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Genetic dependency of Alzheimer’s 
disease‑associated genes 
across cells and tissue types
Suraj K. Jaladanki1,2, Abdulkadir Elmas1,2, Gabriel Santos Malave1 & Kuan‑lin Huang1*

Effective treatments targeting disease etiology are urgently needed for Alzheimer’s disease (AD). 
Although candidate AD genes have been identified and altering their levels may serve as therapeutic 
strategies, the consequence of such alterations remain largely unknown. Herein, we analyzed CRISPR 
knockout/RNAi knockdown screen data for over 700 cell lines and evaluated cellular dependencies 
of 104 AD‑associated genes previously identified by genome‑wide association studies (GWAS) and 
gene expression network studies. Multiple genes showed widespread cell dependencies across tissue 
lineages, suggesting their inhibition may yield off‑target effects. Meanwhile, several genes including 
SPI1, MEF2C, GAB2, ABCC11, ATCG1 were identified as genes of interest since their genetic knockouts 
specifically affected high‑expressing cells whose tissue lineages are relevant to cell types found in 
AD. Overall, analyses of genetic screen data identified AD‑associated genes whose knockout or 
knockdown selectively affected cell lines of relevant tissue lineages, prioritizing targets for potential 
AD treatments.

Abbreviations
AD  Alzheimers’ disease
GWAS  Genome-wide association studies
DepMap  The Cancer Dependency Map Project
EOAD  Early-onset Alzheimer’s disease
LOAD  Late-onset Alzheimer’s disease
Aβ  Amyloid β peptide
HL  Hematopoietic and lymphoid tissue
CNS  Central nervous system
AG  Autonomic ganglia

Globally, an estimated 43.8 million individuals were affected by dementia in 2016, a more than two-fold increase 
from 20.2 million in 1990, and is expected to continue  rising1. Alzheimer’s disease (AD) is the leading cause 
of dementia, and only supportive treatments are currently available for AD. AD medications consist of cho-
linesterase inhibitors (donepezil, galantamine, and rivastigmine), NMDA receptor uncompetitive antagonist 
memantine, or a combination of both (donepezil)2. These medications only address symptoms and are helpful 
for a limited timespan in improving patients’ cognitive abilities. They are not disease-modifying therapies and 
do not alter disease progression. Other novel therapies for both early-onset AD (EOAD) and late-onset AD 
(LOAD) have focused on APP, PSEN1, and PSEN2, identified through rare mutations in familial EOAD cases, 
that cause amyloid-β deposition. Testing has been carried out through the administration of anti-amyloid-β 
exogenous monoclonal antibodies, but this approach has not yielded promising  results3–5. One such antibody is 
aducanumab which was recently approved for expedited review by the FDA but is yet to be validated and dem-
onstrates inconclusive clinical  efficacy6,7. Several gamma secretase inhibitors have also been tested but failed in 
clinical studies and were ultimately  discontinued5.

Recent research has discovered new genetic risk loci for LOAD by genome-wide association studies (GWAS) 
or transcriptomic studies. Identified genes have been found to be strongly expressed in immunity, lipid metabo-
lism, tau binding proteins, and amyloid precursor protein  metabolism8. One recent study confirmed 20 previ-
ous risk loci (CR1, BIN1, INPP5D, HLA-DRB1, TREM2, CD2AP, NYAP1, EPHA1, PTK2B, CLU, SPI1, MS4A2, 
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PICALM, SORL1, FERMT2) and identified five novel loci (IQCK, ACE, ADAM10, ADAMTS1, and WWOX)8. 
A parallel GWAS study found 29 risk loci, including previously classified risk loci and several novel  loci9. In 
parallel, transcriptomic analyses found at least 50 network hub genes upregulated in co-expression networks 
of LOAD compared to normal brain tissues. For example, TYROBP was identified as a pivotal regulator of the 
phagocytotic  pathway10, cross-validating with immunity-implicated genes found by GWAS.

