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A machine learning approach 
to predict healthcare cost of breast 
cancer patients
Pratyusha Rakshit1*, Onintze Zaballa1, Aritz Pérez1, Elisa Gómez‑Inhiesto2, 
Maria T. Acaiturri‑Ayesta2 & Jose A. Lozano1

This paper presents a novel machine learning approach to perform an early prediction of the 
healthcare cost of breast cancer patients. The learning phase of our prediction method considers the 
following two steps: (1) in the first step, the patients are clustered taking into account the sequences 
of actions undergoing similar clinical activities and ensuring similar healthcare costs, and (2) a Markov 
chain is then learned for each group to describe the action‑sequences of the patients in the cluster. 
A two step procedure is undertaken in the prediction phase: (1) first, the healthcare cost of a new 
patient’s treatment is estimated based on the average healthcare cost of its k‑nearest neighbors in 
each group, and (2) finally, an aggregate measure of the healthcare cost estimated by each group is 
used as the final predicted cost. Experiments undertaken reveal a mean absolute percentage error as 
small as 6%, even when half of the clinical records of a patient is available, substantiating the early 
prediction capability of the proposed method. Comparative analysis substantiates the superiority of 
the proposed algorithm over the state‑of‑the‑art techniques.

An electronic health record (EHR) is an electronic version of a patient’s clinical history over time. It comprises 
all administrative clinical data of a patient in a healthcare organization, including his/her demographics, diag-
nosis, medications, laboratory data, and associated costs, and so on. The plethora of longitudinal patients’ data 
of an EHR can be utilized for developing patient-centered personalized healthcare solutions, including cost. It 
is however worth mentioning that the healthcare costs, ranging from clinician’s fees to the cost of hospital stays 
and medicines, are escalating at a rapid rate around the  world1, 2. It has motivated the researchers to take keen 
interest in controlling this upsurge in the healthcare costs. The crucial step to control the healthcare cost is to 
enable the healthcare organizations to predict the possible future cost of individual patients. It in turn helps to 
identify the individuals at the highest risk of enduring the significant costs in future. It thus helps to prioritize 
the allocation of scarce resources among the patients in a healthcare organization for efficient care management.

Moreover, a report from The Commonwealth Fund (2012) emphasizes the need to identify high-cost patients 
as the first step towards achieving “rapid improvements in the value of services provided”3. A proactive approach 
to address this problem is to identify patients who are at risk of becoming high-cost patients accurately before 
substantial unnecessary costs have been incurred and health condition has deteriorated further. Eventually, 
this calls for prediction of possible total healthcare cost of a patient as early as possible when a limited volume 
of clinical records of the given patient is provided. In other words, another important aspect in the context of 
healthcare cost prediction is to devise a model using a training set of complete clinical records of some patients to 
predict the total healthcare cost of a new patient as accurately and also as early as possible, preferably before the 
availability of the patient’s full-length clinical record. Such early prediction of future healthcare cost can be used 
to judiciously identify high-risk high-cost patients and prevent crises in healthcare organizations. It is obvious 
that the earliness of the prediction may affect the accuracy. It has motivated the researchers to build a model to 
predict healthcare cost as early as possible while maintaining an appropriate level of accuracy.

Nevertheless, healthcare cost prediction based on individual patient’s characteristics is a challenging issue 
from the data mining perspective due to the non-Gaussian skewed distribution of the cost data of the  patients4. 
Studies  in5, 6 reveal dubious efficacy of the statistical methods to predict the healthcare cost. Furthermore, the 
traces of linear regression and rule-based approaches are also found in  literature2, 6 for the cost prediction. But 
the requirement of a lot of domain knowledge has restricted their applications for most of the real world eco-
nomic data of the  patients7. Now-a-days, machine learning algorithms, including clustering and classification 
techniques, have emerged as an alternative effective tool for this  purpose8, 9.
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This paper proposes a machine learning based novel approach for healthcare cost prediction of individual 
patient’s treatments based on their clinical actions, jointly including the clinical activities and the respective cost 
over time. The activity here represents diagnosis, medication, pharmacy and the like. A two-step procedure is 
employed in the learning phase: (1) in the first step, the ordered sequences of clinical actions of the patients’ treat-
ments are clustered using the hierarchical  DBSCAN10 with an aim to identify the group of patients undertaking 
similar clinical activities and incurring similar healthcare costs, and (2) each group is then modelled by means 
of a Markov  chain11 delineating the probability distributions of transitions between different clinical actions. A 
new distance measure is also proposed to measure the similarity of the treatment patterns of the patients during 
clustering.

