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Fingerprints of nonequilibrium 
stationary distributions 
in dispersion relations
Kamel Ourabah

Distributions different from those predicted by equilibrium statistical mechanics are commonplace in 
a number of physical situations, such as plasmas and self-gravitating systems. The best strategy for 
probing these distributions and unavailing their origins consists in combining theoretical knowledge 
with experiments, involving both direct and indirect measurements, as those associated with 
dispersion relations. This paper addresses, in a quite general context, the signature of nonequilibrium 
distributions in dispersion relations. We consider the very general scenario of distributions 
corresponding to a superposition of equilibrium distributions, that are well-suited for systems 
exhibiting only local equilibrium, and discuss the general context of systems obeying the combination 
of the Schrödinger and Poisson equations, while allowing the Planck’s constant to smoothly go to 
zero, yielding the classical kinetic regime. Examples of media where this approach is applicable are 
plasmas, gravitational systems, and optical molasses. We analyse in more depth the case of classical 
dispersion relations for a pair plasma. We also discuss a possible experimental setup, based on 
spectroscopic methods, to directly observe these classes of distributions.

Einstein constantly criticized Boltzmann’s statistical  approach1,2 because, he argues, a statistical description of 
a system should be ultimately based on its dynamics. This critique opened the way for classical statistics that 
are different from those of Boltzmann and Gibbs. Since then, compelling evidence has accumulated in favor of 
the emergence of such non-Boltzmann statistics in a wide spectrum of physical systems and under very general 
circumstances. In plasma physics and in the physics of gravitational systems, non-Boltzmann distributions are 
 commonplace3,4 and are usually understood as a consequence of the long-range nature of the interactions that 
prevent these systems from reaching thermodynamic equilibrium. Selected examples of systems where such 
distributions have been observed include driven dissipative dusty  plasmas5, cold atoms in dissipative optical 
 lattices6,7, spin  glasses8, trapped ions interacting with a classical buffer  gas9, freestanding graphene  membranes10, 
cell monolayer  systems11, and high energy collisional  experiments12. A whole sub-branch of physics, dedicated 
to revealing the dynamical origins of these distributions and to their implementation into different paradigms, 
is progressively opening  up13–17.

The most reliable evidence for these distributions comes, of course, from their direct observation. In many 
situations however, direct observation of distributions can be very cumbersome. In this case, valuable information 
about the statistical properties of the system can be provided by indirect measurements; that is, by measuring 
observable quantities that are sensitive to the distribution function. At the forefront of such measurements are 
those associated with dispersion relations (DRs), which are routinely measured, e.g., in plasma physics or in 
condensed matter physics, and that carry information on the shape of the distribution. Perhaps the most appeal-
ing example in this regard is the measurement of DRs of plasma oscillations provided by Van  Hoven18 that has 
been, later on, interpreted as a manifestation of Tsallis  statistics19,20—a form of non-Boltzmann statistics emerging 
out of the formalism of nonextensive statistical mechanics (NSM)21. It is however important to stress here that, 
in general, DRs do not contain the full information on the distribution but depend only on its first moments. 
That is to say, one cannot, from the DRs alone, uniquely identify the distribution. Yet, it is possible to find the 
signature of a given class of statistics in DRs. It is precisely the aim of this work to attempt to unveil, in a quite 
general context, the “fingerprints” of nonequilibrium distributions in DRs.

Clearly, DRs depend both on the dynamical (i.e., the equations of motion) and the statistical (i.e., the distri-
bution function) properties of the given system. It is then important to specify the context of our analysis. Let 
us start with the distributions. To put the discussion on very general grounds, we consider velocity (or energy) 
distributions in the form of a superposition of local equilibrium distributions, that is
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where β is some intensive parameter (hereafter identified with the inverse temperature), which is distributed 
according to some unspecified distribution f (β) , while f0 is the (local) equilibrium distribution that can be iden-
tified with the Maxwell-Boltzmann (MB) distribution for classical systems or the relevant quantum generalization 
thereof for a quantum system. Distributions in the form of Eq. (1) are in fact very general; they contain Tsallis 
distributions as a very special  case22 but they also cover a variety of other distributions that have been observed 
 experimentally23–33. We will focus here on three different distributions f (β) (the so-called three universality 
classes of superstatistics) that have strong empirical evidence. The extension of our analysis to other distributions 
is nevertheless straightforward conceptually if not technically.

