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Deep learning‑based classification 
of blue light cystoscopy imaging 
during transurethral resection 
of bladder tumors
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Martin Kriegmair6, Thomas Knoll7, Stefan Porubsky8, Arndt Hartmann9, Jürgen Popp1,2, 
Maximilian C. Kriegmair10* & Thomas Bocklitz1,2*

Bladder cancer is one of the top 10 frequently occurring cancers and leads to most cancer deaths 
worldwide. Recently, blue light (BL) cystoscopy‑based photodynamic diagnosis was introduced as a 
unique technology to enhance the detection of bladder cancer, particularly for the detection of flat 
and small lesions. Here, we aim to demonstrate a BL image‑based artificial intelligence (AI) diagnostic 
platform using 216 BL images, that were acquired in four different urological departments and 
pathologically identified with respect to cancer malignancy, invasiveness, and grading. Thereafter, 
four pre‑trained convolution neural networks were utilized to predict image malignancy, invasiveness, 
and grading. The results indicated that the classification sensitivity and specificity of malignant lesions 
are 95.77% and 87.84%, while the mean sensitivity and mean specificity of tumor invasiveness are 
88% and 96.56%, respectively. This small multicenter clinical study clearly shows the potential of 
AI based classification of BL images allowing for better treatment decisions and potentially higher 
detection rates.

Bladder cancer is among the most common cancers and the leading cause of death in western  countries1. The 
primary diagnosis and treatment of bladder cancer is based on endoscopic procedures. Here, the standard of 
health care is white light (WL) cystoscopy, which offers an excellent sensitivity and specificity to detect papil-
lary tumors, but it misses a significant fraction of small and flat  lesions2,3. To increase the detection rate of these 
lesions, modern imaging technologies such as photodynamic diagnosis (PDD) are highly recommended. Accord-
ing to a couple of meta-analyses, 40% of flat cancerous lesions are only detected in BL  cystoscopy4,5. Consequently, 
the implementation of PDD can result in a change of the respective bladder cancer risk classification, and thus a 
more accurate  therapy6. However, PDD harbors some significant drawbacks concerning its low specificity which 
ranges from 35 to 60%4,5. For instance, it is difficult to distinguish flat cancerous lesions from inflammable altera-
tions following transurethral resection or  instillation6. Moreover, the interpretation of PDD findings is highly 
subjective and may vary between observers. This accounts especially for less experienced endoscopists, where 
the rate of false positives is particularly  high7. Finally, PDD supports the distinction of malignant and benign 
tissues but does not offer diagnostic information regarding tumor stage and grading.

Currently, brain-inspired deep neural networks (DNNs) have been revolutionizing artificial intelligence, 
and they have shown their potential for computer-aided diagnostic systems in various fields such as  radiology8, 
 histopathology9 and computational  neuroscience10. In terms of image processing, deep neural networks (DNNs) 
exhibit the best performing models for object recognition and yield human performance levels for object 
 categorization11. Typically, these DNNs mimic the mechanism of human brains by letting DNNs learn specific 
image features that improve the identification performance on new unlabeled data sets. In the basic architecture 
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of a DNN, the neural network is trained by passing a data set of labeled images through multiple layers that 
consist of simple units called neurons. These neurons compute different linear combinations of specific image 
features captured from the labeled data set and pass the results into the next layer through a static nonlinearity, 
e.g., replacing negative values by zeros. The previous nonlinear layer is usually known as activation layer, and it 
is followed by pooling layers that aim to reduce the spatial dimension of the image features. Then, DNNs pro-
cess the images as a sequence of visual representations in which each neuron detects a specific local region of 
the feature map in the previous layer while similar feature detectors exist across locations in the feature  map10. 
Nonetheless, the term “Deep” in deep neural networks indicates that multiple layers of neurons are utilized in 
DNNs and improve their identification performance. Such training procedures are usually time consuming and 
require a large sample size of labeled images, which is rarely available for biomedical applications. Therefore, the 
concept of transfer learning of DNNs was introduced to deal with classification tasks on small data set. Thereby, 
the identification knowledge gained via training DNNs on a large annotated data set can be transferred to solve 
another classification task based on a new and small data  set12,13. These strategies have shown a great potential 
for diagnostic classifications of biomedical images using relatively small sample  sizes14–17. Further, implementing 
such deep learning models in biomedicine may increase sensitivity and specificity of diagnostic procedures and 
reduce inter-observer  variance18,19. However, respective solutions in endoscopy are rare. Recently, Shkolyar and 
colleagues introduced a deep learning automated image processing platform for cystoscopy. The software was 
able to identify papillary lesions in videos from WL cystoscopy with a high sensitivity and  specificity20. Similarly, 
a recent study established a classification system based on 233 images of bladder wall lesions that was able to 
identify cancerous formations with a very high sensitivity, but with a low specificity of 50%21. Although these 
preliminary findings are promising, further developments in automated image processing are highly appreciated 
in urological endoscopy. In this context, PDD was considered as an effective modern imaging technique that 
offers characteristic information about tumor morphology. This technology utilizes the fluorescence properties 
of an extrinsic metabolic substrate, which is differently metabolized in cancerous and healthy  tissues22. Conse-
quently, PDD images contain more comprehensive information as compared to WL images.