The prediction phase, concerned with prediction of the healthcare cost of the sequence of clinical actions 
of a new patient’s treatment, also encompasses two steps: (1) first, for each group, we compute a tentative cost 
of the new sequence by averaging the cost of its k-nearest  neighbor12 sequences in the group, (2) the final cost 
is obtained as a weighted sum of the cost estimated by each of the groups. The weights for each group are the 
likelihood of the new sequence to the respective group as assigned by the corresponding Markov chain.

The performance of the proposed healthcare cost prediction algorithm is evaluated with the economic infor-
mation together with information of the clinical activities of the breast cancer patients obtained from the health 
administrative department of the public health care system of the Basque Country, Spain. A 10-fold cross vali-
dation is employed with the training dataset resulting the optimal value of k of k-NN as three in the present 
application with respect to the mean absolute percentage error (MAPE)2. Moreover, the proposed method results 
in an MAPE measure of less than 6% when half of the clinical records of a new patient is available, irrespective 
of the value of k. It substantiates the capability of the proposed stratagem for early prediction of healthcare cost. 
Experiments undertaken also reveal that the proposed algorithm outperforms its state-of-the-art contenders 
with respect to MAPE metric. The comparative analyses verify the significance of jointly considering the clinical 
activity and the associated cost data to effectively capture the clinical records of patients for accurate healthcare 
cost prediction as early as possible.

The paper is divided into following sections. Second section delineates the proposed method of healthcare 
cost prediction. Experiments undertaken and the results are reported in third section. Fourth section concludes 
the paper.

Method
Data transformation. This section refers to transforming the database of individual patient’s treatments 
into a series of actions, sorted by time. Here, we provide some definitions which will be used throughout the 
paper to develop a solution to the healthcare cost prediction problem.

Definition‑1: Action. Let X be the set of all clinical activities, including diagnosis, procedure, medicine and the 
like, Y ∈ R be the set of all possible incurred healthcare cost as recorded in the database and T be the set of visit-
ing times of the patients to the hospital. An action, say a, is then expressed as a three-tuple, given by

Definition‑2: Patient’s treatment. A patient’s treatment is defined by a sequence of its corresponding actions, 
sorted by the visiting time. Symbolically, a patient’s treatment P is represented by

where ai = (xi , yi , ti) represents the action encompassing the clinical activity xi ∈ X and its respective healthcare 
cost yi ∈ Y incurred during visiting time ti ∈ T of the specific patient. For sake of simplicity of readers, we drop 
the notion of visiting time and hence ai now can be simplified as

The clinical actions of P in (2) are chronologically ordered. Evidently, if i < j , ai occurs before aj . A sequence 
of actions of a patient’s treatment is used to jointly track the progression of its activity-outcome and the cor-
responding healthcare cost over time. The length of the sequence varies across patients because of the diversity 
in their treatments over time.

Definition‑3: Modified cost. Intuitively, the number of possible actions for all patients in the database is huge 
due to infinite number of healthcare cost elements in Y. For the sake of simplicity, Y is reduced to a finite set in 
a two step procedure described below.

(1)  Discretization: First, the entire range of Y is discretized into ns segments defined by the ns-quantiles of 
Y. In other words, we set the lower and the upper limit of the i-th segment respectively to the (i − 1)-th 
quantile and the i-th quantile of the healthcare cost elements for all possible clinical activities, recorded in 
the database.

(2) Quantization: Then a real healthcare cost element, lying in the i-th segment is replaced by the mean value 
of all cost elements of the i-th segment.

(1)a = {( x, y, t) |∀x ∈ X, ∀y ∈ Y, ∀t ∈ T}.

(2)P = (a1, a2, . . . , an)

(3)ai = {( xi , yi) |x ∈ X, y ∈ Y}.
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The strategy is pictorially demonstrated in Fig. 1 for the healthcare cost information of two patients only with 
ns = 8 . The setting of ns = 8 and the cost values used here are illustrative examples only. The healthcare cost, 
referred henceforth, denotes the modified cost.

Clustering patients’ action‑sequences. It is noteworthy that patients undergoing various clinical activi-
ties reveal considerable diversity of their corresponding cost information. Hence, prior to predict cost of a new 
action-sequence, we cluster the action-sequences of the existing patients into groups. We then consult the cost 
information of the specific group of patients providing the maximum similarity with the action-sequence of the 
new patient to predict the respective possible future cost.

Two significant issues to categorize the patients based on their action sequences include: (1) design of an 
appropriate distance measure to capture the similarity between action-sequences of varying length, and (2) 
selection of an efficient clustering algorithm to ensure that action-sequences within a group are similar to each 
other than those in other groups.