While GWAS and transcriptomic studies have nominated gene candidates associated with AD pathology, 
the therapeutic viability of manipulating functions or levels of such targets remain largely unknown. An ideal 
gene target should not only show sensitivity by being implicated in AD etiology, but also specificity by which 
its targeting intervention would not cause widespread, off-target effects (e.g., house-keeping genes or genes 
serving essential cognitive functions). Genome-wide CRISPR-Cas9 knockout or RNAi knockdown screens are 
tools which can help prioritize therapeutic targets and can guide inhibition treatments that are both effective and 
potentially have reduced  toxicity11. The Cancer Dependency Map Project (DepMap) has curated dependency 
profiles of almost 18,000 genes across more than 700 human cell  lines11,12. While involving multiple cell lines 
that share lineages with cells implicated in AD, the dataset has not been used to evaluate AD targets. Herein, we 
leveraged the large-scale transcriptomic/proteomic expression and dependency data from the DepMap genome-
scale CRISPR-Cas9 and RNAi screens to assess the effects of knocking out and knocking down candidate AD 
associated genes, revealing their potential as precision therapeutic targets.

Methods
Data source and download. Genes used in this publication were obtained from multiple papers. Genome 
wide associated studies (GWAS) that identified genes implicated in AD were downloaded from Kunkle et al. and 
Jansen et al.8,9. 42 unique genes from these two sources were compiled, and APP, PSEN1, and PSEN2 were added 
to the AD risk gene  list13. 60 key AD network hub genes associated with AD were downloaded from Zhang 
et al.10. Cancer gene expression and dependency scores were downloaded from the DepMap Portal Public 20Q2 
release in May  202014.

Expression‑driven dependency using DepMap. The DepMap Public 20Q2 release contains the Achil-
les dataset and results of genome-scale CRISPR knockout screens for 19,144 genes across 1206 cell lines, includ-
ing both cancer and normal cell lines. 20 tissue types from DepMap with at least 25 cell lines each were selected 
for further analysis from an original list of 40 tissue types. For each of the 104 genes associated with AD, gene 
expressions and corresponding CERES dependency scores were analyzed. CERES is a computational method 
developed by Meyers et  al., which estimates gene dependency levels derived from CRISPR-Cas9 essentiality 
screens and factors in the possibility of an increase in false positives in copy number amplified  locations15. 
For each AD-associated gene, we calculated the proportion of significantly negative CERES scores (< − 0.5) by 
tissue type to generate heatmaps. A negative CERES score indicates that a gene knockout results in a slower 
growth rate of a cell line, and a score lower than − 0.5 indicates a notable  reduction15. We also calculated the 
Pearson correlation and corresponding p-values for each AD-associated gene after stratifying the gene expres-
sion and CERES scores by tissue type. The analysis was limited to examining expression-driven dependencies in 
three tissue types: hematopoietic and lymphoid tissue, central nervous system, and autonomic ganglia for their 
involvement in AD presentation and  progression16–18. Overall, 50 gene and tissue combinations were significant 
at the p-value of 0.05. Volcano plots display the correlation coefficients (x-axis) against the negative log of FDR 
corrected p-values (y-axis). We focused on gene-tissue combinations with negative correlation coefficients as a 
high expression of the AD-associated gene and corresponding low CERES score indicates that the gene is needed 
for cancer cell survival in knockout experiments. Scatterplots of dependency versus expression were plotted for 
AD gene tissue combinations with the highest negative log p-values, and correlation coefficients were calculated.

The DepMap Public 20Q2 release also contains genetic dependency scores estimated from RNAi and CRISPR 
loss-of-function screens for 17,309 genes across 712 cell  lines14. These scores were calculated using DEMETER2, 
a framework developed by McFarland et al. to unify results from multiple large-scale RNAi screening  datasets19. 
Calculations of negative dependency scores, volcano plots highlighting correlations, and scatterplots of AD-
associated genes were completed in a similar process as CERES scores. Analysis of genetic dependency data was 
performed using Python (v 3.7.6), Numpy (v 1.7.4), and SciPy (v 1.3.2).