Of no less importance than the statistics is, of course, the dynamics of the system. To make the discussion 
as general as possible, we will be considering systems that can be formally described by the combination of the 
Schrödinger and the Poisson equations (SP model in short), while allowing the Planck’s constant to smoothly 
go to zero, yielding the classical Vlasov-Poisson regime. Typical systems obeying the SP model are quantum 
 plasmas34,35 and self-gravitating  systems36–38. However, as pointed out  recently39, the applicability of the SP model 
goes well beyond the usual scenario of plasmas and self-gravitating systems and covers a large spectrum of sys-
tems, manifesting similar elementary excitations, such as Bose-Einstein condensates (BECs) and optical molasses.

This paper progresses in the following fashion. First, we discuss the velocity distributions (classical and 
quantum) in the form of Eq. (1), corresponding to the three universality classes of superstatistics. To show their 
significance, we confront them with recent observations of relevance for our discussion, i.e., those of space 
plasmas in the presence of micro-gravity40. Next, we work out the corresponding DRs in the context of the SP 
model and the corresponding Vlasov-Poisson limit. We examine more closely the classical limit of these DRs 
in the case of a pair (electron-positron) plasma, discussing the different modes and the corresponding Landau 
damping. Finally, we present an experimental setup, based on spectroscopic methods, to directly observe these 
distributions.

Nonequilibrium stationary distributions
To set the scene, let us first state precisely the statistical conditions we are considering here, i.e., the circumstances 
under which Eq. (1) holds. We are dealing, quite generally, with nonequilibrium systems in a stationary state that 
exhibit only local equilibrium. In this situation, our nonequilibrium system may be virtually divided up into small 
cells or small regions that remain infinitely close to equilibrium. In each cell, one has local thermal equilibrium 
and the (local) statistics f0(v|β) correspond to those of equilibrium statistical mechanics (in fact, as each cell 
exhibits local equilibrium, the whole machinery of equilibrium statistical mechanics holds locally). At larger 
scales however, one has to account for temperature inhomogeneities across different cells, that are encoded into 
f (β) . Provided that the temperature varies within a time-scale much larger than the local relaxation time (viz., 
the adiabatic Ansatz41), the long-term distribution arises as a superposition of local equilibrium statistics, aver-
aged over the distribution of the inverse temperature β ≡ 1/kBT (hereafter, kB = 1 ) across the different cells, i.e., 
Eq. (1). In the statistical mechanics literature, such an approach goes by the name of superstatistics22, as it merely 
consists of a superposition of different statistics. As we will discuss later on, the conditions outlined above are 
in fact very common and this methodological attitude allows describing a wide range of physical systems under 
very typical conditions.

In principle, one may construct infinitely many distributions in the form of Eq. (1), by selecting appropri-
ate distributions f (β) . It is known however that three main classes of f (β) emerge as a universal behavior for 
most experimentally relevant situations. Beside their experimental relevance, these universality classes have a 
transparent statistical origin that can be understood from the application of the central limit  theorem23,24 or from 
the maximum entropy  principle42 (see also Ref.43). Assuming a (d-dimensional) MB distribution for f0(v|β) , we 
present in what follows these classes and the corresponding long-term velocity distributions.

(i) χ2 superstatistics In this case, the inverse temperature β is distributed according to the χ2 distribution (also 
known as Gamma distribution) of degree n:

where β0 ≡ �β� is the average of β . The corresponding long-term velocity distribution follows from Eq. (1) as

which is equivalent to the Tsallis distribution (q-Gaussian), known in the paradigm of NSM. This can be 
made more transparent by adopting a slightly different parametrization; by defining an entropic index 
q̃ := 1+ 2/(n+ d) and an effective inverse temperature β̃ := β0(n+ d)/n ≡ 1/T̃ , Eq. (3) can be re-expressed 
in the more familiar  form21 as
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We note in passing that, in the statistics literature, distributions in the form of Eqs. (3)–(4) are known as 
Student’s t-distributions44. Note that for large v, these distributions behave asymptotically as power-laws, which 
make them relevant for many different physical problems.