Design of distance measure. There exists plethora of literature on using edit distance13 to measure the dissimi-
larity of two strings of characters (or words). Given two strings S1 and S2 over a finite alphabet, an edit distance 
ED(S1, S2) between S1 and S2 can be defined as the minimum cost of transforming S1 to S2 through a sequence of 
weighted edit operations. These operations primarily include insertion, deletion, and substitution of one symbol 
by another. Usually, the edit operations are assigned with equal weights of unity. Nevertheless, the string in this 
paper denotes the action-sequences.

However, there is a major limitation of using the conventional ED directly in the present context. The con-
ventional ED compares two strings of characters (or words) only. In the present work, the components of the 
string (or action-sequence) is not only representing character (symbolizing a clinical activity) but an activity-
cost pair. Hence, application of the conventional ED in the present scenario captures the difference between two 
action-sequences based on their respective clinical activities only, ignoring the corresponding healthcare cost 
information. It thus loses the cost information and the temporal relationship of the activity-cost pairs over time.

Consequently, the clusters of patients based on the conventional ED measures identify patients ensuring 
similar clinical activities only. Evidently, the accuracy of the healthcare cost prediction based on the clusters, thus 
formed, is reduced to great extent. It has motivated us to design an appropriate distance measure to jointly capture 
the dissimilarity of two clinical activities (of two different action sequences) and their respective healthcare costs.

The proposed distance measure, referred to as treatment pattern difference (TPD) is an extended version 
of the conventional ED. In case of the conventional ED, all possible edit operations are associated with equal 
cost of unity. In TPD, the edit costs are modified as follows to consider the healthcare cost components of two 
action-sequences.

Let P1 and P2 be two different action-sequences. The cost of insertion of a clinical activity xi (or a character) 
to convert P2 to P1 is given by

where yi denotes the healthcare cost of the clinical activity xi at the visiting time ti in the action-sequence P1 . 
Similarly, the cost of deleting an action xj from P1 to covert it to P2 is given by

(4)C1 = yi

Figure 1.  Calculation of modified healthcare cost of two patients with 8-quantiles.
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where the symbols carry their usual meanings. If the clinical activity xi of P1 is substituted with a different clinical 
activity xj of P2 , the corresponding edit cost is given by

Here ǫ is a small positive constant. It is used to ensure that even when yi = yj for xi  = xj , at least C3 = ǫ is used 
as the edit cost for substitution of xi by xj.

It is noteworthy that if xi = xj , the conventional ED gives a zero penalty. However, there are instances of 
different healthcare costs for the same clinical activity of two different patients. To capture this, TPD uses an 
additional edit cost, given by

Hence, the total edit cost to convert an action-sequence P1 to another action-sequence P2 is given by

Here, w1 and w2 denote the weight for the edit operations respectively for different and similar activities. Intui-
tively, w2 < w1 as it corresponds to the penalty corresponding to similar activities with different healthcare cost. 
After a wide experimentation, we set w1 = 0.7 and w2 = 0.3 . An example of evaluating the dissimilarity of two 
action-sequences based on the TPD measure is presented in Fig. 2.

Selection of clustering algorithm. The TPD measures of each pair of patients’ treatments in the given record are 
used to cluster the similar sequences in the same subgroups. The hierarchical density‑based spatial clustering of 
applications with noise (hierarchical DBSCAN)  algorithm10 is employed to identify the groups of patients’ treat-
ments. The selection of DBSCAN in the present context is justified because of its merit of clustering similar data 
points (here, the action-sequences of patients) into same groups based on the density (number of nearby neigh-
bors) without prior setting of the number of clusters. Moreover, unlike the traditional partitioning algorithms, 
DBSCAN can be applied for clusters of arbitrary shape, even when the data may be contaminated with  noise14.

It is however worth mentioning that the huge economic database includes clusters of records of patients 
characterized at different density levels. The traditional DBSCAN algorithm with a single global density threshold 
often fails to effectively identify such clusters. This impasse is overcome here by using the hierarchical DBSCAN, 
proposed  in10, which discovers all DBSCAN-identified clusters for an infinite range of density thresholds. Finally, 
it identifies a simplified hierarchical structure of significant clusters only.

Markov chain representation of a cluster. This step is concerned with representing each cluster of 
patients’ action-sequences by a Markov  chain11. The crux of such representation is founded on the underlying 
premise that the medical practitioners take their decision based on the previous clinical activities. Again, our 
cost prediction algorithm greatly relies on the recorded action-sequence of a patient.

(5)C2 = yj

(6)C3 = |yi − yj + ǫ|.

(7)C4 = |yi − yj|.

(8)TPD(P1, P2) = w1 ×

(

∑

∀ins.

C1 +
∑

∀del.

C2 +
∑

∀sub.

C3

)

+ w2 ×
∑

∀match

C4.

