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Rheology‑Informed Neural 
Networks (RhINNs) for forward 
and inverse metamodelling 
of complex fluids
Mohammadamin Mahmoudabadbozchelou & Safa Jamali*

Reliable and accurate prediction of complex fluids’ response under flow is of great interest across 
many disciplines, from biological systems to virtually all soft materials. The challenge is to solve 
non-trivial time and rate dependent constitutive equations to describe these structured fluids 
under various flow protocols. We present Rheology-Informed Neural Networks (RhINNs) for solving 
systems of Ordinary Differential Equations (ODEs) adopted for complex fluids. The proposed RhINNs 
are employed to solve the constitutive models with multiple ODEs by benefiting from Automatic 
Differentiation in neural networks. In a direct solution, the RhINNs platform accurately predicts the 
fully resolved solution of constitutive equations for a Thixotropic-Elasto-Visco-Plastic (TEVP) complex 
fluid for a series of flow protocols. From a practical perspective, an exhaustive list of experiments 
are required to identify model parameters for a multi-variant constitutive TEVP model. RhINNs are 
found to learn these non-trivial model parameters for a complex material using a single flow protocol, 
enabling accurate modeling with limited number of experiments and at an unprecedented rate. We 
also show the RhINNs are not limited to a specific model and can be extended to include various 
models and recover complex manifestations of kinematic heterogeneities and transient shear banding 
of thixotropic fluids.

Complex fluids are a broad class of materials, in which the macroscopic response of the fluid to an applied 
deformation or load is determined by the state of microstructure. In contrast to conventional fluid mechanics 
problems, where the viscosity of the fluid remains constant, the material functions of the complex fluids depend 
on the rate and time of applied deformation1–10. To predict these complex fluids’ behavior under flowing condi-
tions, it is indispensable to present closed-form constitutive equations that correlate the microstructural and 
kinematic variables of the material to the state of stress. Efforts in developing such constitutive equations are 
thus as old as the science of rheology itself11–13. The constitutive models of choice become more intricate, as the 
fluid’s response to a deformation becomes rate or time dependent, leading to an inevitable increase in the num-
ber of model parameters. Hence, more experimental protocols are needed to determine these parameters and 
to describe the system under question. Nonetheless, even constitutive equations with several model parameters 
commonly fail to capture the rheology of a complex system subject to a series of different flow protocols.

Complex fluids often exhibit a time-dependent stress response under flow owing to their inherent viscoelastic 
and/or thixotropic timescales14–16. Thixotropy observed in many complex fluids generally manifests in the sen-
sitivity of the viscosity to the history of the applied strain rate17–19. Thixotropic effects originate from evolution 
of the material’s microstructure as a result of the interplay between shearing forces exerted by the flow and the 
natural structure formation20–22. Thus, in thixotropic constitutive equations, one will critically need to solve for 
the time evolution of a structure parameter under flow. On the other hand, the local shear stress/rate that the 
material experiences determines the rate of structure break-up under flow. Hence, detailed multi-component 
constitutive models that fully capture different rate and time dependent phenomena commonly involve systems 
of coupled differential equations. Many constitutive models have been proposed to recover thixotropic response 
of a complex fluid23–27. For an ideal thixtropic fluid, also referred to as Thixo-Visco-Plastic (TVP) fluid, the shear 
stress depends on the structure parameter, � , which itself evolves with time as shown in Eq. (1)23. In this equa-
tion, σy is the yield stress, ηs and ηp are background and plastic viscosities, γ̇ is the applied deformation rate, and 
k+ and k− are the build-up and breakage coefficients of the structure parameter.
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Colloidal gels commonly show thixotropic, static and dynamic yielding, rate-dependent shear thinning, and 
elsatic response under different flow protocols and are referred to as Thixotropic Elasto-Visco-Plastic (TEVP) 
fluids3,28–31. Thus, in addition to TVP model parameters, TEVP constitutive equations include the elastic modulus 
(G) of the fluid as well. A TEVP model is shown in Eq. (2), including six different model parameters.