(ii) Inverseχ2 superstatistics In this case, instead of β , it is the temperature ( β−1 ) itself that is χ2-distributed. 
Then, β follows an inverse-χ2 distribution,

The corresponding velocity distribution follows as

where Kα(x) is the modified Bessel function of the second kind. Asymptotically, these distributions exhibit 
exponential tails in the  velocity45, which make them of less relevance in the usual scenario of space plasmas and 
gravitating system that are usually characterized by heavy-tailed distributions. Nonetheless, this type of expo-
nential behavior has been observed for stationary distributions in the case of Vortex glasses and vortex  liquids46, 
in fusion  plasmas27, and in cancer disease-specific mortality probability  distributions28.

(iii) Log-normal superstatistics In this case, β is distributed according to the log-normal distribution,

with an average of β given by β0 ≡ �β� = µes
2/2 . In this case, no closed-form expression for the corresponding 

velocity distribution B(v) is known to date. Therefore, we will be dealing with this last case numerically.
These three classes of distributions cover the rich variety of distributions observed in stationary nonequilib-

rium systems and, in fact, have substantial empirical evidence; χ2 superstatistics (or equivalently Tsallis statistics) 
have been observed in numerous systems, such as dusty  plasmas5, cold  atoms6,7, and spin  glasses8. Experi-
mental evidence for log-normal superstatistics has been reported in the context of Lagrangian and Eulerian 
 turbulence25,26, gravitational  systems38, space  plasmas47, and air pollution  statistics33, among other  systems48, 
while systems possibly obeying inverse-χ2 superstatistics have been presented in Refs.27–29.

So far, we have been considering the case of classical statistics. One may nonetheless follow similar lines 
of reasoning in the quantum context as well by identifying the local equilibrium distribution f0(v|β) to the 
Bose–Einstein (BE) or Fermi–Dirac (FD) distribution. The latter case is particularly interesting for our analysis, 
as we will focus our attention on plasma DRs. In this case, the local equilibrium FD velocity distribution reads as

where ǫ = mv2/2 . At this stage, an important remark is in order. Note that, although phenomena of wave 
propagation, producing DRs, are intrinsically 1d processes, the distribution is fundamentally a 3d quantity. In 
the classical case of the MB distribution, this subtlety can be safely disregarded since the 1d MB distribution, 
obtained by integrating over the two directions perpendicular to the wave propagation, has the same form as the 
original 3d distribution. In the case of the FD distribution, the reduction of the 3d distribution to its projected 
1d version has to be done more carefully, and reads  as49

where βF ≡ 1/TF , with TF being the Fermi temperature and vF the Fermi velocity. In this case, we are not in 
position to obtain closed-form expressions for the corresponding superstatistical distributions (1). The latter 
can however be easily computed numerically.

In Fig. 1, we show examples of 1d velocity distributions associated with the three universality classes of 
superstatistics, i.e., χ2 [Eq. (2)], inverse χ2 [Eq. (5)], and log-normal [Eq. (7)]. The top panel corresponds to a 
local equilibrium MB distribution while the bottom panel shows its generalization to the FD distribution (for 
T = 0.01TF and µ = 0 ). For a better comparison between the different universality classes, we parametrize the 
distributions by using a single parameter defined as q := �β2�/β2

0 . The latter can be easily expressed in terms of 
the parameters of the corresponding distribution f (β) as
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for the three universality classes. This parametrization is convenient since the limit q = 1 corresponds to a van-
ishing variance of f (β) , which shrinks into a Dirac delta δ(β − β0) , and equilibrium distributions are recovered 
in this case.