Results
Gene list and DepMap data assembly. A curated list of 104 AD-associated genes, consisting of 44 AD 
risk genes and 60 AD network hub genes, were utilized for this study (see Supplementary Table S1). There were 
20 tissue types with data for at least 25 cell lines each from the DepMap 2020 Q2 release which were selected for 
further analysis (Table 1). We specifically highlighted results from three tissue types most relevant to AD etiol-
ogy: hematopoietic and lymphoid tissue (HL, given the now established role of immune response and phagocy-
totic pathway in AD), central nervous system (CNS), and autonomic ganglia (AG)16–18.

Pan‑tissue genetic dependency. To examine the genetic dependency of AD-associated genes across tis-
sues, we identified the proportion of cell lines within each tissue type showing significant negative dependency 
scores (< − 0.5), as lower scores indicate that a gene is required for cell survival and proliferation. From 44 AD risk 
genes found through GWAS, KAT8 showed predominant negative dependency scores in the CRISPR knockout 
data (CERES score (< − 0.5), with nearly 100% negative dependency scores across all 22 examined tissue types 
(Fig. 1a). FERMT2 had varying levels of negative CERES scores across tissues with ovary, pleura, and skin cell 
lines having the highest proportion of negative scores. MEF2C and SPI1 have negative CERES scores localized to 
the hematopoietic and lymphoid tissue (HL) cell lineage, with 33% and 29%, respectively. We also identified the 
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proportion of cell lines with significant negative genetic dependency scores (DEMETER2 score < − 0.5) utilizing 
data from large-scale RNAi screens. From the list of AD risk genes, KAT8 had a range of significant negative 
DEMETER2 scores from 17 to 75% across tissue types, with a peak of 75% in endometrium cell lines (Fig. 1b). 
ADAMTS4, BIN1, SORL1, and SUZ12P1 had their highest levels of negative DEMETER2 scores in autonomic 
ganglia (AG) cell lines. SPI1 had its highest proportion of negative DEMETER2 scores in HL cell lines.

Among the 60 AD network hub genes, BUB1, DTL, MED6, PCBP2, RPS18, RPS27, and TIMELESS had signifi-
cant negative CERES scores of approximately 100% across tissue types (Fig. 2a). UBE2C, ACTG1, CREBBP had 
varying levels of negative CERES scores ranging from 20 to 60% across tissue types. GLS and GAB2 showed high-
est proportion of negative CERES scores in HL (33%) and AG (35%) cell lines, respectively. From AD-associated 
network hub genes, RPS18 had approximately 100% negative DEMETER2 scores across all tissue types (Fig. 2b). 
ACTG1, BUB1, DTL, MED6, PCBP2, RPS27, and TIMELESS had varying levels of negative DEMETER2 scores 
from 10 to 75% across tissue types. The largely concordant CRISPR/RNAi screen results suggest that knocking 
out/down of several genes, including KAT8 and FERM2, results in widespread consequences affecting most 
cells’ survival, whereas other candidates (e.g., MEF2C in HL, GAB in AG) more selectively affect fractions of 
AD-relevant cell types, thus may serve as better targets.

