–4 4.94 ×  10–4 1.46 ×  10–2 1.09 ×  10–2
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formance for binarized images. Tables 6 and 7 present the average and standard deviation values of the estimated 
χN for each χN class, as detailed in Section S10 of the Supplementary Information. We consider that DL-based 
χN estimation for binarized images is learning the characteristics of morphology in the binary images without 
density gradients. The distributions of the estimated χN for the binarized images are much wider than those for 
the gray-scale images. Absolute differences from the true values of χN are also larger than those for the gray-
scale images. Therefore, we conclude that the gray-scale images have essential information for χN estimation. 
This suggests that χN can be evaluated accurately without using DL if an arithmetic calculation method for 
estimating χN from a cross-sectional image is developed. However, at present, such a method is unknown; thus, 
DL is an effective tool.

It should be noted that the χN estimation for the binarized image is predictable as an average, although the 
error is large. In TEM observations of polymer materials, staining such as by OsO4 is currently essential owing 
to the limited detector ability. The observed images of the stained sample are considered to correspond to the 
binarized images. The confirmation that the binarized image has a certain estimation ability is useful information 
in the future analysis of TEM images of the actual materials.

Comparison with regression with the 4‑class training images. To clarify the effects of the number 
of classes and step size of χN on the error, we investigated the cases of training using the 4-class training images 
with χN = 25, 30, 35, and 40 . Figure 6 shows the learning curves for the 4-class training images. The MAEs at 
100 epochs in the 4-class problem were smaller than those in the 8-class problem.

Figure 7 presents the distribution of the estimated χN for the 4-class problem. Except for the cases of 
(f ,N) = (0.2, 40) , we find that there is no discriminating ability for χN = 37.5 . In particular, for the cases of 
(χN , f ,N) = (37.50.35, 20) , we find sharp peaks at χN = 35 and 40 which were χN values of the training images 
as shown in Fig. 7c. These peaks at the χN values of the training data are typical behaviors of overfitting, as 
observed in Section S7 of the Supplementary Information.

Except for the large χN, it was found that the estimation with the 4-class training images was as accurate 
as that with the 8-class training images. This finding is supported by the behaviors of the average and standard 
deviation values presented in Table 8. We consider that this knowledge is useful in the analysis of actual experi-
mental images.

Figure 3.  Learning curves of the regression problem until 100 epochs.



8

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12322  | https://doi.org/10.1038/s41598-021-91761-8

www.nature.com/scientificreports/

Summary and discussion
DL-based methods were studied to estimate the Flory–Huggins χ parameter of A–B diblock copolymers from 
2D cross-sectional images generated from SCF calculations, assuming them to observation images from electron 
microscopes. In this study, we aimed to estimate χN for images created by a particular process. Note that χN esti-
mation, independent of the material processes, cannot be discussed because we used only one image-generation 
method in this study. Through SCF calculations, 10,000 images for each χN were obtained from cross-sectional 
views of the 3D phase-separated structures in random directions at randomly selected positions. Here, the 3D 
density field data were obtained by real-space SCF simulations in the 25–40 χN range for f = 0.2 and 0.35 and 
N = 20 and 40 . For DL, we used VGG-1638.

Figure 4.  Probability distribution functions of the estimated χN value for evaluation data generated with same 
χN values as the teaching data. Here, the size of each bin was 0.05.

Table 4.  Averages and standard deviations of estimated χN for each χN class, which is the same for the 
teaching images.

(f, N) = (0.2, 20) (f, N) = (0.2, 40) (f, N) = (0.35, 20) (f, N) = (0.35, 40)