Figure 2.  Calculation of TPD of two action sequences.
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A first order Markov chain exhibits memoryless property where the current state only depends on the previous 
state. Let N be the possible number of actions (activity-cost pairs) in the database. The Markov chain model of a 
group of patients, say Gl , is then demonstrated by a state-transition probability distribution, which is denoted as:

Here qi,j,l and pl(xt+1 = aj|xt = ai) respectively denote the number of cases and the probability of transition from 
the current action xt = ai to the immediate next action xt+1 = aj in the specific group Gl of action-sequences. 
Evidently, it satisfies

In addition to Ml , we also evaluate the initial probability pl(ai) of action ai considering all the action-sequences 
in the group Gl for i = 1, 2, . . . ,N as follows.

Here si,l denotes the number of action-sequences initiated with the action ai in Gl for i = 1, 2, . . . ,N . This entire 
process is repeated for all groups identified by the hierarchical DBSCAN.

Cost prediction of a patient’s treatment from action sequence. The aim of this step is to predict 
the possible total cost of a patient from the respective action-sequence. The action-sequence of the patient is 
formed following the principle given in “Data transformation” section. Let the ordered sequence of actions of the 
new patient’s treatment be denoted by P = (a1, a2, . . . , an) where the action ai represents the activity-cost pair at 
the visiting time instant ti . The prediction of future cost based on P is undertaken in three phases.

Phase‑1: cost estimation of P based on a specific group. We employ k-nearest neighbor (k-NN) to identify k 
action-sequences from a group, say Gl , that offer maximum similarity with P based on TPD measure as given 
in (8). First, we compute the TPD values between P and each member sequence of the group Gl . The member 
sequences are then sorted in ascending order of their TPD measures thus evaluated. The first k members are 
selected as the k nearest neighbors of P. Next, each of the k members is assigned a weight wj,l , inversely pro-
portional to its TPD measure from P for j = 1, 2, . . . , k . Consequently, the total cost ĉl(P) of the new action-
sequence P estimated by the group Gl is given by

Here cj,l denotes the total cost incurred by the j-th nearest neighbor of P in Gl for j = 1, 2, . . . , k . ĉl(P) is computed 
for all clusters of patients identified by the hierarchical DBSCAN.

Phase‑2: Evaluation of the likelihood of P to patients’ groups. This step is concerned with evaluating the likeli-
hood of P to each subgroup of patients based on the respective Markov chain model. The likelihood of the 
ordered sequence of actions P = (a1, a2, . . . , an) to a specific group Gl is given by

Here a1 denotes the initial action of P and ai represents the action of P occurred at visiting time ti for i = 1, 2, . . . , n . 
Evidently, pl(a1) and pl(ai+1|ai) respectively symbolize the initial probability of action a1 and the probability of 
transition from the current action ai to the immediate next action ai+1 of P as described by the group Gl . Expres-
sion (14) is evaluated using the Markov chain model Ml representing the group Gl.

After evaluating �l(P) for all groups, the normalized likelihood of P to each subgroup is computed using

Phase‑3: Cost prediction based on all groups. After evaluating the estimated cost and the normalized likelihood 
of P to all groups, the total cost of P is finally predicted following

(9)Ml = [mi,j,l] for i, j = 1, 2, . . . ,N

(10)where mi,j,l = pl(xt+1 = sj|xt = si) =
qi,j,l

∑N
k=1 qi,k,l

.

(11)mi,j,l ≥ 0 and

N
∑

j=1

mi,k,l = 1.

(12)pl(ai) =
si,l

∑n
k=1 sk,l

(13)ĉl(P) =

∑k
j=1 wj,l × cj,l
∑k

j=1 wj,l

.

(14)�l(P) = pl(a1)×

n−1
∏

i=1

pl(ai+1|ai).

(15)�̂l(P) =
�l(P)

∑

∀k �k(P)
.

(16)c̄(P) =
∑

∀l

�̂l(P)× ĉl(P).
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Results
Database. The study is performed on the economic data, along with the clinical activities of the patients 
obtained from the health administrative department of the public health care system (OSAKIDETZA) of the 
Basque Country, Spain. The database includes medical history of 579798 patients treated in different levels of 
healthcare organizations (including 1 hospital, 11 outpatients clinics and emergency care) from January 1, 2017 
to December 31, 2019. The clinical data of the patients primarily consists of their clinical assistance and the 
respective healthcare cost information.

To validate the proposed method of cost prediction, the present work considers the pool of breast cancer 
patients only. The selection of breast cancer patients from the database conforms the International Statistical 
Classification of Diseases and Related Health Problems (10-th revision)15, stating that every code starting by 
C50 corresponds to breast cancer diagnosis. A few filtering steps are then carried out  following16 to judiciously 
select the pool of patients of interest. The filtering process affirms that the selected patients have their complete 
treatment in the above-mentioned time period of two years. Following the medical guideline, a final set of 972 
patients is identified. 70% of the entire database is ultimately used as the training dataset, while the remaining as 
the test data. A 10-fold cross validation is employed on the training dataset for judicious selection of the value 
of k for k-NN.The proposed method is implemented using MATLAB 2019a.