While the model presented in Eq. (2) recovers a number of rheological features of TEVP fluids, in order to 
fully capture the response of the fluid to a Large Amplitude Oscillatory Shear (LAOS) flow protocol, a more 
sophisticated plastic component has to be considered. Iso-Kinematic Hardening (IKH) model4,32 decouples the 
applied shear rate into plastic and viscoelastic contributions and introduces the back strain in order to account 
for the evolving microstructure from one cycle to next in oscillatory flows. This leads to a complex constitutive 
equation that predictably captures wide range of material behavior with different flow protocols. The general 
description of IKH model is shown as Eq. (3). The function f(.) is determined based on the viscoelastic model of 
choice that leads to acquisition of various models consisting of 9-15 parameters that are inevitably challenging 
to be determined. In this set of coupled ODEs, A is the back strain, m and q are the material constants, and γ̇p is 
the plastic component of the applied shear rate.

As is clearly evident in Eq. (3), the number of parameters required to fully capture the rheological response of 
a complex fluid to an applied deformation increases very rapidly and eventually becomes computationally pro-
hibitive. Moreover, these parameters are not necessarily based on a physical merit, and are often challenging to 
fit. Thus, an exhaustive list of experimental protocols are usually taken to fully parametrize a given model for a 
specific system. Even then, the emergence of multiple length and time scales due to structure break-up/formation, 
non-ideal behavior of the material under investigation, experimental artifacts, and many more delicate details 
can lead to erroneous predictions. This is even more evident when real-life and industrial complex fluids of inter-
est that contain multiple components are considered. Thus, numerical platforms that reduce the computational 
complexity of implementing a fully resolved constitutive model, or decrease the number of experiments required 
to identify a system’s model parameters are of great interest.

Over the past few years, Machine Learning (ML) algorithms have found their way in all avenues of sci-
ence and engineering. With an ever-increasing computational power and the ability to process large data sets, 
data-driven models have become indisputable and powerful tools. With a limited number of studies utilizing 
ML algorithms33–36, the field of soft matter and more specifically rheology is lagging behind in leveraging such 
advanced methodologies. This is partially due to the ambiguous consequences of the produced meta-models and 
their adherence to the fundamental underlying physics. However, these issues would be effectively attenuated by 
executing the appropriate type of ML approach.

Traditional ML algorithms, regardless of their type, depend on abundance of data to be accurately predictive. 
This means it is absolutely essential to train the considered ML algorithms on extremely large enough data set. 
Moreover, most of ML algorithms are suitable for interpolation [when they are trained on a sufficiently large 
data sets], and are often incapable of out-of-range predictions (extrapolation). Recent physics-based ML algo-
rithms not only include the physical governing equations of choice, but also diminish the need for big data sets. 
The groundbreaking work of Raissi et al.37 on “Physics-Informed Neural Network” (PINN) paved the way for 
physics-based ML algorithms to address these issues. The central concept is to directly add physical governing 
equations to the neural network (NN) framework to achieve a meaningful meta-model. By incorporating the 
governing physical laws, and constraining the NN framework to adhere to these physical laws, the need for large 
training data sets can also be eliminated. It is worth mentioning that the scope of this work is limited to problems 
in which the constitutive model describing the material of choice is known. In the case with unknown govern-
ing laws, the pathway to embedding the physical laws into the training process has to change accordingly. One 
such method would be to introduce the physical intuition to the NN implicitly and by means of physics-based 
synthetic data, generated from constitutive laws33.

In this study, we present Rheology-Informed Neural Networks (RhINNs) for direct and inverse solution of 
complex rheological constitutive models. In a direct solution, RhINNs are employed as an alternative platform for 
solving systems of Ordinary Differential Equations (ODEs) on predicting the rheology of complex fluids. In the 
inverse solution however, RhINNs are used to learn the hidden rheology of complex fluids with only a handful 
of data sets. To this end, we first describe the meta modeling approach using NNs in the form of RhINNs. There-
upon, results are presented for both direct and inverse problems, followed by concluding remarks and outlooks.