χN = 26 26.084 ± 0.061 25.850 ± 0.055 26.130 ± 0.239 26.105 ± 0.221

χN = 28 28.081 ± 0.089 27.831 ± 0.069 28.083 ± 0.430 28.113 ± 0.325

χN = 30 30.094 ± 0.100 29.826 ± 0.089 30.097 ± 0.493 30.151 ± 0.370

χN = 32 32.094 ± 0.128 31.804 ± 0.100 32.073 ± 0.591 32.146 ± 0.439

χN = 34 34.120 ± 0.149 33.812 ± 0.118 34.100 ± 0.708 34.186 ± 0.479

χN = 36 36.139 ± 0.190 35.768 ± 0.139 36.139 ± 0.795 36.219 ± 0.544

χN = 38 38.139 ± 0.251 37.837 ± 0.182 37.776 ± 0.678 38.120 ± 0.561

χN = 40 40.127 ± 0.227 39.732 ± 0.183 39.883 ± 0.594 39.926 ± 0.510
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To show that the generated images can be classified systematically, DL-based image classification was per-
formed. The accuracy for f = 0.2 was found to be better than that for f = 0.35 because of the difficulty encoun-
tered in distinguishing owing to the resemble images. It was clarified that the accuracy for a larger χN is lower 
when f = 0.35.

In addition, we investigated image classification performance of ML with SVM for the histogram of brightness 
and the HoG features as well as DL for binarized images. The error rates of ML were considerably larger than 
those of DL. Thus, regression via ML was found to be difficult for these prepared datasets. We also confirmed that 
the image classification performance by DL for binary images was inferior to those for gray-scale images. The 
binarization also affected the regression performance. In addition, we found that the DL-based χN estimation 
for the binarized image was predictable as an average, although the error was large. This is an important finding 
to extend χN estimation for images in TEM observations of stained polymer materials.

Figure 5.  Probability distribution functions of the estimated χN for evaluation data generated with unlearned 
χN values.

Table 5.  Averages and standard deviations of estimated χN values for each unlearned χN.

(f, N) = (0.2, 20) (f, N) = (0.2, 40) (f, N) = (0.35, 20) (f, N) = (0.35, 40)

χN = 27 27.032 ± 0.081 26.818 ± 0.063 26.976 ± 0.379 27.029 ± 0.293

χN = 29 29.087 ± 0.092 28.843 ± 0.079 29.088 ± 0.457 29.101 ± 0.348

χN = 31 31.090 ± 0.120 30.824 ± 0.095 31.093 ± 0.560 31.189 ± 0.410

χN = 33 33.114 ± 0.138 32.821 ± 0.111 33.072 ± 0.626 33.151 ± 0.465

χN = 35 35.112 ± 0.171 34.799 ± 0.130 35.113 ± 0.771 35.187 ± 0.522

χN = 37 37.103 ± 0.216 36.725 ± 0.157 37.076 ± 0.741 37.173 ± 0.565

χN = 39 39.254 ± 0.295 38.885 ± 0.182 38.114 ± 0.529 38.962 ± 0.502
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We performed DL of regression problems based on the VGG-16 network model. For the 8-class problem, 
χN was set at 26, 28, 30, 32, 34, 36, 38, and 40 . To evaluate the generalization ability, MAEs for the following two 
image groups were estimated: (1) independent images generated with the same χN value as that for the training 
images and (2) independent images with unlearned χN value such as χN = 27, 29, 31, 33, 35, 37, and 39.

We investigated the distribution of the estimated χN of independent images with the unlearned χN values. 
Large χN values could not be accurately estimated, which can be ascribed to the difficulty encountered in image 
classification. For (f ,N) = (0.35, 20) , the image classification for the 3-class problem for χN = 38, 39, and 40 
failed to distinguish images for χN = 38 and 39 . Except when χN was large, we obtained accurate average values 
of χN for the examined images, and the standard deviation was approximately 0.1 and 0.5 for f = 0.2 and 0.35 , 
respectively. To improve the accuracy of estimation for large χN, we require high-resolution images wherein 
the density gradient at the phase-separation interface can be recognized. Studies in this direction, including 
experimental observation data, are underway.

Moreover, we found that the learning performances for the 4-class problem were comparable to those for the 
8-class problem except when χN was large. This information is useful for the analysis of experimental image data. 
On the other hand, given that the estimation with the 8-class teacher dataset was more accurate than that with 
the 4-class dataset, the performance could be improved with the incorporation of smaller χN intervals into the 
teacher data. For example, it is difficult to prepare specimens that have a wide χN range with 0.1 intervals even 
in simulations; however, it may not be impossible. Research that provides insights into how small an χN interval 
is required for more accurate estimations, would be an important next step in this field.

