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Diffusion in multicomponent 
aqueous alcoholic mixtures
Gabriela Guevara‑Carrion, Robin Fingerhut & Jadran Vrabec*

The Fick diffusion coefficient matrix of the highly associating quaternary mixture water + methanol 
+ ethanol + 2‑propanol as well as its ternary and binary subsystems is analyzed with molecular 
dynamics simulation techniques. Three of the ternary subsystems are studied in this sense for the 
first time. The predictive capability of the employed force fields, which were sampled with the Green–
Kubo formalism and Kirkwood–Buff integration, is confirmed by comparison with experimental 
literature data on vapor‑liquid equilibrium, shear viscosity and Fick diffusion coefficient, wherever 
possible. A thorough analysis of the finite size effects on the simulative calculation of diffusion 
coefficients of multicomponent systems is carried out. Moreover, the dependence of the Fick diffusion 
coefficient matrix on the velocity reference frame and component order is analyzed. Their influence 
is found to be less significant for the main matrix elements, reaching a maximum variation of 19%. 
The large differences found for the cross elements upon variation of the reference frame hinder a 
straightforward interpretation of the Fick diffusion coefficient matrix with respect to the presence of 
diffusive coupling effects.

Diffusion processes are ubiquitous and are thus an important research topic in many disciplines, such as phys-
ics, chemistry, biology, medicine and engineering. In fact, diffusion is the key to describe the propagation of 
molecular species in  liquids1, porous  materials2, depleted oil  reservoirs3, solar  cells4 or human  histoid5. Most 
of these processes involve mixtures of more than two components and their modeling requires the determina-
tion of transport diffusion coefficients. Because of the nature of diffusion, experiments are laborious and time-
consuming, especially for multicomponent systems which usually necessitate several experiments for each state 
 point6. Further, the dimensionality of the measurement space follows a power law increase with each additional 
component, making a comprehensive measurement of multicomponent systems exhaustive and  expensive7. It 
is thus not surprising that experimental data on multicomponent diffusion are  scarce8,9 and manifest in many 
cases the bottleneck for understanding, modeling and designing realistic  processes6. Although the investigation 
of diffusion started in the 1850s with the work of  Graham10 and  Fick11, experimental data on transport diffusion 
coefficients for only around 200 ternary  mixtures6,9 and less than 20 quaternary  mixtures8,12 have been reported in 
the literature. Obviously, experimental measurements alone are not able to satisfy the growing need for accurate 
transport diffusion coefficients, particularly for liquids constituted by many components.

The underlying physical phenomena to mass transport in multicomponent mixtures are quite complex and 
still not well understood because of the presence of coupling effects, which may lead to uphill  diffusion13. For 
instance, the description of the isothermal–isobaric diffusion flux in a ternary mixture with Fick’s law requires 
a matrix with four different diffusion coefficient elements which depend not only on the composition, but also 
on the velocity reference frame and the choice of the component order. It has been shown that a change of the 
reference frame for mixtures with large excess volume may even lead to seemingly negative main Fick diffusion 
matrix  elements14. On the other hand, most predictive equations for transport diffusion coefficients of multi-
component liquids are based on the Darken  relation15–17 which neglects cross-effects. Therefore, they are not 
valid for mixtures with strong intermolecular interactions and are thus not useful for many practical applica-
tions. Further, the development and validation of empirical correlations and theory-based predictive equations 
is hindered by the lack of experimental data.

In contrast to the rather slow progress of experimental work, the capabilities of molecular dynamics simula-
tion techniques to investigate diffusion processes have experienced a rapid development, driven by the increase 
of computational power following Moore’s law and the continuous improvement of specific algorithms. Half a 
century after the pioneering work of Alder and  Wainwright18 on the velocity auto-correlation function of hard 
spheres, molecular dynamics simulation has become a powerful method to understand, model and predict 
diffusion processes in scientific and engineering applications. Nowadays, it is not only able to deal with more 
complex force fields and much larger systems, but it also reaches longer time scales, which allows for accurate 
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predictions of the Fick diffusion coefficient of highly non-ideal multicomponent  mixtures12. Molecular simula-
tion is well-suited to provide trustworthy diffusion coefficient data and may contribute to the understanding of 
the underlying microscopic processes that are not accessible with experiments.