Problem setup and methodology
Neural Networks are a sub-class of supervised ML algorithms38, consisting of many interconnected processing 
elements called neurons. Neurons process and predict data by creating a computational structured framework 
where the complex relations between the inputs and outputs is revealed as a function. Each NN consists of three 
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main layers: input layer, output layer, and several hidden layers. Each of these hidden layer contains several neu-
rons, and each neuron has an specific weight and bias. These networks learn to minimize their deviations from the 
actual data by adjusting the weights and biases between different neurons and layers within the structure of the 
network. In other words, the weights and biases of the neurons are changed continuously to generate an emend 
response when new inputs are provided. NNs generate meta-models based on these correlations in statistical 
variations of complex systems. In a purely statistical method, the training process for the NN is agnostic to the 
physical governing equations. Here however, we directly solve for nonlinear problem without any prior assump-
tions, linearization, or local time-stepping. We benefit from recent developments in automatic differentiation39 to 
differentiate the NN with respect to its input coordinates and model parameters. In other words, we include the 
physical laws explicitly into the NN architecture. Figure 1 shows a schematic description of RhINNs. For visual 
purposes, Fig. 1 contains a NN with only three hidden layers and four neurons per layer, with 2 input parameters 
as time (t) and shear rate (γ̇ ) , and 2 output parameters as shear stress (σ ) and structure parameter (�) . We should 
mention that in the definition of fi() , shear rate as γ̇ plays an important role, since it reflects on the kinematics 
of the imposed flow protocol. Hence, including such function is a necessity either implicitly (as a function in the 
physical governing law) or explicitly (as one of the inputs of RhINNs). We chose to go with the latter, since we 
are offering a more generic framework without affecting the predicted results. We performed a comprehensive 
analysis to determine the effects of number of hidden layers and number of neurons in each hidden layer on the 
performance of our proposed RhINNs, which are presented in Appendix B.

In a data driven solution framework, the solution of the constitutive equation of choice is being inferred 
without any data, and the only thing that is needed is the constitutive equation itself and the initial conditions 
to the problem of interest. In this framework, one can think of the NN as an alternative ODE or PDE solver, 
where inputs are correlated directly to the predictions. These inputs and their corresponding predictions are used 
to calculate the residual of the constitutive model at hand, and the goal of the NN is to minimize this residual. 
Only then one can assure that the training process is informed by a physical intuition. On the other hand and 
in a data driven discovery framework, the input of the RhINNs is a n× 3 matrix, in which the first and second 
columns are time and shear rate ( ̇γ ), respectively, and the final column is the shear stress at that particular shear 
rate and time measured experimentally or calculated numerically. Since experimental observation of structure 
parameter is not feasible, we cannot include this information into the training process. Here by knowing the 
experimental measurements of only shear stress, the goal of NN is to minimize the residual for the constitutive 
model of choice and return the predicted model parameters.

In general, a system of ODEs with two independent variables can be written as Eq. (4).

In this system of ODEs, y1(t) and y2(t) are the hidden solution and Fi are nonlinear operators in the time 
domain of [0, T]. As a motivating example, a TEVP material [described by Eq. (2)], represents a system of ODEs 
with two equations. Hence, the definitions of fi() shown on the right box of Fig.  1 would turn into 

(4)
{

ẏ1 = F1(y1, y2, t)
ẏ2 = F2(y1, y2, t)

Figure 1.   The Schematic architecture of a rheology-informed neural network (RhINNs). For visual purposes, a 
plain vanilla NN with three hidden layers and four neurons per layer is shown. As a motivating example, if a 
TEVP material described by Eq. (2) is included in the network, the definitions of fi() would turn to 
f1(σ , �, γ̇ ) =

G
ηs+ηp

[−σ(t)+ σy�(t)+ (ηs + ηp�(t))γ̇ (t)] and f2(σ , �, γ̇ ) = k+(1− �(t))− k−�(t)γ̇ (t).
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f1(σ , �, γ̇ ) =
G

ηs+ηp
[−σ(t)+ σy�(t)+ (ηs + ηp�(t))γ̇ (t)] and f2(σ , �, γ̇ ) = k+(1− �(t))− k−�(t)γ̇ (t) . By 

adjusting the correspondence from one neuron to another, and from one layer to another in a NN, a meta-model 
is produced to correlate the output results based on a series of new input variables. The variables of a RhINNs 
are learned by minimizing the loss function, that captures the residual of each equation in addition to the the 
discrepancy between the predicted and the actual Initial Condition (IC) during the training process. Eqs. (5) 
and (6) present the RhINNs loss functions for the direct and the inverse problems, respectively.

In our system, and in Eqs. (5) and (6), MSER (Eq. 7) is the residual calculated from the system of ODEs, MSEd 
(Eq. 8) is the deviation of RhINNs predictions from actual values , and MSEIC (Eq. 9) is discrepancy between 
the actual and the predicted values of the initial conditions. In practice, initial conditions are imposed by cal-
culating the predicted output at t=0 and adding the discrepancy between the predicted value and actual initial 
condition as defined in Eq. (8) to total loss function. It should be noted that in an inverse approach, existence 
of IC is not a necessity.