To estimate χN from experimental images, in addition to the effects of binarization associated with observa-
tions of stained specimens, we should train a regression network model that is robust to the effects of noise and 
image adjustments (including focus) of experimental data. To investigate random local noises and variations in 
image contrast and brightness, a large amount of experimental image data must be analyzed and pseudo image 
data must be generated accordingly. Recently developed electron-microscope automation techniques can be 
applied to observe a large area of images from one stained specimen at one observation. Research in these direc-
tions is also being conducted.

In this study, we considered images created solely from a particular process of phase separations. This limits 
our ability to estimate χN only for that specific material process. Although the effectiveness of the learned net-
work was limited to a specific process, we expected the estimation ability of the physical parameters governing 
phase-separation to be utilizable not only for polymers but also for metals. In the research and development of 
real materials, χN is expected to be estimated from structures obtained from various material processes. Further 
prospects in this field include an investigation into the feasibility of χN estimation, independent of material 
processes.

Table 6.  Averages and standard deviations of estimated χN for each χN class for the binarized images. Here, 
the χN class was same value of the teaching image.

(f, N) = (0.2, 20) (f, N) = (0.2, 40) (f, N) = (0.35, 20) (f, N) = (0.35, 40)

χN = 26 26.232 ± 0.548 26.409 ± 0.898 27.229 ± 1.462 28.680 ± 1.761

χN = 28 28.241 ± 1.009 28.230 ± 1.238 29.589 ± 2.224 29.274 ± 1.909

χN = 30 30.572 ± 1.511 30.515 ± 1.546 31.547 ± 2.466 29.911 ± 1.955

χN = 32 32.807 ± 1.871 32.750 ± 1.753 33.125 ± 2.342 31.363 ± 2.133

χN = 34 34.746 ± 1.967 34.521 ± 1.750 34.124 ± 2.342 33.286 ± 2.156

χN = 36 36.330 ± 1.873 35.777 ± 1.795 34.864 ± 2.297 35.836 ± 1.832

χN = 38 37.211 ± 1.792 36.928 ± 1.876 35.076 ± 2.220 37.545 ± 1.400

χN = 40 38.005 ± 1.661 38.322 ± 1.871 37.855 ± 2.099 39.451 ± 1.043

Table 7.  Averages and standard deviations of estimated χN for each unlearned χN class for the binarized 
images.

(f, N) = (0.2, 20) (f, N) = (0.2, 40) (f, N) = (0.35, 20) (f, N) = (0.35, 40)

χN = 27 27.067 ± 0.772 27.261 ± 1.106 28.288 ± 1.946 28.615 ± 1.749

χN = 29 29.386 ± 1.281 29.485 ± 1.441 30.605 ± 2.375 29.143 ± 1.817

χN = 31 31.640 ± 1.672 31.728 ± 1.631 32.512 ± 2.449 30.660 ± 2.126

χN = 33 33.908 ± 1.925 33.801 ± 1.696 33.593 ± 2.352 32.340 ± 2.151

χN = 35 35.363 ± 1.962 35.190 ± 1.774 34.526 ± 2.284 34.552 ± 2.005

χN = 37 36.745 ± 1.855 36.476 ± 1.768 34.956 ± 2.208 36.712 ± 1.668

χN = 39 37.637 ± 1.741 37.577 ± 1.834 35.328 ± 2.101 38.415 ± 1.058
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Methods
Image data preparation through SCF calculation. For f = 0.2 and 0.35 , 3D field data of the phase-
separated structure of A-B BCP were obtained using the OCTA/SUSHI  package92,93 based on the real-space SCF 
 calculation52,53. The theoretical background is briefly explained in Section S11 of the Supplementary Informa-
tion. The system size was set at 128 × 128 × 128 under PBCs, and a regular 128 × 128 × 128 grid mesh was used. In 
the present study, the following cases were examined:N = 20 and 40 . According to the mean field  prediction94, 
the boundary value, χN, of the order–disorder phase transition is approximately 23.5 for f = 0.2 and 12.5 for 
f = 0.35 . Thus, we generated images for χN ≥ 25 , as presented in Fig. 1. In practice, we obtained the 3D field 
data with an χN interval of 0.5.