Recently, Fick diffusion coefficient data for a quaternary real mixture calculated solely with molecular dynam-
ics simulation techniques were reported for the first  time12. The regarded mixture water + methanol + ethanol + 
2-propanol exhibits strong intermolecular interactions mainly due to hydrogen bonding. Molecular dynamics 
simulations of such mixtures are challenging because they require a large number of molecules to be sampled 
over a relatively long time interval to obtain acceptable statistical uncertainties. In this work, a close look at the 
quaternary Fick diffusion matrix is given in the light of varying velocity reference frames and component orders. 
Issues related to the finite size correction of the sampled diffusion coefficients are discussed as well. Further, 
Fick diffusion coefficient data for the ternary subsystems water + methanol + 2-propanol, water + ethanol + 
2-propanol and methanol + ethanol + 2-propanol obtained by molecular simulation are presented here for the 
first time. The capability of the force fields and the methodology employed in this work to accurately predict 
Fick diffusion coefficients of most  binary19,20 and one ternary  subsystem21,22 has already been demonstrated. 
Therefore, the present data are expected to be realistic.

Results
The most common approach to address mass transport in liquid mixtures is Fick’s law, which describes the 
molar flux in a mixture by means of a linear combination of the mole fraction gradients. However, chemical 
potential gradients and not mole fraction gradients are the true thermodynamic driving forces for diffusion. 
Maxwell–Stefan theory follows this path, assuming that chemical potential gradients are balanced by friction 
forces between the components. Maxwell–Stefan diffusion coefficients cannot be measured in the laboratory, but 
are directly accessible with equilibrium molecular dynamics. On the other hand, Fick diffusion coefficients are 
obtained from experiments. Because the Fick and Maxwell–Stefan approaches describe the same process, there 
is a straightforward relation between the according coefficients given by the so-called thermodynamic factor. In 
this work, equilibrium molecular dynamics simulation and the Green–Kubo formalism were employed to obtain 
the Maxwell–Stefan diffusion coefficient and Kirkwood–Buff  integration23,24 to sample the thermodynamic factor 
consistently on the basis of the chosen force field model.

The Fick diffusion coefficient in the molar reference frame of the quaternary mixture water + methanol + 
ethanol + 2-propanol was reported in previous  work12 for ten compositions along the isopleth xC3H8O = 0.25 
molmol

−1 . Here, these data are discussed together with new simulation results for the thermodynamic factor, 
Fick diffusion coefficient and shear viscosity of all four ternary and six binary subsystems at 298.15 K and 0.1 
MPa. The studied state points are depicted in Fig. 1. The ternary subsystem water + methanol + ethanol is dis-
cussed in less detail because it was addressed in Refs.21,22.

Thermodynamic factor. The thermodynamic factor Ŵij describes the thermodynamic non-ideality of a 
mixture. It can be estimated from experimental vapor-liquid equilibrium or excess enthalpy  data25,26, employing 
an equation of state or an excess Gibbs energy model because it is related to the composition dependence of the 
chemical potentials  by27

where δij is the Kronecker delta, kB the Boltzmann constant and T the temperature. xi , µi and γi are the mole 
fraction, chemical potential and activity coefficient of component i, respectively. The differential has to be car-
ried out keeping the mole fraction of all other components xk,k  =j constant, except for the nth. The mole fraction 
of component n is eliminated by the fact that the mole fractions sum up to unity. However, the thermodynamic 
factor can be also sampled directly by molecular simulation, e.g. with Kirkwood–Buff  integration24,28 or free 
energy perturbation methods, to obtain the composition dependence of the chemical  potential21,29. For the sake 
of consistency, the thermodynamic factor was calculated here with Kirkwood–Buff integration as described in 
preceding  work12,23.
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Figure 1.  Studied compositions (bullets) of the quaternary mixture water (1) + methanol (2) + ethanol (3) + 
2-propanol (4) as well as its ternary and binary subsystems.
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In order to assess the reliability of the sampled thermodynamic factor, vapor-liquid equilibrium data were 
predicted with the Wilson excess Gibbs energy model that was solely fitted to the thermodynamic factor results 
for all studied binary and ternary mixtures and compared with experimental literature data wherever available. 
Figure 2 shows the resulting vapor-liquid equilibrium data for all six binary subsystems. In general, an excellent 
agreement was found, merely for water + methanol there is a small overestimation of the vapor pressure, which 
can be explained by the limitations of the force field model in absence of adjustable binary parameters. In the 
case of the ternary subsystems, a relatively good agreement was found between simulation and experiment for 
water + methanol + ethanol. The small discrepancies observed for this ternary mixture can be traced back to the 
vapor pressure shift observed for its binary subsystem water + methanol. Further comparisons were not possible 
because of the lack of experimental data at the studied thermodynamic conditions, cf. Fig. 3.