In an inverse problem, the model parameters are chosen to be variables that can be changed throughout the 
optimization process. After initialization, a total loss is calculated based on Eq. (6). Afterward, these variables 
are consistently changed during the optimization process until the loss function is minimized (and becomes zero 
in an ideal case). After reaching a certain criteria, the training process stops and the model parameters are pre-
sented. It should be mentioned that there are no strict boundaries set for any of the parameters used in this work.

Results and discussion
As describe previously, the ultimate goal is to develop a reliable and accurate platform for fast data-driven solu-
tion of complex time and rate dependent constitutive equations. Thus here, the scope of our study is limited to 
demonstrating RhINNs as a robust alternative meta-constitutive model. In the following, several flow protocols 
of rheometric significance are solved in both direct and inverse problems, referred to as data driven solution 
and data driven discovery respectively. In data driven solution the NN is employed to find an answer in a certain 
domain for an existing set of equations and initial conditions. On the other hand, with the inverse problems, 
i.e. data driven discovery, the characteristics of a system of ODEs and hence material’s properties are predicted 
using the data at hand and the system of ODEs.

Data driven solution.  RhINNs are devised and employed as alternative tools to solve systems of ODEs 
used in complex fluid modelling. In the training process, only the system of ODEs and the initial conditions 
are used without any additional data, hence the output of the NN will be the solution to the constitutive model. 
First, we consider different models outlined in Eqs. (1), (2), and (3) to show the capability of RhINNs in solv-
ing various constitutive equations. Then, we explore the role of rheometric protocol by solving for the stress 
response under a range of different deformation protocols. Note that there exist a number of viable options as 
thixotropic constitutive models to be adapted here; however, we are considering the three different constitutive 
models in Eqs. (1), (2), and (3), as they provide an increasing level of complexity with considerable number of 
model parameters involved in the IKH model: Eq. (1) is the simplest model for a thixotropic material with five 
(5) model parameters and a single algebraic equation coupled with an ODE, Eq. (2) includes elasticity with an 
additional parameter, and Eq. (3) contains a total of nine (9) model parameters and three coupled equations. 
Figure 2 shows the comparison between the ground truth solution of different thixotropic constitutive mod-
els and RhINNs predictions with parameters based on Table 1 and in a start-up of shear flow protocol with 
γ̇ = 0.1 s−1 . While Table 1 outline the choice of model parameters used in Fig. 2 for each model, we performed 

(5)MSEDir =MSER +MSEIC

(6)MSEInv =MSER +MSEd

(7)MSER =

Neqs
∑

j=1

1

NRj

NRj
∑

i=1

|Residual(equationj)(ti)|
2

(8)MSEIC =|PredictedIC − ActualIC |
2

(9)MSEd =

Nd
∑

i=1

|Predicted(ti)− Actual(ti)|
2

Table 1.   Values of the model parameters used for the flow curves presented in Fig. 2.

G [Pa] sy [Pa] ηs [Pa s] ηp [Pa s] kp [1/s] kn C [Pa] q m

TVP – 5 10 5 0.1 0.3 – – –

TEVP 30 5 10 5 0.1 0.3 – – –

IKH 100 0.1 500 1.4 0.1 0.3 70 100 0.5
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similar benchmarking with a wide range of parameters and initial conditions, and found that the RhINNs pre-
dictions are not limited by the choice of parameters or the initial conditions. Results in Fig. 2 clearly indicate that 
RhINNs’ predictions closely track the ground solution of the shear stress response, regardless of the choice of 
model. The value of the microstructure parameter, � , ranges from zero for a fully destructured/fluidized system, 
to unity for a fully structured material, ex. unyielded gel. Comparing the Fig. 2a,b, where fully fluidized and fully 
structured systems are compared, it is evident that the RhINNs predictions remain valid by changing the initial 
conditions as well. The Fig. 2c,d respectively show the RhINNs-predicted flow curve as well as the ground truth 
solution of TEVP, and IKH constitutive models, with increasing levels of complexity.

The regression plot of the trained model for a direct problem with a TEVP model at the shear rate of 
γ̇ = 0.1 [1/s] is shown in Fig. 3. As the figure shows, there is an excellent correlation between the predicted 
solution and the ground solution in this case, suggesting that the training is performed properly.