Identification and representation of patients’ action‑sequences. The final record of the 464 
patients consists of 23 unique clinical activities as described in Table 1. The healthcare cost is next discretized 
into ns segments. In Fig. 3, we present a plot of normalized quantization error values for different settings of the 
number of quantiles ns , varied from 2 to 12 to check a significant improvement in performance. The normalized 
quantization error (NQE) is given by (17).

Here c(i) and cm(i) respectively denote the true and the modified i-th healthcare cost (after discretization) of the 
database with Nc cost elements for i = 1, 2, . . . ,Nc . Figure 3 reveals that the quantization error is reduced with an 
increase in the number of segments ns . However, it is also observed that there is no significant change in the error 
for ns ≥ 8 . We have thus fixed ns = 8 . It is worth mentioning that the setting of ns here is biased to the healthcare 
cost values of the present database. The quantization of the healthcare cost range of the present database using 
8-quantiles ensures a balanced number of healthcare cost elements in each of the eight cost-segments.

Next, the healthcare cost of all clinical activities of 464 patients is discretized in eight segments based on 
8-quantiles of the healthcare cost range, as demonstrated in Fig. 1. Let the segments (sorted in ascending order) 

(17)NQE =

1
Nc

∑Nc
i=1 |c(i)− cm(i)|

max
Nc
i=1 c(i)−min

Nc
i=1 c(i)

Table 1.  Description of the clinical activities.

Activity Abbreviated form Full form

1 ANES Aesthesia

2 APAT Pathological Anatomy

3 CEXT External Consultation

4 CONS Consultation

5 FAMB Hospital Pharmacy Services

6 FAMR Pharmacy

7 HCRI Critical Care Hospitalization

8 HDIA Day Hospital

9 HDOM Home Hospitalization

10 HOSP Hospitalization

11 INCO Interconsultation

12 LABO Laboratory

13 MNUC Nuclear Medicine

14 OSAT Osatek (Magnetic Resonance Service)

15 PFUN Functional Testing

16 QUIR Surgery Unit

17 RADI Radiology

18 REHA Rehabilitation

19 RTER Radiotherapy

20 UCRI Nursing Critical Care Unit

21 UCSI Surgery without Hospitalization

22 UENF Nursing Unit

23 URP Post Anesthesia Care Unit
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be denoted as very‑very‑low (VVL), very‑low (VL), low (L), medium‑low (ML), medium‑high (MH), high (H), 
very‑high (VH) and very‑very‑high (VVH). Eventually, there exist 22× 8 = 176 actions to jointly represent a pair 
of clinical activity and the corresponding healthcare cost. However, a close scrutiny of the final record reveals 
only 63 possible pairs from the recorded medical history of the 464 patients, as reported in Table 2.

The hierarchical DBSCAN algorithm is then employed on the training dataset to cluster the sequences using 
TPD values. The algorithm results in eight clusters. The clusters thus identified are pictorially represented in 
Fig. 4. The descriptions of the actions of the sequences, shown in different colors, are tabulated in Table 2. Each 
cluster is then described by a Markov chain following “Markov chain representation of a cluster” section.

Performance evaluation of proposed healthcare cost prediction method. Performance met‑
ric. The performance of the proposed cost prediction algorithm is evaluated with respect to mean absolute 
percentage error (MAPE) with a lower error indicating a better performance.

Here c(Pi) and c̄(Pi) (evaluated using (16)) respectively represent the true and the predicted cost of the i-th 
patient’s treatment Pi in the validation or the test dataset with Nt records for i = 1, 2, . . . ,Nt.

Validation of earliness prediction and selection of k of k‑NN. The capability of the proposed algorithm to predict 
the possible total healthcare cost of patients is verified by varying the length of sequence of the recorded treat-
ments of the patients from 20 to 100%. The appropriate selection of k (of k-NN) for the optimal performance is 
undertaken using 10-fold cross validation on the training dataset. The MAPE values (averaged over 10 folds of 
the training data) for different settings of k and percentage of length of sequence of the recorded treatments of 
the patients are tabulated in Table 3. Table 3 reveals that the longer the length of the sequence, the better is the 
prediction accuracy with smaller MAPE measures, irrespective of the setting of k. The optimal performance of 
the method is obtained for k = 3 with the entire sequence information. It is also noted that an MAPE smaller 
than 6% is obtained even when 50% of a visit sequence is utilized. It proves the effectiveness of the proposed 
method for an early prediction of the healthcare cost.