Fick diffusion coefficient. The Fick diffusion coefficient matrix in the molar reference frame DM of mix-
tures with n components was calculated from the phenomenological diffusion coefficients Lij and the thermody-

Figure 2.  Vapor-liquid equilibria of the six binary subsystems at 298.15 K. Simulation-based Wilson 
predictions (lines) are compared with experimental literature  data30–38 (crosses).

Figure 3.  Vapor-liquid equilibria of the ternary subsystem water (1) + methanol (2) + ethanol (3) at 298.15 K 
and 11.819 kPa (red) as well as 8.628 kPa (black). Simulation-based Wilson predictions of the saturated liquid 
composition (line) and saturated vapor composition (dashed line) are compared with experimental literature 
 data39 (crosses).
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namic factor matrix Ŵ sampled directly with molecular simulation, employing the relation [DM] = [B]−1[Ŵ], in 
which all three symbols represent (n− 1)× (n− 1) matrices and [B] = [�]−1 , where

The corresponding equations for the binary mixtures are given in the supplementary section II online. Fig-
ures 4, 5 and 6 show the predicted values of the Fick diffusion coefficient matrix of the three ternary subsystems 
in different reference frames when the mole fraction of 2-propanol is kept constant, i.e. xC3H8O = 0.25 molmol

−1 . 
The predictions for the fourth ternary subsystem water + methanol + ethanol are presented in the supplemen-
tary Fig. S1 online. In case of the ternary subsystem consisting of alcohols only, both main elements of the Fick 
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Figure 4.  Elements of the Fick diffusion coefficient matrix in the molar (black circles), volume (blue squares) 
and mass reference frame (red triangles) of the ternary subsystem methanol (1) + ethanol (2) + 2-propanol (3) 
with x3 = 0.25 molmol

−1 at 298.15 K and 0.1 MPa. The green crosses represent the expected values in the 
binary limit x1 → 0 for the molar reference frame.

Figure 5.  Elements of the Fick diffusion coefficient matrix in the molar (black circles), volume (blue squares) 
and mass reference frame (red triangles) of the ternary subsystem water (1) + methanol (2) + 2-propanol (3) 
with x3 = 0.25 molmol

−1 at 298.15 K and 0.1 MPa. The green crosses represent the expected values in the 
binary limit x1 → 0 for the molar reference frame.
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diffusion coefficient matrix Dii generally increase with rising methanol concentration, which can be explained by 
the difference in size of methanol and ethanol molecules, i.e. smaller methanol molecules replace larger ethanol 
molecules, leading to faster diffusion. Both cross elements Dij increase in magnitude with rising methanol mole 
fraction, which indicates stronger association between methanol and ethanol molecules.

In case of the aqueous ternary subsystems, both main elements of the Fick diffusion coefficient matrix 
decrease with rising water mole fraction, which indicates an expansion of the hydrogen-bonding network and 
clustering that hinder diffusion. Generally, the cross element D12 increases in magnitude with rising water mole 
fraction, while D21 decreases. Unfortunately, there are no experimental Fick diffusion coefficient data for the 
studied ternary mixtures to assess the present predicted values. However, a good agreement with experimental 
values is expected because of the successful prediction of the Fick diffusion coefficient of most of the binary 
subsystems and the ternary subsystem water + methanol + ethanol, cf. Fig. 7 and Ref.22. Further, the predicted 
values are consistent with the expected asymptotic behavior in the limit of vanishing water concentration. This 

Figure 6.  Elements of the Fick diffusion coefficient matrix in the molar (black circles), volume (blue squares) 
and mass reference frame (red triangles) of the ternary subsystem water (1) + ethanol (2) + 2-propanol (3) with 
x3 = 0.25 molmol

−1 at 298.15 K and 0.1 MPa. The green crosses represent the expected values in the binary 
limit x1 → 0 for the molar reference frame.