Expression‑driven cellular dependencies of AD risk genes. We reasoned that AD-associated genes 
may show aberrant expression in disease-driving/affected cells. Thus, the candidate genes would likely serve as 
better targets if their knockout or knockdown most strongly influenced the cells showing aberrant expression 
of the targeted genes. We next sought to further filter for genes whose expression is significantly correlated 
with dependencies of cell lines within these tissue types, i.e., expression-driven dependency. We conducted a 
systematic Pearson correlation analysis to identify such genes of interest, and identified four genes whose expres-
sion was significantly associated with cellular dependencies (FDR < 0.05), including MEF2C in HL cell lines 
(R = − 0.6, FDR = 8.13e−06), SPI1 in HL cell lines (R = − 0.6, FDR = 9.38e−06), PSEN2 in HL cell lines (R = − 0.4, 
FDR = 0.0131), and CNTNAP2 in HL cell lines (R = − 0.3, FDR = 0.0433) (Fig. 3a). We further conducted the 
correlation analysis using RNAi knockdown-based DEMETER2 scores to identify similarities and differences 
to CERES results. We found five genes with significant expression-driven dependency (FDR < 0.05), including 
SPI1 in HL cell lines (R = − 0.5, FDR = 0.00147), MEF2C in HL cell lines (R = − 0.5, FDR = 0.00545), HESX1 in 
HL cell lines (R = − 0.5, FDR = 0.00578), CNTNAP2 in HL cell lines (R = 0.5, FDR = 0.0424), KAT8 in CNS cell 
lines (R = 0.5, FDR = 0.00348) (Fig. 3b).

We next highlighted the cell lines that were most affected by knockout/knockdowns; given the challenge 
of functionally modeling AD in human  systems20, these lines may provide alternatives that show aberrantly 
high expression of the selected AD-associated genes. For SPI1 in HL cell lines, these include NOMO1, THP1, 
MONOMAC1, THP1, and EOL1. For MEF2C in HL cell lines, these were MM1S, KMS20, OCIMY7, KMS28BM, 
KASUMI2, and L363 (Fig. 3c,d).

Table 1.  Overview of tissue types and number of unique cell lines used for cell line genetic dependency 
analysis. 20 tissue types from the Cancer Dependency Map (DepMap) project with data for at least 25 cell lines 
were utilized for this analysis.

Lineage Dependency CERES Dependency DEMETER2 mRNA

Autonomic ganglia 20 9 28

Biliary tract 28 1 39

Bone 28 15 37

Breast 34 82 57

Central nervous system 60 55 84

Endometrium 24 20 33

Haematopoietic and lymphoid tissue 82 61 205

Kidney 21 29 34

Large intestine 37 44 67

Liver 23 18 25

Lung 97 129 192

Oesophagus 25 24 32

Ovary 42 38 58

Pancreas 34 33 51

Pleura 9 6 17

Skin 51 46 67

Soft tissue 38 25 65

Stomach 26 25 41

Upper aerodigestive tract 31 18 43

Urinary tract 29 12 36
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Expression‑driven cellular dependencies of AD network hub genes. We applied the same expres-
sion-driven dependency analysis for the AD network hub genes. Based on the CRISPR screen data, we identi-
fied six genes whose expression was significantly associated with cellular dependencies (FDR < 0.05), including 
GAB2 in HL cell lines (R = − 0.5, FDR = 0.000221), ACTG1 in AG cell lines (R = − 0.7, FDR = 0.0203), RFX4 in 
CNS cell lines (R = − 0.4, FDR = 0.0203), AQP4 in CNS cell lines (R = − 0.4, FDR = 0.0222), FANK1 in AG cell 
lines (R = 0.7, FDR = 0.0436), MED6 in CNS cell lines (R = 0.4, FDR = 0.043254) (Fig. 4a). Using the RNAi screen 
data, we identified one gene with significant expression-driven dependency (FDR < 0.05), ABCC11 in HL cell 
lines (R = − 0.5, FDR = 0.00147) (Fig. 4b).

To highlight potential cell lines that can help study the implication of targeting aberrant expressions of these 
genes, JURLMK1 showed the lowest CERES dependency score and high expression for GAB2 in HL cell lines 
(Fig. 4c). For ACTG1 in AG cell lines, the cell lines of interest were LS, GIMEN, CHP212, SKNAS, and COGN278. 
Based on DEMETER dependency scores, for ABCC11 in HL cell lines, A3KAW, A4FUK, OPM2, KASUMI1, and 
PFEIFFER were highlighted (Fig. 4d). For AQP4 in AG, we noted that the cell lines KPNSI9S, SKNFI, SKNDZ, 
KPNYN, and SKNBE2 show expression. For GLS in CNS, the cell lines were LN235, U178, KNS60, LN215, and 
HS683 (see Supplementary Fig. S1).