The aim of this study is to test the classification of a small BL image data set consisting of bladder tumor 
and healthy urothelium images. This test was accomplished using an automated image processing pipelines and 
deep convolutional neural networks (CNNs) as a first step to implement computer-aided diagnosis in urological 
endoscopy. Our workflow started by preprocessing the BL images to include regions containing bladder tissue 
only. Then, the identification performance of different pre-trained CNNs in predicting bladder cancer malig-
nancy, invasiveness and grading was investigated via a fine-tuning-based transfer learning strategy. Shortly, a 
comparison between the implemented CNN models and bladder cancer ratings of two experienced urologists 
was performed on the basis of the classification sensitivity.

Results
We present in this section the classification results of BL images using the previously explained fine-tuned 
CNNs. Overall, images from 216 different lesions were included and three classification tasks based on these 
BL images were established. In Table 1, the pathological results of the biopsied lesions are shown. We can see 
that the numbers of collected images per class are different; thus, class weights were considered to correct the 
unbalance within the data set while the CNNs were trained.

Identification of malignant bladder tumors lesions. The goal of this task is to evaluate the perfor-
mance of the fine-tuned CNNs in identifying malignant lesions within the BL images, which were collected in 
multiple centers. Therein, the prediction results obtained by the proposed CNNs were compared with the physi-
cian ratings and summarized in Table S1 and Fig. 1. In Fig. 1A, the classification sensitivities of CNNs based on 
the leave-10-patients-out cross-validation (L10PO-CV) and the physician ratings were visualized as bar charts. 
For this binary task, the highest classification sensitivity for malignant lesions and for benign lesions are 95.77% 
and 87.84%; respectively. Here, the fine-tuned MobileNetV2 network provided the best identification of malig-

Table 1.  Distribution of pathological staging after TUR-BT of the respective PDD positive lesions. The 
separation into low-grad and high-grade was made according to the WHO 2004 classification and malignant 
was defined as all samples diagnosed with any kind of bladder cancer.

Histology n (%)

Benign 74 (34.26%)

CIS 17 (7.87%)

Ta, LG 72 (33.33%)

Ta, HG 28 (10.18%)

T1, LG 1 (0.46%)

T1, HG 13 (06.02%)

≥ T2, any grade 11 (05.09%)

Low-grade 73 (33.80%)

High-grade 69 (31.94%)

Malignant 142 (65.74%)