Next to check the variability of the MAPE measures obtained by the proposed method with k = 3 , 20 experi-
mental runs are undertaken with 10-fold cross validation of the training data. The samples of each of the 10-folds 
of 20 runs are randomized. The results are summarized in Fig. 5. Figure 5 reveals detection of outliers when 
the length of the action sequences (i.e., squence of recorded treatments) is considerably small. The mean and 
standard deviation of the MAPE values obtained by the proposed method over 20 experimental runs, each with 
10 folds, are reported in Table 4.

Comparative performance analysis. The next experiment aims at comparative performance analysis of our pro-
posed algorithm. Three state-of-the-art techniques are considered in the comparative framework, including gra‑
dient boosting (GB)17, artificial neural net (ANN)18 and elastic net (EN)19. These existing methods have utilized 
the healthcare cost data only to predict the future  cost2. The hyperparameters of the competitive algorithms are 
tuned using the grid search method and the 10-fold cross validation of the training data. The tuned hyperpa-
rameters are reported in Table 5.

The comparative analysis of performance of the competitors is undertaken next. To ensure fair comparison 
of all contenders, each algorithm is evaluated on the same 10-fold cross validation split of the data and the 
same random number seed is used to split the data in each case. The MAPE measures (averaged over 10 folds) 

(18)MAPE =

1
Nt

∑Nt
i=1 |c(Pi)− c̄(Pi)|

1
Nt

∑Nt
i=1 c(Pi)

× 100.

Figure 3.  Normalized quantization error for different values of ns.
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obtained by all four contender algorithms using training data are tabulated in Table 6. Table 6 reveals that the 
proposed algorithm outperforms its contenders by achieving the minimum MAPE measure in most of the cases. 
GB outperforms the proposed method in two cases, where the lengths of action sequence are 20% and 30%.

The results of Table 6 are further used to carry out the hypothesis test to verify the statistical significance of 
the difference in performance of the proposed algorithm and each of its three contenders. Assuming no specific 
distribution of the population of MAPE values (obtained after 10-fold cross validation for each algorithm), the 
Friedman non-parametric  test20 is undertaken on the mean values of MAPE metric obtained by the contender 
algorithms (over 10-fold cross validation) with a level of significance α = 0.05. The Friedman ranks obtained by 
the contender algorithms based on the results given in Table 6 are reported in Table 7. The results reported in 
Table 7 also designate the proposed method as the best algorithm. The test considers the null hypothesis that 
there is no significant difference between the performances (based on the mean MAPE measures) of the com-
petitive algorithms. Table 8 however reveals that the resulting Friedman test statistic value = 14.133 exceeds the 

Table 2.  Description of the clinical actions (activity-cost pairs).

Action  Activity  Cost Action  Activity  Cost Action  Activity  Cost

(A)

1  ANES  VVL 26  FAMB  L 51  HDIA  VVH

2  ANES  VL 27  FAMB  ML 52  HDOM  VVL

3  ANES  L 28  FAMB  H 53  HDOM  VL

4  ANES  ML 29  FAMB  VH 54  HDOM  L

5  ANES  MH 30  FAMB  VVH 55  HDOM  ML

6  ANES  H 31  FAMR  VVL 56  HDOM  H

7  ANES  VH 32  FAMR  VL 57  HDOM  VH

8  ANES  VVH 33  FAMR  L 58  HDOM  VVH

9  APAT  VVL 34  FAMR  ML 59  HOSP  VVL

10  APAT  L 35  FAMR  MH 60  HOSP  VL

11  APAT  VH 36  FAMR  H 61  HOSP  L

12  APAT  VVH 37  FAMR  VH 62  HOSP  ML

13  CEXT  VL 38  FAMR  VVH 63  HOSP  MH

14  CEXT  L 39  HCRI  VVL 64  HOSP  H

15  CEXT  ML 40  HCRI  VL 65  HOSP  VH

16  CEXT  H 41  HCRI  L 66  HOSP  VVH

17  CONS  VVL 42  HCRI  VH 67  INCO  L

18  CONS  L 43  HCRI  VVH 68  INCO  ML

19  CONS  ML 44  HDIA  VVL 69  INCO  MH

20  CONS  MH 45  HDIA  VL 70  INCO  VH

21  CONS  H 46  HDIA  L 71  INCO  VVH

22  CONS  VH 47  HDIA  ML 72  LABO  L

23  CONS  VVH 48  HDIA  MH 73  LABO  MH

24  FAMB  VVL 49  HDIA  H 74  LABO  VH

25  FAMB  VL 50  HDIA  VH 75  LABO  VVH

(B)