In the next step, we sought to investigate the role of the shear rate magnitude on the RhINNs predictions for 
the stress response of TEVP fluids. This is particularly important with respect to application of any data driven 
methodology to rheometric flows and predictions, where differences in the magnitude of applied rates and result-
ing stresses are commonly presented in logarithmic scales. Since the yield stress and the steady state shear stress, 
depending on the applied deformation rate, can greatly differ in their magnitude, it is critical to ensure that the 
neural network provides a reliable prediction for the low shear stress regime and the high shear stress regime 
alike. In other words, one has to ensure that the small values of stress and the residuals for the correlations in 
this shear regime are not screened by the large stresses at the highest deformation rates. To do this, we consider 
the Eq. (2) to be the constitutive model of choice with simple start up of shear protocol. Five different shear 
rates from γ̇ = 0.01 s−1 to γ̇ = 100 s−1 are presented to cover four decades of change in shear rate. As presented 
in Fig. 4 the predictions made by the RhINNs and the ground solution of the TEVP fall exactly on top of one 
another for all shear rates studied here.

Figure 2.   Direct solution of different constitutive models in a shear start-up flow protocol and applied shear 
rate of 0.1 [1/s] : (a) Fully fluidized TVP fluid, (b) fully structures TVP fluid , (c) fully fluidized TEVP, and (d) 
fully fluidized TEVP fluid with IKH model, with parameters based on Table 1.
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In practice, a number of different flow protocols are commonly applied to a complex fluid to probe the relevant 
material function, properties and characteristic timescales. Start-up of shear, flow hysteresis or ramp cycles, 
small amplitude oscillatory shear (SAOS), LAOS, and step shear rate are among the most common rheometric 
flow protocols that can be used in order to fully investigate a thixotropic fluid. The data-driven methodologies 
commonly fail to capture the details of changes in a flow protocol since the equations are not fully solved, but 
are merely correlated in time. The traditional data-driven methodologies, such as deep neural networks with-
out introduction of physical laws, commonly fail to capture the details of changes in a flow protocol since the 
equations are not fully solved, but are merely correlated in time. For instance, even if enough data is used for 
accurate training of a deep neural network for constant shear rate flow protocol, the network learns to predict 
the steady state response of the material to an applied deformation rate at long time (longer than the material 

Figure 3.   The regression between the ground solution and the predictions made by RhINNs for a direct 
problem based on a TEVP mode in start-up of flow with the shear rate of γ̇ = 0.1 [1/s].

Figure 4.   Direct RhINNs solution of a TEVP fluid under constant shear rate flow start-up protocol, with 
deformation rates ranging from γ̇ = 0.01−100 s−1 . The TEVP model parameters are: G = 70 [Pa] , σy = 5 [Pa] , 
ηs = 5 [Pa s] , ηp = 2 [Pa s] , k+ = 0.1 [1/s] , k− = 0.3.
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timescale). Thus, when a flow protocol involves change of direction or magnitude at a later time, classical neural 
networks lose their ability to track the experiment entirely. Nonetheless, RhINNs does not suffer from the same 
deficiency and is able to recover these rate changes in different protocols. Figure 5 shows the comparison between 
the RhINNs prediction and the ground solution of the shear stress response of a TEVP fluid (Eq. 2) under flow 
hysteresis and LAOS experiments. The rheological hysteresis area is a hallmark of thixotropic fluids, where a 
ramp down followed by a ramp up shear protocol, returning to the initial shear rate (which is large enough to 
fluidize the entire system and erase any thermokinematic memory) results in close-loop flow curves. The physi-
cal significance of such protocols is the fact that the magnitude of this area strictly depends on the characteristic 
timescale at which the material begins to erase its memory to the previous deformation. Hence, such methods 
are used commonly to characterize the thixotropic timescale in TEVP fluids20,21. On the other hand, the so-called 
Lissajous curves that describe the shear stress response of a fluid to a large oscillatory shear deformation have 
been studied extensively in order to characterize time and rate dependent complex fluids such as TEVPs4,26,32,40–43. 
In both protocols, RhINNs closely mimics the ground solutions of the TEVP constitutive model over the entire 
range of shear rates and amplitudes (for brevity, only one frequency and amplitude is presented).