Figure 7.  Fick diffusion coefficient of the six binary subsystems at 298.15 K and 0.1 MPa. Present simulation 
results (circles) are compared with experimental literature  data21,40–48 (crosses). The error bars are within symbol 
size.



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:12319  | https://doi.org/10.1038/s41598-021-91727-w

www.nature.com/scientificreports/

type of analysis has been outlined in previous  work12,22 and is briefly described in the supplementary material 
section II online. The corresponding numerical data are given in the supplementary Tables S1 to S3 online.

Influence of reference frame. In molecular dynamics simulations, the molar reference frame is usually employed 
to obtain Fick diffusion coefficients. On the other hand, experimental data are typically evaluated in the volume 
reference frame. To compare among different approaches, it is important to be aware how the according Fick 
diffusion coefficients relate to each other. The diffusion coefficient matrix in the molar reference frame DM can 
be transformed into its form in the volume reference frame DV employing [DV ] = [BVu][DM ][BuV ] with

where BVuik  and BuVik  are the elements of the BVu and BuV  matrices, respectively. v is the total molar volume 
v =

∑n
i=1 xivi and the n indicates the reference component. The required partial molar volumes vi were calculated 

from the composition dependence of the total molar volume of the mixture obtained from a fit of experimental 
 data49. The corresponding equations for the transformation between the reference frames are given in the sup-
plementary material section II online.

Here, the influence of varying velocity reference frame on the elements of the Fick diffusion coefficient 
matrix was studied for the regarded ternary and quaternary mixtures, cf. Figs. 4, 5, 6 and 8 . Generally, the main 
elements are less sensitive to the reference frame than the cross elements of the diffusion matrix. However, for 
the regarded mixtures, the values of the main elements change between 0.1 and 19% when transformed into the 
volume or mass reference frame. On the other hand, the cross elements may change by more than one order of 
magnitude. Consequently, cross elements that could be considered as negligible in the molar reference frame 
are not negligible in the volume or mass reference frame or vice versa. This evidences that the interpretation of 
the Fick diffusion coefficient matrix has to be done carefully. Thus, the potential presence of uphill diffusion and 
serpentine composition  trajectories13 due to significant cross-effects cannot be analyzed solely on the basis of the 
cross elements of the Fick diffusion coefficient matrix in one distinct reference frame. It should be noted that the 
smallest influence of the reference frame on the diffusion matrix was found for the ternary mixture containing 
only alcohols, which can be explained by their molecular similarity.

Influence of component order. There are different ways to order the components in a multicomponent mixture. 
Usually, the species with the highest concentration is chosen as the “solvent” due to accuracy concerns. However, 
the choice of component order is arbitrary and although a varying component order changes the values of the 
Fick diffusion matrix, the actual fluxes remain unchanged. Therefore, the elements of the Fick diffusion matrix 
for a specific component order can be rewritten as a linear combination of the elements of the Fick diffusion 
matrix for any other component order. The equations to transform the Fick diffusion coefficient matrix for dif-
ferent component orders are given in the supplementary material section II online.

(3)
BVuik = δik − xi(vk − vn)/v,

BuVik = δik − xi(1− vk/vn),

Figure 8.  Elements of the Fick diffusion coefficient matrix in the molar (black circles), volume (blue squares) 
and mass reference frame (red triangles) of the quaternary mixture water (1) + methanol (2) + ethanol (3) + 
2-propanol (4) for the regarded ten state points at 298.15 K and 0.1 MPa. The molar composition of the regarded 
state points is given in the supplementary Table S4 online.
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Figure 9 shows how the elements of the Fick diffusion coefficient matrix in the molar reference frame vary 
when the solvent is changed. The main element D11 increases with falling molar mass of the solvent, i.e. the high-
est values are those for water as the solvent. On the other hand, the highest values for D22 are found for ethanol 
and 2-propanol as solvents. Further, values of the elements D22 and D33 are the lowest when water is the solvent. 
Cross elements are more sensitive to the component order. They show a larger change in magnitude than the 
main elements when the solvent is varied, in several cases they even exhibit a change in sign. Numerical data are 
given in the supplementary Table S5 online.