Before closing this section, it may be appropriate to give these distributions a more empirical credit, by 
confronting them with direct observations, in a context relevant to our analysis. In Fig. 2a, we confront them 
with independent  observations40 of velocity distributions of a plasma under micro-gravity conditions, obtained 
through the PK-4 instrument on-board the International Space Station (ISS), that clearly exhibit a non-Boltz-
mann behavior. We show the best-fits obtained by a nonlinear regression method based on the Levenberg-
Marquardt  algorithm50,51 (also known as the damped least-squares method), for the χ2 and the log-normal 
universality classes, while we disregard the inverse-χ2 class, which fails to describe the high-energy part of the 
observational data, since it exhibits an exponential decay. One may appreciate that both the χ2 and the log-normal 
classes nicely fit the data. Note that an even better fit can be reached by considering (as usually done in reports) 
that the core population is described by a MB distribution, and using the superstatistical distributions to fit only 
the halo part, i.e., the high energy tails, as shown in Fig. 2b.

Generic dispersion relations: the Schrödinger–Poisson system
To put the discussion in a very general context, we consider here generic dispersion relations that apply to a wide 
class of systems, formally described by the combination of the Schrödinger equation and the Poisson equation. 
As a trivial example, one may think of the case of a quantum plasma, where the SP model reads as
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Figure 1.  Examples of superstatistical velocity distributions for χ2 (a, d), inverse-χ2 (b, e), and log-normal (c, 
f) superstatistics, with different values of q := �β2�/β2

0
 , in a logarithmic scale to better highlight the tails. In the 

top panel, the local equilibrium distribution corresponds to the MB distribution while in the bottom panel, it 
corresponds to the (1d projected) FD distribution.
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where �C is the Coulombian potential and n0 is the background ion density (with ions supposed at rest). Another 
typical example is that of a self-gravitating system, in which case one has

where �G is the gravitational potential and m is the mass of the particle. Such a formal analogy between plas-
mas and self-gravitataing systems is well-known and, indeed, is also manifest in the classical regime, i.e., in the 
Vlasov–Poisson kinetic approach. However, as recently observed by Mendonça39, this analogy goes even further 
and applies to other physical problems as well. This can be made more transparent by rewriting the SP model in 
the form of an integro-differential equation as

where �0 is an arbitrary external potential. Upon choosing the functional form U
(
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)
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the case of (i) a quantum plasma ( g = e2/4πε0 and �0 = −e2/ε0n0 ), (ii) a self-gravitating system ( g = −m2G 
and �0 = 0 ), and (iii) ultra-cold atoms in a magneto-optical trap ( g = Q/4π and �0 = −Qneq , where Q is the 
effective atomic charge and neq is the equilibrium density). The model also covers (iv) the case of a BEC, with or 
without dipolar interactions, for

and g = 4π�2am , where a is the scattering length, Cdd is the dipolar interaction strength while θ and ϕ are ori-
entation angles. By employing the quantum kinetic Wigner-Moyal  approach52,53, one arrives at a generic form 
of the DR as follows

where f0(v) is the unperturbed (1d projected) velocity distribution and U(k) is the Fourier transform of U
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(for plasmas, self-gravitating systems, and ultra-cold atoms, one has U(k) = 4π/k2 ). For a system, initially in 
thermodynamic equilibrium, f0(v) is usually identified with the MB distribution, or the relevant quantum gener-
alization thereof. For a system exhibiting only local equilibrium, as defined above, the unperturbed distribution 

(11)
i�
∂ψ

∂t
=

(
−

�
2

2m
∇2 − e�C

)
ψ ,

∇2�C =
e

ε0
(|ψ |2 − n0),

(12)
i�
∂ψ

∂t
=

(
−

�
2

2m
∇2 +m�G

)
ψ ,

∇2�G = 4πmG|ψ |2,

(13)i�
∂ψ

∂t
=

[
−

�
2

2m
∇2 +�0 + g

∫
U
(
r − r′

)∣∣ψ
(
r′, t

)∣∣2dr′
]
ψ ,

(14)U
(
r − r

′) = δ
(
r − r

′)+ Cdd

8πg

1− 3 cos2 θ

|r − r′|3
(
3 cos2 ϕ − 1

)

(15)1−
gn0k

2

mω2
U(k)