In order to fully probe the ability of our RhINNs methodology to predict the stress response of a TEVP fluid 
to temporal changes in the imposed shear rate, a more complex step rate-change protocol was applied. Figure 6 
represents the comparison between the RhINNs predictions and the ground solutions of the TEVP constitutive 
model for the shear stress response of a complex shear rate protocol applied to the complex fluid: initial shear 
rate of γ̇ = 100 s−1 is applied for 50 s, followed by a linear ramp down to γ̇ = 0.1 s−1 over the next 50 s. Upon 
reaching γ̇ = 0.1 s−1 the deformation rate is kept constant for the third 50 s of the protocol, followed by a final 
step-up to the initial shear rate of γ̇ = 100 s−1 . The results in Fig. 6 clearly indicate that even with a complex 
shear rate protocol, RhINNs gives a robust predictions with virtually no deviation from the ground solution of 
the constitutive equation.

Data driven discovery.  As described previously, a major leap forward in constitutive modelling of complex 
fluids and in material design and discovery can be made by enabling data driven methods that recover material 
functions from a limited number of experiments. Practically, a series of different experiments are performed in 
order to fit a particular model that describes observed rheological behavior, in order to determine the model 
parameters and hence material properties of a thixotropic fluid. Of particular interest is to determine the time-
scales and kinetics of structure break-up and formation under different flowing conditions. Thus in this section, 
we seek to find the model parameters and material’s time constants from a series of simple flow curves. To do 
this, we employ our RhINNs methodology to solve for the inverse problem, and predict the material parameters 
from the shear stress response, i.e. find the hidden rheology with a limited set of data. This is done pedagogically, 
and by beginning with an assumption of partial information regarding material properties. The ultimate goal 
is to identify the number of experiments required to provide an accurate prediction for the material properties 
using the inverse RhINNs platform. These properties include the elastic modulus and the yield stress of the 
fluid, as well as the time constants required to recover the temporal evolution of the structure parameter. The 
number of data points commonly collected over a particular rheometric flow protocol greatly depends on the 

Figure 5.   Direct RhINNs solution of a TEVP constitutive equation with two different flow protocols: (a) 
ramp function with the deformation rate starting from 10 [1/s] and linearly decaying to 0.01 [1/s] over 50 s, 
followed by increases to the initial value over the same period of time. And (b) Large Amplitude Oscillatory 
Shear (LAOS) flow with unit amplitude and frequency of ω = 0.2 . For both protocols the model parameters are: 
G = 5.5 [Pa] , σy = 1 [Pa] , ηs = 5 [Pa s] , ηp = 0.5[Pa.s] , k+ = 0.1 [1/s] , k− = 0.3.
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material under investigation, the inherent timescales associated with the material and with the flow protocol, 
etc.. Nonetheless, typically rheological data are collected and represented in logarithmically spaced intervals 
to reveal the material functions/timescales with respect to the applied flow protocol. Here, we used ∼ 200 data 
points to remain in a relevant data size with respect to the common experiments. In the first step, we seek to 
identify the time constants for the time evolution of the structure parameter from the shear stress response, 
assuming that the yield stress and the elastic modulus of the fluid are known. Namely, flow curves such as ones 
presented in Fig. 2 are provided, and the RhINNs is used to recover the model parameters. Table 2 represents 
the actual and predicted values of k+ and k− , using a single shear flow curve, whether that is start up of flow, 
step rate, ramp cycle or SAOS/LOAS. For all various flow protocols, RhINNs recovers the time constants for the 
structure evolution, having the rest of parameters, with less than one percent error. The exception is the oscilla-
tory shear protocol, for which the error rises to smaller than 5 percent. Nonetheless, this is extremely accurate 
considering that for each of these protocols, only one set of shear stress response is provided for RhINNs to learn 
the hidden rheology.

In a similar fashion, we also investigated the impact of imposed shear rate on the performance of the RhINNs 
in solving the inverse problem, and finding the time constants for the structure evolution, k+ and k− . Table 3 
shows the RhINNs predictions and the actual values for five (5) different shear rate magnitudes as studied in 

Figure 6.   Direct RhINNs solution of a TEVP fluid’s stress response to a multi shear rate protocol. The model 
parameters are similar to ones in Fig. 5.

Table 2.   RhINNs-predicted values for k+ and k− in different shear rate protocols. For all cases G = 30 [Pa] , 
σy = 0.5 [Pa] , ηs = 5 [Pa s] , and ηp = 1 [Pa s] are known from the material properties.