Shear viscosity. Viscosity is closely related to diffusion as exploited e.g. by the Stokes–Einstein  equation50. 
Thus, an adequate prediction of the shear viscosity suggests the reliability of the predicted diffusion coefficients. 
Because of the lack of experimental data on transport diffusion coefficients of multicomponent mixtures, it is 
compelling to consider experimental shear viscosity data. Despite the strong viscous non-idealities of aqueous 
alcoholic mixtures, molecular modeling and simulation is able to predict the composition dependence of the 
shear viscosity with an absolute average deviation of 5.4% for all binary subsystems, cf. Fig. 10. In order to com-
pare the predicted shear viscosity with experimental literature data for the ternary and quaternary mixtures, the 
McAllister four body  equation51 was fitted to the present molecular simulation results. As can be seen in Fig. 11, 
the resulting fit agrees well with the available experimental values with an average relative deviation of 1.8%. 
The absolute average deviation for all ternary mixtures is 7.5%. Numerical data are given in the supplementary 
Table S6 online.

Discussion and conclusion
A comprehensive study on the Fick diffusion coefficient matrix of the quaternary mixture water + methanol + 
ethanol + 2-propanol and its subsystems was conducted at 298.15 K and 0.1 MPa. The Maxwell–Stefan diffu-
sion coefficient was sampled with equilibrium molecular dynamics and the Green–Kubo formalism, employing 
rigid, non-polarizable force fields based on Lennard–Jones sites and superimposed point charges. A thorough 
analysis of system size effects and the corresponding corrections was carried out. The thermodynamic factor 
was calculated via Kirkwood–Buff integration. In this way, the Fick diffusion coefficient matrix was determined 
consistently on the basis of the selected force field model. The predictive power of the employed molecular 
simulation techniques was confirmed by a satisfactory comparison with experimental vapor-liquid equilibrium 
and Fick diffusion data of the binary subsystems. Additional confidence about the present results is provided by 
the good agreement between the predicted shear viscosity and experimental literature data for the ternary and 
quaternary  mixtures56.

The influence of the reference frame on the Fick diffusion coefficient matrix of the quaternary mixture and 
its ternary subsystems was also analyzed. It was found that the main elements of the diffusion matrix exhibit a 
weaker dependence on the reference frame than the cross elements. As expected, the ternary mixture consist-
ing solely of alcohols shows smaller variations among different reference frames. On the other hand, the main 

Figure 9.  Elements of the Fick diffusion coefficient matrix in the molar velocity reference frame of the 
quaternary mixture water (W) + methanol (M) + ethanol (E) + 2-propanol (P) with varying component order: 
MEPW (blue squares), WEPM (red triangles), WMPE (green diamonds) and WMEP (black circles) at 298.15 
K and 0.1 MPa. The last component is regarded as the solvent. Note that the indices i and j of Dij refer to the 
elements of the diffusion matrix for the corresponding component order. The molar composition of these state 
points is given in the supplementary Table S4 online.
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elements of the diffusion matrix of the aqueous mixtures may differ by up to 19% when the reference frame is 
varied. This can in part be explained by the relatively large differences between the partial molar volume of water 
and its pure substance volume, which may reach up to −17%49. The substantial dependence of the cross elements 
of the Fick diffusion coefficient matrix on the reference frame makes its interpretation challenging. Further, it 
also depends on the component order, which was shown to lead to strong variations of the cross elements for the 
studied mixtures. Thus, the presence of strong coupling effects related to uphill diffusion phenomena cannot be 
directly inferred from the ratio between main and cross elements of any given Fick diffusion coefficient matrix. 
Clearly, the physical interpretation of this matrix deserves future investigations, e.g. with an extensive analysis 
of frame-independent Fick diffusion coefficients as proposed by Ortiz de Zárate and  Sengers57.