∫
f0(v)dv

(1− kv/ω)2 − �2k4/4m2ω2
= 0,

Figure 2.  Superstatistical distribution functions corresponding to the χ2 (black) and log-normal (red) 
universality classes, compared to the data of Ref.40 (open circles), obtained from the analysis of a time series 
using the Complex Plasma Laboratory PK-4 instrument on-board the ISS. The left panel (a) shows the whole 
domain while the right panel (b) shows only the halo part, i.e, the high energy tail.
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f0(v) takes the form of Eq. (1), where the temperature distribution f (β) is given by one of the three universality 
classes. While computing DRs, one is most often interested in the case of excitations with large phase velocities, 
i.e., v ≪ ω/k . In this limit, Eq. (15) can be expanded as follows

where ω0 is the appropriate characteristic frequency, given by

For a quantum plasma, it corresponds to the plasma frequency ω0 ≡ ωp =
√

e2n0/ε0m , while for a self-
gravitating system it is given by ω2

0 ≡ −ω2
J  , where ωJ =

√
4πGmn0 is the so-called Jeans frequency.

Note that, in principle, DRs (16) fully characterize the velocity distribution through the complete (infinite) 
set of velocity moments 〈vl〉 . In practice however, one is interested in the experimentally relevant limit of excita-
tions with large phase velocities, in which case Eq. (16) is truncated and contains information on the velocity 
distribution only through its first moments. That is, one cannot reconstruct the distribution function from 
the DR alone. This turns out to be rather advantageous if one is interested in the universal effect produced by 
nonequilibrium distributions in DRs. This is because, even in the absence of a closed-form expression for the 
distribution, as happens in the case of log-normal superstatistics, one can compute the corresponding DR as 
long as the moments of f (β) are known. In fact, one may observe that, for distributions in the form of Eq. (1), 
the velocity moments can be expressed as a combination of the moments of the local equilibrium distribution 
f0(v|β) with those of f (β) as follows

where �·�f0 stands for an average over the equilibrium distribution f0(v|β) and �·�f (β) is an average over f (β) . For 
the three universality classes, i.e., Eqs. (2), (5), and (7), one has
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(l even), to determine all superstatistical velocity moments in an exact fashion. In particular, the first two 
moments appearing in the DR (16) follow as
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larger than their equilibrium counterparts; a feature that may be attributed to the heavy tails that are typical of 
nonequilibrium stationary distributions.

Note that in the case of a local equilibrium distribution given by the FD distribution, the moments are difficult 
to obtain in an exact form. One may use however approximate  expressions54,55 that are in agreement with the 
exact forms that are known in the dilute (classical) and ultra-dense (completely degenerate) cases. For instance, 
for the kinetic energy (i.e., the second-order velocity moment), one usually employs the arithmetic sum of the 
MB thermal energy and the Fermi energy. Hence, as far as this approximation is valid, the above discussion is 
applicable to the FD case as well.

Note that the classical limit of the DR (15) is easily obtained by letting � → 0 , and reduces to

which coincides with the classical DR corresponding to the the Vlasov–Poisson kinetic treatment. In particular, 
in the case of a plasma, by considering the large phase velocity limit ( v ≪ ω/k ) and neglecting terms beyond 
the order k2 , one obtains after making use of Eq. (21), the following DR

which is a modified version of the Bohm-Gross DR that have been already discussed  in47, where 
�D ≡

√
ε0T0/n0e2 is the Debye length defined at the mean temperature T0 . In Ref.47, we have shown that DRs 

in the form of Eq. (25) fit nicely with the data of Van  Hoven18 that have been argued to be a manifestation of 
Tsallis  statistics19,20. Here, we compare the DR (25) with the dispersion data of Derfler et al.56, obtained using a 
Langmuir probe. Best-fits obtained using the generic DR (25) are shown in Fig. 3, where we have normalized 
the frequency to ω0 and the wavenumber to 1/�D , that is, � ≡ ω/ω0 and K ≡ �Dk . One may appreciate that the 
universal effect induced by nonequilibrium distributions is in a good agreement with the data.

Prior to analyzing more general forms of DRs in the following section, it may be appropriate to comment 
briefly on the effect of nonequilibrium stationary distributions on the coupling parameter. In a plasma, the 
latter is defined as the ratio between the average electrostatic potential per particle 〈U〉 and the average kinetic 
energy 〈K〉 . Independently on the distribution, one can estimate �U� ≈ e2/4πε0rS where rs is the Wigner-Seitz 
radius defined as 4πr3Sn0/3 = 1 . On the other hand, for a nonequilibrium distribution in the form of (1), one 
has �K� = m�v2�/2 = 3φi(q)T0/m . The coupling parameter follows as

That is, a plasma in a nonequilibrium stationary state tends to be less coupled than its equilibrium counter-
part (at the same mean temperature); a feature that may be attributed to the haivy tails of the nonequilibrium 
distributions, i.e., to the high energy population.