Actual value

Predicted value

Simple shear Step rate Ramp cycle SAOS

k− 0.300 0.301 0.300 0.303 0.286

% Error – 0.46 0.09 0.99 4.52

k+ 0.100 0.100 0.100 0.101 0.097

% Error – 0.38 0.05 0.81 3.32

Table 3.   RhINNs predicted values for k+ and k− in different values of simple shear rate. For all cases 
G = 800 [Pa] , σy = 20 [Pa] , ηs = 20 [Pa s] , and ηp = 20 [Pa s] are known from the material properties.

Actual value

Predicted value

γ̇ = 0.01 γ̇ = 0.1 γ̇ = 1 γ̇ = 10 γ̇ = 100

k− 0.300 0.316 0.299 0.300 0.283 0.287

% Error – 5.41 0.04 0.04 5.63 4.33

k+ 0.100 0.100 0.100 0.100 0.096 0.096

% Error – 0.03 0.00 0.05 3.63 3.68
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the direct problem. Evidently, the RhINNs-predicted time constants are closely tracking the actual values, with 
better efficiency in the intermediate range of applied shear rates. This could simply be explained by the fact that 
at the two extremeties, the low stress and high stress responses of the material become more dominant and 
thus slightly impact the overall predictions. Nonetheless, RhINNs predictions remain in the range of less than 5 
percent error for all shear rates studied. Alternatively, Fig. 7 shows the time evolution of the structure parameter 
using RhINNs-predicted time constants for the flow curves previously seen in Fig. 4, compared to ground solu-
tion of the same parameter from a TEVP model. In these curves, RhINNs is solving for the time evolution of the 
microstructure parameter, based on a single shear stress vs. applied shear rate flow curve.

One of most important factors contributing to the performance of our proposed RhINNs is the sensitivity 
of the method to noisy data. Indeed most of the experimental results are naturally associated with some level 
of noise, due to experimental artifacts and unknown variables affecting the results. To ensure applicability of 
RhINNs to real-world experimental data, we investigated the effect of noisy data on parameter prediction of 
RhINNs in an inverse solution. We are considering one of the cases presented in Table 3 with shear rate of 
γ̇ = 0.1 [1/s] in a start-up of a flow. We intentionally introduce different levels of noise based on uncorrelated 
Gaussian noise process to the data at hand. Table 4 represents the results of the predicted coefficients for the 
structure evolution, k+ and k− . Upon addition of 5% noise to the data, the predictions remain in very good agree-
ment with the ground solution. This further confirms that the proposed RhINNs algorithm is not compromised 
by the noisy data and the predictions stay realistic and explanatory of the material under question.

We also interrogated the performance of our inverse RhINNs methodology to determine the entire list of 
material properties/model parameters from a limited number of experiments. To do this, we have provided the 
time evolution of the shear stress response of a TEVP fluid to our RhINNs platform and ask for the model to 
predict six (6) model parameters involved: the two time constants for the kinetics of structure formation and 
break-up, the elastic modulus, yield stress, and the background and plastic viscosities. Table 5 represents the 

Figure 7.   RhINNs predictions of the time evolution for structure parameter based on values of the time 
constants learned in one set of simple shear experiment. Here G = 800 [Pa] , σy = 20 [Pa] , ηs = 20 [Pa s] , and 
ηp = 20 [Pa s] are known from the material properties.

Table 4.   RhINNs predicted values for k+ and k− in a start-up of a flow with shear rate of γ̇ = 0.1 [1/s] with 
noisy data. For all cases G = 800[Pa] , σy = 20 [Pa] , ηs = 20 [Pa s] , and ηp = 20 [Pa s] are known from the 
material properties.

Actual value

Predicted value with noise of

0% 1% 2.5% 5%

k− 0.300 0.299 0.295 0.289 0.284

% Error – 0.04 1.74 3.61 4.65

k+ 0.100 0.100 0.097 0.094 0.092

% Error – 0.00 1.01 5.05 7.69
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actual against RhINNs-predicted values of all of these material properties provided the simple shear rate flow 
curves. The predictions are in excellent agreement with the actual values.