Methods
Equilibrium molecular dynamics simulations of the quaternary mixture water + methanol + ethanol + 2-pro-
panol as well as all of its ternary and binary subsystems were performed, employing rigid, non-polarizable force 
fields based on Lennard–Jones sites and superimposed point charges that may or may not coincide with their 
site  positions20,58–60. A detailed description of these force fields is given in the supplementary material online. 
Their capability to adequately predict the self-diffusion coefficient and the shear viscosity of the pure fluids and 
the aqueous alcoholic binary mixtures has been reported in previous  work20,61,62. Further, these models were 
successfully employed to predict the Fick diffusion coefficient matrix of the ternary mixture water + methanol 
+  ethanol21,22.

Figure 10.  Shear viscosity of the six binary subsystems at 298.15 K and 0.1 MPa. Present simulation results 
(circles) are compared with experimental literature  data52–55 (crosses).

Figure 11.  Shear viscosity of the quaternary mixture water + methanol + ethanol + 2-propanol at 298.15 K 
and 0.1 MPa. The  McAllister51 equation fit to present molecular simulation results (circles) is compared 
with experimental literature  data56 (crosses). The molar composition of these state points is given in the 
supplementary Table S7 online.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12319  | https://doi.org/10.1038/s41598-021-91727-w

www.nature.com/scientificreports/

Transport data were sampled by equilibrium molecular dynamics and the Green–Kubo formalism. This 
approach was preferred over non-equilibrium methods because intra- and transport diffusion coefficients as well 
as shear viscosity can be sampled concurrently. For an arbitrary transport coefficient � , the generic Green–Kubo 
expression is

where G is a transport property specific pre-factor, A the related perturbation, Ȧ its time derivative and the 
brackets < · · · > denote ensemble averaging. The working equations for the sampling of the intra-diffusion and 
phenomenological coefficients as well as the shear viscosity are given in the supplementary material section III 
online together with technical simulation details.

The thermodynamic factor of the studied mixtures was estimated from the microscopic structure based on 
Kirkwood–Buff integrals Gij

63

where gij (r) is the radial distribution function. Because Eq. (5) is defined for the grand canonical ensemble, con-
vergence issues have to be expected when the canonical ensemble is  employed64 so that corrections are required. 
For this purpose, the truncation method by Krüger et al.65 was applied here. Moreover, corrections of the radial 
distribution function based on the method by Ganguly and van der  Vegt66 were employed. Extrapolation to 
the thermodynamic limit was not necessary in this context because of the rather large ensembles containing 
N = 6000 molecules. Expressions for the sampling of the thermodynamic factor matrix have been derived by 
Fingerhut et al.23 based on Ben-Naim’s formalism to determine mole number derivatives of the chemical potential 
from Kirkwood–Buff  integrals67 and are not repeated here.

Finite size corrections. It is well known that small molecular systems under periodic boundary condi-
tions are associated with systematic errors when diffusion coefficients are calculated. The correction by Yeh and 
 Hummer68 (YH) is the most widely employed method to account for finite size effects. This correction, based on 
the shear viscosity η and the edge length of the simulation volume L, i.e. 2.837297 · kBT/(6πηL) , is widely used 
since it does not require additional simulation runs. However, it has been demonstrated that the YH correction 
term is not always  adequate69. A review on this topic was recently published by Celebi et al.70.

For multicomponent mixtures, an approach based on the correction of the underlying phenomenologi-
cal coefficients Lij instead of Maxwell–Stefan or Fick diffusion  coefficients71 was proposed in previous  work12. 
Because the present quaternary mixture is dominated by strong intermolecular interactions, a significant system 
size dependence was only found for the main phenomenological coefficients Lii , whereas no clear system size 
dependence was identified for the strongly scattering cross phenomenological coefficients Lij . Here, the system 
size dependence of three ternary mixtures was studied by performing series of simulations with varying system 
size containing 512–8000 molecules. The infinite size values were obtained from the extrapolation 1/L → 0 of 
the intra- and phenomenological diffusion coefficients.

In case of the intra-diffusion coefficients, the YH correction term yields an overestimation between 10% and 
4% for systems containing 1000 and 8000 molecules, respectively, cf. supplementary Figs. S2, S3, S4 and S5 online. 
Note that the statistical uncertainty of the simulation results was throughout below 0.5%.