Classical dispersion relations: the case of a pair plasma
In this section, we examine in further details more general forms of classical DR (24), and the corresponding 
Landau damping, in the case of a plasma. Instead of an electron-ion plasma, we consider the case of a pair 
plasma, composed of electrons and positrons (or equivalently, two ion species having the same  mass57). In fact, 
because of the mass symmetry and the charge anti-symmetry between the two species, electrons and positrons 
in general follow (apart from a small asymmetry) the same distribution with the same mean temperature. It is 
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Figure 3.  Comparison between the experimental data of Ref.56 (open circles) and the best-fit obtained using 
the generic DR (25), corresponding to φi(q) ≈ 3.08 (solid line). The equilibrium case q = 1 is also shown for 
comparison (dashed line).
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therefore meaningful to assign the same superstatistical distribution to both species. The two-species extension 
of the DR (24) reads as

where the subscripts (−) and (+) stand for electrons and positrons, respectively, and ω0 is the plasma frequency 
for a pair plasma, ω0 =

√
2n0e2/ε0m.

Let us first analyze, as previously, the high frequency limit ( v ≪ ω/k ) of the DR (27), i.e., Langmuir modes. 
In this case, by considering only the real part of the DR for the moment, we recover the modified Gross-Bohm 
relation (25), where the Debye length is modified accordingly for a pair plasma, i.e., �D ≡

√
ε0T0/2n0e2 . Note 

however that, because of to the singularity in the integrand of Eq. (27), the integral is not properly defined in 
the whole velocity domain. In fact, this singularity induces an imaginary part in the DR, which is responsible 
for the Landau damping. To study this process, we follow very standard lines (see for instance Ref.58), by setting 
ω = ωr + iγ , and restricting ourselves to a small imaginary part, i.e., |γ | ≪ ωr . It is convenient to re-express the 
DR (27) as D(k,ω) = 0 and split it into a real and imaginary parts, i.e., D = Dr + iDi , where Dr is determined by 
the Cauchy principal value of the integral, while for Di , one retains the pole contribution to the integral. Then, 
the imaginary part of the frequency is given  as58

Following these lines, we have for the χ2 and inverse-χ2 classes:

and

whereas for the log-normal class, we are not in position to obtain a closed-form expression for γ . The latter can 
however be expressed in the following integral form

which can be easily solved numerically. In addition to Langmuir modes, corresponding to the high frequency 
branch, one can also investigate the low frequency branch or ion-acoustic waves (IAWs). In this case, we employ 
the usual  trick59 that consists of assuming a difference in the (mean) temperatures of the two species, i.e., T+ � T− 
and considering a phase velocity such that vth,+ � ω/k � vth,− , where vth,± are the thermal speeds of the two 
species. In the end of the process, we let T+ → T− = T0 . In this case, from the real part of the DR (27), we obtain

where we use the subscript r to indicate that it corresponds to the real part of the DR. From the imaginary part, 
we obtain for χ2 and inverse-χ2 , the following expressions

and

respectively, whereas for the class of log-normal superstatistics, we have the following integral form
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At this stage, it is instructive to observe that the real part of the DR depends on the distribution only through 
the auxiliary function φi(q) . This is no longer true for the imaginary part, i.e., for damped modes. In Fig. 4, we 
show the real part of the DRs (Brillouin diagrams) for the case of Langmuir modes [Eq. (25)] and for IAWs 
[Eq. (32)], with different values of the auxiliary function φi(q) . One may see that, indeed, the effect of different 
nonequilibrium distributions on the DR is qualitatively the same. By inverting Eq. (22), one can deduce, for the 
different universality classes, the corresponding value of q := �β2�/β2

0 , which measures the degree of temperature 
inhomogeneities.