76  MNUC  L 91  QUIR  MH 106  REHA  ML

77  MNUC  ML 92  QUIR  H 107  REHA  MH

78  MNUC  H 93  QUIR  VH 108  RTER  VVL

79  MNUC  VH 94  QUIR  VVH 109  RTER  MH

80  MNUC  VVH 95  RADI  VVL 110  RTER  H

81  OSAT  L 96  RADI  VL 111  RTER  VH

82  OSAT  H 97  RADI  L 112  RTER  VVH

83  OSAT  VH 98  RADI  ML 113  UCRI  VVH

84  OSAT  VVH 99  RADI  MH 114  UCSI  VH

85  PFUN  VVL 100  RADI  H 115  UENF  MH

86  PFUN  VL 101  RADI  VH 116  UENF  H

87  PFUN  L 102  RADI  VVH 117  UENF  VH

88  QUIR  VL 103  REHA  VVL 118  UENF  VVH

89  QUIR  L 104  REHA  VL 119  URP  ML

90  QUIR  ML 105  REHA  L
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respective critical value of 7.815 following χ2
F distribution with 3 degrees of freedom at α = 0.05. It substantiates 

statistically significant difference between the MAPE measures obtained by the proposed algorithm and each 
of its contenders.

The results in Table 7 highlights the proposed method as the best algorithm, so the Bonferroni–Dunn post-
hoc  analysis20, 21 is performed with the proposed method as the control method. For the Bonferroni–Dunn test, 
a critical difference value is calculated which for these data (represented by Table 7) comes as 1.457. A significant 

Figure 4.  Cluster of sequences of visit records (activity-cost pairs) of patients with np as number of patients and 
L as the length of the sequence.

Table 3.  MAPE values (with training data during 10-fold cross validation) for different values of k and length 
of action sequence (in percentage).

k

Length of action sequence (in percentage)

20% 30% 40% 50% 60% 70% 80% 90% 100%

1 9.25 7.43 6.01 6.50 5.85 5.53 4.68 4.15 3.76

2 8.83 8.08 6.95 6.54 6.04 5.80 5.15 4.10 3.65

3 9.41 8.87 5.89 5.39 4.98 4.62 4.38 4.07 3.49

4 9.36 7.82 6.04 5.47 4.86 4.65 3.94 3.77 3.63

5 8.90 7.14 5.69 5.13 4.84 4.49 4.24 3.77 4.03

6 9.01 7.35 5.76 5.32 5.17 5.15 4.51 4.26 4.33

7 9.29 7.58 5.77 5.27 5.58 4.97 4.62 4.46 4.35

8 9.13 7.39 5.72 5.64 5.18 5.28 4.46 4.13 4.21

9 9.57 7.66 5.92 5.42 5.57 5.14 4.64 4.11 4.08

10 9.68 8.51 6.27 6.26 6.11 5.93 5.22 4.60 4.41

Figure 5.  Boxplot of MAPE values obtained by the proposed method for different length of action sequence 
over 20 experimental runs (each with 10 fold cross validation of the training data).
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Table 4.  Mean and standard deviation (STD) of MAPE values obtained by the proposed method over 20 
experimental runs (each with 10-fold cross validation of training data) for different length of action sequence 
(in percentage per).

per 20% 30% 40% 50% 60% 70% 80% 90% 100%

Mean 9.01 7.86 5.65 5.39 5.05 4.64 4.49 4.12 3.54

STD 0.28 0.19 0.27 0.17 0.23 0.21 0.18 0.15 0.13

Table 5.  Tuned hyperparameters of competitive methods.

Algorithms Hyperparameters Range considered Selected value

GB

No. of estimators [2, 3, ..., 60] 45

Learning rate [0, 0.05, ..., 1] 0.05

Subsample [0.2, 0.25, ..., 0.9] 0.75

Max tree depth [2, 3, ..., 20] 8

ANN

No. of hidden layers [1, 2, ..., 5] 1

Learning rate [0, 0.05, ..., 1] 0.1

Momentum factor [0.1, 0.2, ..., 1] 0.5

Activation function [sigmoid, tanh, ReLU] sigmoid

EN
Penalty weight [10−5 , ..., 10] 0.2

Mixing parameter [0, 0.01, ..., 1] 0.62

Table 6.  Mean MAPE values (with training data during 10-fold cross validation with same random number 
seed) for different competitive methods for different length of action sequence (in percentage).

Algo.

Length of action sequence (in percentage)

20% 30% 40% 50% 60% 70% 80% 90% 100%

Prop. method 9.41 8.87 5.89 5.39 4.98 4.62 4.38 4.07 3.49

GB 8.74 8.37 8.22 8.17 7.74 7.67 5.38 4.79 4.30

ANN 11.95 10.74 9.54 8.11 8.02 7.59 7.43 6.74 6.41

EN 10.56 10.37 10.06 9.57 8.91 8.39 7.32 7.22 6.79

Table 7.  Friedman ranks obtained by contender algorithms.