Figure 1.  Genetic dependency of AD risk genes in CRISPR knockout and knockdown screens across tissue 
lineages. (a) The proportion of pass-DepMap-threshold negative dependency scores (< − 0.5) in cell lines by 
tissue types based on the CERES scores derived from CRISPR knockout screens. (b) The proportion of pass-
DepMap-threshold negative dependency scores (< − 0.5) in cell lines by tissue types based on the DEMETER2 
scores derived from RNAi knockdown screens. For both (a) and (b), 20 tissue types from the Cancer 
Dependency Map (DepMap) project with data for at least 25 cell lines were utilized to evaluate 44 AD risk genes. 
A negative dependency score indicates a gene’s necessity for a cell line’s growth and survival.
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Discussion
We conducted a comprehensive genetic dependency analysis of 104 AD-associated genes using expression and 
genetic screen data from over 700 cell lines. The analysis enabled us to identify whether genetic knockdown or 
knockout of these AD-associated genes may affect cellular survival. Our results show that the knockdown or 
knockout of multiple AD-associated genes (KAT8, FERMT2, BUB1, DTL, MED6, PCBP2, RPS18, RPS27, TIME-
LESS, ACTG1, and UBE2C) significantly reduced survival of cell lines across multiple tissues. Thus, down-regulat-
ing or inhibiting these genes could lead to pervasive damaging effects and may have limited therapeutic viability.

Meanwhile, several genes showed dependency that is correlated with gene expression within cell lineages. 
After limiting our analysis to three tissue types implicated in AD, hematopoietic and lymphoid tissue, central 
nervous system, and autonomic ganglia, we demonstrated that SPI1, MEF2C, GAB2, and ABCC11 showed 
expression-driven dependencies in hematopoietic and lymphoid tissue cell lines. SPI1 and MEF2C were con-
sistently identified in both CRISPR knockout and RNAi screen data, further highlighting their potential as AD 
treatment targets.

Dysregulated microglial response is a hallmark of  AD21,22, and the candidates showing expression-driven 
dependency in the hematopoietic and lymphoid tissue analysis may present targets whose intervention may 
only affect disease-associated microglia (DAM). For example, SPI1 (PU.1) is a transcription factor encoded by 
SPI1; it is considered as a master regulator of macrophages necessary for the development and differentiation 
of microglia. GWAS, eQTL, and epigenetic analyses have recently implicated SPI1 and its regulated network in 
 AD23. SPI1 specifies regulatory regions and establishes the chromatin  landscape24, and its target genes include 
TYROBP, a key regulator upregulated in  LOAD10. In a study by Olmos-Alonso, et al., inhibition of Colony 
Stimulating Factor 1 Receptor (Csf1r), another target gene of SPI1, led to decreased expression of SPI1 and 
microglial proliferation in APPswe/PSEN1dE9 mice, a transgenic model of AD-like  pathology25. As another 