The imaginary part of the DR is, on the contrary, more sensitive to the distribution. In Fig. 5, we show the 
Landau time, i.e., 1/|γ | , normalized to 1/ωr , for Langmuir modes [Eqs. (29)–(31)] and for IAWs [Eqs. (33)–(35)], 
for the three universality classes of superstatistics. Although one sees the same tendency for the three universal-
ity classes, it appears that one can, at least in principle, distinguish between them. In practice however, this may 
be a highly nontrivial matter, inasmuch as the three universality classes induce qualitatively the same effect.

Before closing this section, it should be noted that beside the two modes discussed above, which are longi-
tudinal modes, one also has transverse electromagnetic waves or light waves. In this case, the classical kinetic 
treatment  yields59

where c is the speed of light in vacuum. In this case, bearing in mind that light waves are high frequency waves, 
we may Taylor expand the integrand in Eq. (36) for v ≪ ω/k and make use of Eq. (21), to obtain the following DR

while there is no damping in this case. We will not discuss Eq. (37) any further since, because of the term k2c2 , 
the corresponding DRs are notoriously weakly sensitive to the distribution function.

Thermal Doppler broadening
We discuss in this section a possible experimental setup, based on a spectroscopic method known as thermal 
Doppler broadening, that may serve to directly identify the three universality classes of superstatistical velocity 
distributions. The method allows constructing the velocity distribution of a gas given its absorption spectrum 
and is particularly useful in probing velocity distributions in astrophysical situations, such as interstellar gas 
 clouds60, space and astrophysical  plasmas61, solar  flares62, etc.
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Figure 4.  Brillouin diagrams corresponding to the generic DRs for Languir modes [Eq. (25)] and IAWs [Eq. 
(32)], for different values of the auxiliary function φi(q) . The corresponding degree of inhomogeneities, i.e., 
q := �β2�/β2

0
 , can be obtained, for each class of superstatistics, by inverting Eq. (22).
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The mechanism behind this technique is quite simple. It is based on the broadening of the spectral lines 
caused by the Doppler effect on the velocity distribution of a gas of emitting particles. In fact, the velocity of each 
particle produces a Doppler shift of spectral wavelengths such that a characteristic wavelength �0 , for particles 
at rest in the observer’s reference frame, is shifted to � = �0(1+ v/c) , where v is the velocity component along 
the line of sight in the reference frame of the observer. The velocity distribution f(v) of the emitting particles 
can be fully determined from (and has the same form as) the distribution f (�) of the spectral shifts, since one 
has f (v)dv = f (�)d�.

For a classical gas in equilibrium, the velocity distribution is a Maxwellian (Gaussian) distribution, and the 
distribution of the spectral shifts f (�) has the same form. The same reasoning applies to the superstatistical 
velocity distributions (1). In this case, the corresponding distribution of the spectral shifts is given as

where B(x) is given by Eq. (1), with f (β) corresponding to one of the three universality classes, i.e., Eq. (2),  (5), or  
(7). It is standard practice to characterize the Doppler broadening by the full width at half maximum (FWHM), 
which in the Maxwellian case, reads  as63

It is a simple exercise to identify the signature of the superstatistical distributions on the FWHM. In the case 
of χ2 superstatistics, the distribution of the spectral shifts is merely a power-law and the corresponding FWHM 
can be easily computed as

In the limit q → 1 , the term in the parentheses in Eq. (40) reduces to ln 2 and Eq. (40) reduces to Eq. (39), 
expressed at the mean temperature T0 . Note that, if one adopts the parametrization commonly used in Tallis 

(38)f (�) =
c
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· B

[
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,
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Figure 5.  Normalized Landau time for the three universality classes of superstatistics: χ2 (a, d), inverse-χ2 
(b, e), and log-normal (c, f) superstatistics. The top panel corresponds to Langmuir modes, i.e. Eqs. (29)–(31), 
whereas the bottom panel corresponds to IAWs, i.e., Eqs. (33)–(35).
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statistics, i.e., q̃ ≡ 1+ (2q− 2)/(q+ 1) and β̃ ≡ (q+ 1)β0/2 , Eq. (40) can be expressed in the language of 
 NSM64,65 as