As demonstrated in Figs. 5, 6 and Table 5, the RhINNs platform accurately predicts the time evolution of 
the shear stress response of a thixotropic fluid under different flow protocols having the material properties or 
vise versa. Hence, combining the forward and inverse solutions, i.e. data-driven solution and discovery, one can 
recover the material properties through a series of simple experimental protocols followed by accurate prediction 
of the material behavior under a different more complex flow. This is investigated here by evaluating the possibil-
ity of predicting the stress behavior of a TEVP fluid under complex shear rate protocol, given its stress response 
to a simple shear experiment. Figure 8 presents the RhINNs predictions following two different provided data 
sets for a TEVP fluid under LAOS protocol: i. elastic modulus, yield stress, background and plastic viscosities 
are known, as well as the time evolution of the shear stress for a single applied shear rate, and ii. no information 
is available for the material, but shear stress responses are available for ten (10) different applied shear rates. It 
should be mentioned that both of these scenarios present realistic experimental protocols. For instance, from 
a single flow protocol, one can measure the yield stress value, the terminal Newtonian viscosity at the highest 
shear rates, and the background viscosity knowing the chemical nature of the background fluid. Alternatively, 
one may have virtually no information about these material properties, but able to run a series of simple shear 
rate protocols. Regardless of the available information, the RhINNs architecture provides an excellent prediction 

Table 5.   RhINNs-predicted values for all coefficients based on 10 different experiments in a start-up of a flow 
with shear rates ranging between 0.1 and 1 [1/s].

k− k+ G σy ηs ηp

Actual value 0.30 0.10 5.50 0.50 5.00 1.00

Predicted value 0.309 0.095 5.500 0.506 4.991 1.115

% Error 3.05 4.73 0.12 1.26 0.18 11.49

Figure 8.   Combination of data driven discovery and data driven solution methodologies. First option provides 
the elastoviscopalstic properties and the results of a simple shear rate experiment, and the second option is 
only informed by ten different flow curves at constant shear rates without any prior knowledge of material 
parameters. In both options, these information are utilized to learn the hidden rheology, and subsequently 
predict the stress response of the TEVP fluid to a LAOS protocol.
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compared to ground solution of a TEVP fluid. In both of these settings, a data driven discovery RhINNs is in 
serial with a data driven solution RhINNs (Fig. 8).

Conclusion
In this work, we introduced and studied the performance of an adaptable and comprehensive data-driven algo-
rithm for constitutive meta-modeling of complex fluids with respect to their rheological behavior. The proposed 
Rheology-Informed Neural Networks, RhINNs, is capable of taking advantage of NN versatility in solving con-
stitutive equations for both direct and inverse problems. In the direct problems, the RhINNs can be used as an 
alternative method for solution of coupled ODEs with excellent accuracy and efficiency. This is particularly of 
interest with respect to complex rheological constitutive models that are commonly challenging to be imple-
mented within CFD platforms of choice. In the inverse solution, referred to as data-driven discovery, the RhINNs 
accurately recovers the material properties and the model parameters having only a limited number of data sets 
and rheometric measurements. Due to presence of different timescales and different effects depending on the 
flow history, traditional approaches require several experimental protocols tested to find the best parameter 
fitting of a complex fluid model and to describe the system under question. Here and using RhINNs, we show 
only one (assuming we have partial information) or 10 (for a brand new material) simple start-up of a flow 
experimental data are sufficient to calculate the model parameters with a very good accuracy. This provides an 
extremely powerful platform for employing data-driven and machine learning algorithms in areas of research 
where often small sizes of data available prevents a meaningful predictive capability to be devised. To test the 
robustness of our proposed method, we showed one can easily determine the model parameters with a great 
accuracy, regardless of the type of experimental data at hand. We demonstrated that the incorporation of a physi-
cal intuition into the neural network architecture in the form of a constitutive model significantly improves the 
predictive ability of the algorithm. We also argue that even with a similar computational efficiency for the training 
of RhINNs compared to that of the traditional approaches, the main advantage of RhINNs methodology (and in 
general, similar science-based data-driven techniques) lies within reduction of the required data to determine 
model parameters and thus full characterization of a material with respect to any given rheological or thixotropic 
constitutive relation of interest. We need to stress on the fact that the goal of current work is not to provide a 
replacement for ODE solvers in either direct or inverse problem, but solely introducing a data driven method 
that can further be used as a powerful platform for integration of non-Newtonian constitutive laws of interest. 
It should also be noted that while inverse solution through common ODE backpropagator solvers will return a 
constant solution for characterization of a material, RhINNs (and other data-driven techniques) improve upon 
availability of more data and thus provide a more reliable characterization over time as well. RhINNs methodol-
ogy introduced here can be directly used in order to significantly reduce the number of experiments required 
for probing different material properties and model parameters.
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