Similarly, the values for an infinite system size were calculated for all main Lii and cross phenomenological 
coefficients Lij of the studied ternary mixtures. The fast correction procedure based on normalized coefficient 
 values12 leads to corrections of the main and cross phenomenological coefficients for simulations with 6000 
molecules of approximately 5% and 4%, respectively. Infinite size extrapolated and corrected diffusion values 
exhibit a good agreement, with relative deviations below 1.5% and 4%, respectively. A graphical comparison is 
shown in Fig. 12 for the mixture water + ethanol + 2-propanol. Further examples can be found in the supple-
mentary Figs. S6, S7 and S8 online.

Because the phenomenological coefficients are underlying to the Maxwell–Stefan and Fick diffusion coef-
ficients, both are expected to be associated with finite size effects. The extrapolated values for infinite size agree 
on average within 1.8% with the ones based on the fast correction procedure for 6000 molecules. Graphical 
comparisons are shown in the supplementary Figs. S9, S10, S11 and S12 online.

The Fick diffusion coefficient matrix is indeed associated with finite size effects. A strong size dependence was 
observed for both main elements, whereas a weaker size dependence was found for the cross elements that was in 
many cases difficult to identify due to data scattering. Jamali et al.71 proposed a YH-based correction only for the 
main elements of the Fick diffusion matrix and did not identify any size dependence of the cross elements in their 
data, which can be explained by data scattering covering up weak size effects. In fact, finite size effects observed 
for the Fick diffusion matrix are the logical consequence of the ones of the underlying phenomenological coef-
ficients. When data scattering is reduced, e.g. by employing a linear fit to the phenomenological coefficients, a 
clear system size dependence is observed even for the cross elements where it could not be recognized otherwise, 
cf. supplementary Fig. S13 online.

A comparison was made between the YH correction by Jamali et al.71 and the fast correction method based 
on the phenomenological  coefficient12. For the main Fick diffusion coefficient element D11 , both approaches 
usually yield an excellent agreement with the extrapolated infinite size value for systems with more than 1000 
molecules. In case of D22 , the magnitude of the size effect is clearly overestimated by the YH term. For the mix-
tures studied in this work, it is evident that the required system size correction is different for each of the main 
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1

G
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0
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〈
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elements of the diffusion matrix. However, the correction method by Jamali et al.71 corrects both main elements 
by the same value, which can explain the overestimation of D22 . For the cross Fick diffusion coefficient elements, 
the fast correction method is usually in good agreement with the extrapolated values, especially when a strong 
size dependence is present, cf. Fig. 13 and supplementary Figs. S14, S15 and S16 online. Therefore, the Fick dif-
fusion coefficient data from molecular simulation were calculated here throughout with the fast correction of 
all phenomenological  coefficients12.

Data availability
All data analyzed in this study are included in this published article and its Supplementary Material files. Other 
data are available from the corresponding author upon request.

Figure 12.  Phenomenological coefficients of the ternary subsystem water (1) + ethanol (2) + 2-propanol (3) 
( xH2O = 0.125 , xC2H6O = 0.625 and xC3H8O = 0.25 molmol

−1 ) as a function of the inverse edge length of 
the simulation volume L at 298.15 K and 0.1 MPa. The uncorrected simulation results (blue bullets) are shown 
together with the corrected values using the fast correction  procedure12 for N = 6000 (red crosses). The blue 
dashed line is a linear fit to the uncorrected simulation results.

Figure 13.  Elements of the Fick diffusion coefficient matrix of the ternary subsystem water (1) + ethanol (2) + 
2-propanol (3) ( xH2O = 0.125 , xC2H6O = 0.625 and xC3H8O = 0.25 molmol

−1 ) as a function of the inverse edge 
length of the simulation volume L at 298.15 K and 0.1 MPa. The blue dashed line is a linear fit to the uncorrected 
simulation results (blue bullets). The coefficients calculated with the corrected values using the fast correction 
 procedure12 (crosses) are compared with those according to the procedure by Jamali et al.71 (cyan triangles). 
The green squares represent the Fick diffusion coefficient values based on the individually extrapolated 
phenomenological coefficients.
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