where

is the q-logarithm and T̃ ≡ 1/β̃ . For the two other universality classes, namely the inverse-χ2 and the log-normal 
superstatistics, we are not in position to obtain closed-form expressions for the FWHM since this requires the 
variables to be solved for in an essentially non-algebraic way. One may however estimate the corresponding 
FWHM numerically. For typical atomic masses and temperatures, one has

and ��/�0 is of the order of 10−6 . In this case, for a Maxwellian distribution, one has using Eq. (39), 
��/�0 ≈ 2.3548 10−6 . Table 1 shows the estimated values corresponding to the three universality classes of 
superstatistics for different values of q. One may see that the presence of temperature inhomogeneities tends to 
decrease the FWHM; a feature that can be attributed to the heavy tails characterizing nonequilibrium distribu-
tions. Note that, although the estimated values presented in Table 1 are meant as an illustration, deviations of 
this order can, in principle, be measured with the present experimental technology that enables low-uncertainty 
measurements of spectral lines. In fact, the present experimental technology of spectroscopy achieves signal-to-
noise ratios that  exceed66,67 105 and a resolution of frequency as small  as68,69 10−12.

Finally, it should be stressed that, in addition to the thermal broadening discussed here, there exist other 
mechanisms, of different origins, responsible for the broadening of the spectral line width. One should mention 
the pressure broadening, due to collisions, and the quantum broadening, arising fundamentally from the uncer-
tainty principle. These effects are known to produce a Lorentzian profile, and are totally independent on the 
thermal  broadening70. This independence allows expressing the spectral line profile as a convolution of the two 
profiles. Using the superstatistical profile (38) for the thermal broadening, one may construct the corresponding 
Voigt functions, i.e., the joint profiles accounting for both thermal Doppler and Lorentzian broadenings (see 
for instance Ref.61).

Conclusions
Given the growing empirical evidence in favor of distributions different from those predicted by equilibrium 
statistical mechanics, it becomes increasingly important to better understand their origins in physical problems. 
The best methodological attitude to obtain a complete and reliable picture of their origin consists in employing a 
synergistic approach, combining theoretical knowledge with experimental studies, involving direct and indirect 
measurements. This paper addresses an example of indirect measurements; those associated with dispersion rela-
tions (DRs). We have studied, in a quite general context, the signature of nonequilibrium distributions in DRs, 
by considering distributions in the form of a superposition of distributions, i.e., superstatistics. We focused our 
attention on the three universality classes of superstatistics, namely χ2 , inverse-χ2 , and log-normal universality 
classes, that have strong experimental  evidence23–27,29–33. The extension of our analysis to other forms of distribu-
tions is nevertheless straightforward. We discussed the general context of systems obeying a combination of the 
Schrödinger and Poisson equations and studied more closely the case of classical DRs for a pair plasma. We have 
also presented a possible experimental setup to directly observe these distributions using spectroscopic methods.

Our analysis sheds light on the universal effect produced by nonequilibrium distribution on DRs. In fact, as 
DRs generally depend only on the first moments of the distribution, they do not contain the full information 
about it, and the signature of the latter is merely indicative of the heavy tails that are characteristic of nonequi-
librium distributions.

This study may help probing the occurrence of nonequilibrium distributions in a variety of media exhibiting 
similar elementary excitations such as plasmons, hybrid-phonon modes, or Bogoliubov excitations in Bose–Ein-
stein condensates. Possible new prospects for future research consist in going beyond the linear regime and 

(41)
��
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8T̃

mc2
lnq̃ 2

]1/2

(42)lnq x :=
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1− q

(43)
mc2
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∼ 1012,

Table 1.  Estimated values of ��/�0 ( ×10
−6 ) corresponding to the three universality classes of supertatistics, 

for different values of q ≡ �β2�/β2
0
.

��/�0 ( ×10
−6) q = 1.1 q = 1.3 q = 1.5

χ2 2.3365 2.2990 2.2610

Inverse χ2 2.3446 2.3331 2.3306

Log-normal 2.3428 2.3192 2.3030
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investigating the effect of nonequilibrium distributions on the dynamics of nonlinear structures such as solitons, 
shock waves, voids, etc., that may take place in various medias.
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