Figure 2.  Genetic dependency of AD network hub genes in CRISPR knockout and knockdown screens across 
tissue lineages. (a) The proportion of pass-DepMap-threshold negative dependency scores (< − 0.5) in cell lines 
by tissue types based on the CERES scores derived from CRISPR knockout screens. (b) The proportion of pass-
DepMap-threshold negative dependency scores (< − 0.5) in cell lines by tissue types based on the DEMETER2 
scores derived from RNAi knockdown screens. For both (a) and (b), 20 tissue types from the Cancer 
Dependency Map (DepMap) project with data for at least 25 cell lines were utilized to evaluate 60 AD network 
hub genes. A negative dependency score indicates a gene’s necessity for a cell line’s growth and survival.
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example, Myocyte-enhancer factor 2C (MEF2C) has been identified as a candidate regulator in establishing the 
chromatin landscape of  microglia24. MEF2C restrains microglial inflammatory  response26, which is associated 
with AD pathology in multiple recent studies, and its expression is lost in aging brains. The expression of MEF2C 
in microglia is negatively regulated by interferon type I (IFN-1) expressed chronically during  aging14. Chronically 
expressed IFN-1 downregulates MEF2C, and loss of MEF2C leads to a ‘priming’ state as microglia become more 
sensitive to immune stimuli. A study by Sao et al. demonstrated that MEF2C mRNA expression in AD subjects 
was significantly lower than expression in control  subjects27. Given that AD is a neurodegenerative disease with 
a chronic pro-inflammatory state, downregulation of MEF2C expression may contribute to exaggerated pro-
inflammatory conditions of the  disease27. Our results support the importance of SPI1 and MEF2C in HL cells 
expressing the respective genes (Fig. 3). While these genes may be inhibited or augmented in a targeted manner, 
the effects of various dosing and timing needs to be thoroughly examined due to their regulatory functions.

A limitation of our study is that most cell lines screened are not derived from AD-patient or brain tissues. 
Cell lines in the DepMap project, as most of the currently established human cell lines, are derived from cancer 
samples that may show properties not relevant to AD etiologies. Further, our analysis may miss insights from 
several critical cell types in AD not represented in DepMap, such as astrocytes and oligodendrocytes, and results 
for microglia are approximated using hematopoietic and lymphoid cell data. A wide array of cell lines derived 
from such tissues is unlikely to be available soon. Meanwhile, the gene candidates nominated herein to affect 
proximal cell types may be further investigated using relevant models, such as patient-derived iPSC or further 
derived cell lines. Data from genetic screen strategies targeting AD etiology could also strengthen findings. For 
example, Chiu et al. (2020) used a CRISPR-Cas9 screen to identify regulators of amyloid β peptide (Aβ) synthe-
sis and described Cib1 as a novel negative regulator in this  process28. Lastly, our expression-driven dependency 
analysis identifies targets whose knockout/knockdown/inhibition shows specificity in disease-aberrant cells, and 
even with limited use of AD models, our findings help rule out genes that are essential for cell lines across tissues 
or show unpredictable essentiality patterns that may be undesirable for a treatment target.

Figure 3.  Expression-driven Dependency of AD Risk Genes. (a) A volcano plot showing expression-driven 
dependency of AD risk genes based on CRISPR knockout screen data. (b) A volcano plot showing expression-
driven dependency of AD risk genes based on RNAi knockdown screen data. For (a) and (b), Pearson 
correlation coefficients were calculated for AD risk genes using a gene’s expression versus the dependency scores 
for three tissue types (color-coded) relevant to AD etiology: hematopoietic and lymphoid tissue (HL), central 
nervous system (CNS), and autonomic ganglia (AG). The correlation plots of the expression-driven dependency 
were shown for associations found in the HL cell lines, including (c) SPI1 and MEF2C expression with their 
respective CERES dependency scores, as well as (d) with their respective DEMETER2 dependency scores. The 
best-fitted regression lines are shown in red and the cell lines with the highest expression and dependency are 
further labeled in each plot.
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Conclusions
This study utilizes CRISPR knockout/RNAi knockdown screen data from DepMap to highlight potential can-
didates, from a list of AD-associated genes, to be further investigated as AD treatment targets. The expression-
driven dependency analyses uniquely identify SPI1, MEF2C, GAB2, ABCC11, and ACTG1, to have desirable 
on- vs. off-target effects. These results provide a basis for applying these methods to newly identified genes in 
AD and evaluating targets in other genetic disorders.

Data availability
The datasets generated and analyzed in the current study are available from the DepMap project under the 
DepMap Public 20Q2 release https:// doi. org/ 10. 6084/ m9. figsh are. 12280 541. v3(14).
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