Algo. Friedman rank

Prop. method 1.222

GB 2.000

ANN 3.111

EN 3.667

Table 8.  Statistical values obtained by Friedman test based on Friedman ranks given in Table 7.

Non-parametric test Friedman

Statistic value 14.133

Degree of freedom 3

Critical value 7.815

Comment on null hypothesis Reject
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difference between the performances of the control algorithm and its contender is inferred if their correspond-
ing Friedman ranks differ at least by a critical difference. Pictorially, it is shown in Fig. 6. It is evident that the 
performances of ANN and EN in the present context are significantly inferior to the proposed method.

Finally, following the inferences from the non-parametric statistical test, the Hochberg multiple comparison 
test is further  undertaken21 with the proposed method (achieving the best Friedman rank) as the control algo-
rithm. The adjusted p-values are reported in Table 9. It is evident from Table 9 that the test infers that there is no 
statistically significant difference between the performances of the proposed method and GB with the respec-
tive adjusted p-value exceeding α = 0.0522. However, the null hypothesis is rejected for the remaining cases of 
comparing the proposed method with its competitor algorithms with an adjusted p-value smaller than α = 0.05.

Table 10 reports the MAPE measures for the same competitors for the test data. The reported results are pic-
torially presented in Fig. 7. The reported results substantiate that our proposed method overcomes its contenders 
with GB acquiring the second rank. It in turn validates the efficiency of jointly considering the clinical activity 
and the associated cost data for the healthcare cost prediction.

Conclusion
The paper presents a novel method to predict healthcare cost of breast cancer patients as early and accurately 
as possible. The early prediction capability of the proposed method is used for identifying patients at risk of 
becoming high-cost healthcare users, before incurring substantial avoidable costs. The merit of the paper lies 
in the following counts. First, it considers the clinical activity and the associated healthcare cost data jointly to 
model the treatment of a patient. Second, it recommends a novel distance measure to capture the dissimilarity of 
two treatment patterns, encompassing both clinical activities and healthcare cost information. Third, it employs 
the hierarchical DBSCAN to categorize patients into different clusters with an aim to effectively identify the 
high-need and/or high-cost patients. Fourth, each cluster of patients is depicted by a Markov chain model to 

Figure 6.  MAPE obtained by different competitive algorithms for different length of action sequence (test data).

Table 9.  Adjusted p-values using Hochberg multiple comparison test.

Comp. Algo. z-score Unadjusted p-value Adjusted p-value

GB 1.278 2.012× 10
−1

2.012× 10
−1

ANN 3.104 1.911× 10
−3

3.822× 10
−3

EN 4.0167 5.900× 10
−5

1.770× 10
−4

Table 10.  MAPE values (with test data) for different competitive methods for different length of action 
sequence (in percentage).

Algo.

Length of action sequence (in percentage)

20% 30% 40% 50% 60% 70% 80% 90% 100%

Prop. method 9.70 8.63 6.41 6.05 5.94 5.53 5.29 4.17 3.79

GB 8.89 7.84 7.27 7.17 6.98 6.71 6.15 5.94 4.73

ANN 11.49 111.07 10.93 9.45 8.58 7.98 7.55 6.95 6.61

EN 11.95 10.69 9.87 9.83 9.18 8.65 8.18 7.45 7.01
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mathematically represent the treatment patterns. Finally, the Markov chain models of all the clusters are used 
to predict the possible future (total) cost of a patient’s treatment. The performance of the proposed algorithm 
is compared for different length of sequence of the recorded treatments of patients. The experimental results 
reveal that the method achieves an MAPE value, as small as 6% even with half of the clinical records of a patient. 
Experiments undertaken also substantiate the superiority of the proposed algorithm to three state-of-the-art 
techniques which utilize only the healthcare cost data of the patients for prediction.

As a continuation of the present work, we first plan to test our method on different databases from different 
healthcare organizations for patients suffering from different diseases. More experiments on different databases 
could help to take a deeper dive into the data and explore ways to obtain more solid evidence on the performance 
of the proposed method, irrespective of databases. Second, we may consider the socio-demographic information 
of the patients along with the clinical actions with an aim to be utilize their joint explanatory power to under-
stand the root causes of patient’ costs. Third, we have not exploited time feature in the present work. Intuitively, 
inclusion of time feature may effectively capture the differences of treatment patterns of patients and thus may 
enhance the prediction performance of the proposed method. Finally, appropriate stratagem needs to be devel-
oped to effectively balance the trade-off between the accuracy and earliness of the healthcare cost prediction.
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