All the images were obtained from cross-sectional views of the 3D density field data of the A domain in ran-
dom directions at randomly selected positions. A total of 10,000 input images with 64 × 64 pixels were prepared 
for each class. In generating a cross-sectional view with 64 × 64 pixels from 3D field data of 128 × 128 × 128 grids 
under the PBCs, we performed linear-weight interpolation. Here, the images were 8-bit gray-scale images. We 
placed the same data in 3 RGB channels for generality in preliminarily tests such as transfer learning using the 
weight data trained by  ImageNet38. Learning with the same data on three channels did not have any significant 
effect, except for a slight difference in convergence behaviors.

This differs from the method of obtaining highly symmetric structures from SCF calculations. To construct 
ordered structures in the shape of lamellae, cylinders, and gyroids, artificial initial estimate and cell-size optimiza-
tion—a parameter search of the box size to minimize the free  energy95—are effective. The initial value and search 
range are important to obtain a reasonable solution. If we start from uniformly mixed initial states, hydrodynamic 
effects are essential to obtain ordered  structures101. By contrast, to obtain random network of phase-separated 
domains, spatially uncorrelated fields were used as initial density profiles and cell-size optimization was not used.

Image classification by DL. In the image-classification problem, the labels of the training images are 
learned and the trained model outputs the estimated probability of each label for an arbitrary image. CNNs are 
well known to have high image-classification  ability38–44.  Keras96 provides all popular network models for image 
classification including VGG-16 model, which is one of the more successful CNN models. Comparisons among 
popular network models provided by  Keras96 are presented in Section S12 of the Supplementary Information. 

Figure 6.  Learning curves of the regression problem with the 4-class teaching images.
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The VGG-16 model has 16 layers, including five convolutional blocks (13 convolutional layers), as shown in 
Fig. 8.

To determine the parameters of the VGG-16 model, we used  TensorFlow97 as the backend for Keras. For 
image classification, 6000 and 2000 images per χN class were used as training and testing images, respectively, 
for the learning and for evaluating the generalization ability. The stochastic gradient descent (SGD) method was 
used as the optimizer for the classification problem; a standard learning rate of  10–4 and momentum 0.9 was 
used for simplicity.

Estimation (regression) of the Flory–Huggins parameter via DL. In the regression problem, the 
values of the training images are learned and the trained model outputs the estimated values for an arbitrary 
image. For the regression problem, we used a network based on the VGG-16 model, as presented in Fig. 8b. 
Compared to the classification problem, in the regression problem, the last block is different, as shown in Fig. 8. 

Figure 7.  Probability distribution functions of the estimated χN for evaluation data for the 4-class teaching 
images.

Table 8.  Averages and standard deviations of estimated χN values for each χN in the 4-class problem. 

(f, N) = (0.2, 20) (f, N) = (0.2, 40) (f, N) = (0.35, 20) (f, N) = (0.35, 40)

χN = 25 24.852 ± 0.032 24.875 ± 0.056 25.062 ± 0.184 25.006 ± 0.111

χN = 30 29.910 ± 0.066 29.876 ± 0.102 30.183 ± 0.436 30.004 ± 0.210

χN = 35 35.064 ± 0.083 34.865 ± 0.163 35.145 ± 0.639 35.011 ± 0.277

χN = 40 40.161 ± 0.104 39.845 ± 0.186 40.004 ± 0.414 39.925 ± 0.270

χN = 27.5 26.385 ± 0.115 27.387 ± 0.079 27.797 ± 0.796 27.401 ± 0.417

χN = 32.5 32.236 ± 0.224 32.201 ± 0.137 33.155 ± 1.031 32.704 ± 0.704

χN = 37.5 37.594 ± 0.727 37.677 ± 0.200 37.563 ± 1.540 37.622 ± 1.071
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In the regression problem, we used the adaptive moment estimation (Adam)102 as the optimizer, with a standard 
learning rate of  10–6 and (β1,β2) = (0.9, 0.999) for simplicity.

Data availability
All generated image data used are available from the corresponding author upon reasonable request.

Received: 28 March 2021; Accepted: 31 May 2021
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