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11629  | https://doi.org/10.1038/s41598-021-91081-x

www.nature.com/scientificreports/

nant lesions while both fine-tuned MobileNetV2 network and fine-tuned VGG16 network introduced the high-
est sensitivity for the prediction of benign images. Moving to Fig. 1B, the mean sensitivities of all fine-tuned 
CNNs and both physicians are visualized. Clearly, the fine-tuned MobileNetV2 network features the highest 
mean sensitivity with the value of 91.81% followed by the fine-tuned VGG16 network with a mean sensitivity of 
90.75%. It is also obvious that the performance of any fine-tuned CNN is at least 15% superior in their classifica-
tion mean sensitivity as compared to the mean sensitivities obtained by both physician ratings. Nevertheless, the 
detailed confusion matrices of the pervious binary task are presented in Table S1 while the percentage of class 
sample sizes to all data set size is shown in Fig. 1C as pie chart.

The identification of bladder cancer invasiveness (T‑stage). Because each stage of bladder cancer 
required a specific medical treatment, we were interested in comparing the classification results of the bladder 
cancer stages using the considered deep learning models with those obtained by the urologists. To do so, the 
acquired BL images were categorized into five classes representing benign tissue, carcinoma in situ (CIS) and the 
following three bladder cancer stages: Ta, T1 and ≥ T2. Table S2 shows the classification results of the bladder 
cancer invasiveness as a single confusion matrix reflecting all results of each model, i.e., results of CNNs and 
physician ratings.

In Fig. 2A, the class sensitivities and specificities of each model were plotted as a two-direction bar chart 
while in Fig. 2B the mean sensitivities and the mean specificities of the respective models were compared based 
on a point chart. Figure 2C visualizes the proportion of sample size for each class to the whole data set size as a 
pie chart. Clearly, the class sample sizes are quite different, and the sample size is quite small for the T1 and T2 
cancer stages (≤ 15 images). Based on Fig. 2A, the best identification results of benign images were provided 
by the fine-tuned InceptionV3 network. Thereby, the observed sensitivity and specificity of benign images is 
83.78% and 94.37%, respectively. Regarding image classification of CIS and the bladder cancer stage T1, the 
fine-tuned MobileNetV2 network introduced the best predictions with a class sensitivity of 76.47% for the CIS 
images and 100% for the T1 images. While the fine-tuned ResNet50 network presented the best identification 
of the T2 images with 100% classification sensitivity, the highest classification sensitivity for Ta images was 
obtained again using fine-tuned MobileNetV2 network. Here, the observed sensitivity of bladder cancer stage 
Ta is 93%. In contrast, both urologists misidentified almost all images of class CIS, T1 and T2, but they could 
assess the first stage of bladder cancer, i.e., Ta cancer stage, well. Overall, the highest mean sensitivity and the 
highest mean specificity were reached by the MobileNetV2 network based on the L10PO-CV as it is shown in 
Fig. 2B. The observed mean sensitivity and mean specificity of the previously mentioned CNN are 88% and 
96.56%; respectively. However, the classification mean sensitivities dropped at least 50% when the BL images 
were accessed by any of both urologists.

Figure 1.  The identification results of the malignant tumor lesions in bladder. (A) The classification sensitivities 
of benign and malignant images based on the considered fine-tuned CNNs and the physician ratings. All 
CNNs could predict the malignant images quit well with sensitivity of at least 91% and specificity larger than 
77%. (B) Comparison between the mean sensitivities of the fine-tuned CNNs and the physician ratings. The 
MobileNetV2 network followed by VGG16 network showed the best classification results with a mean sensitivity 
of 91.81% and 90.75%; respectively. (C) The class distribution of the BL image data set with respect to the 
percentage of malignant and benign images in the data set. Clearly, the number of malignant images is much 
larger than the number of the images collected from benign legions.
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The differentiation of the bladder cancer grading. We present in this subsection the results of deep 
learning models and physician ratings in identifying the bladder cancer grading based on the BL image data 
set that was collected from a study involving multiple centers. In Table S3 and Fig. 3, the classification results 
obtained by the proposed fine-tuned CNNs and by the physician ratings are presented. Table S3 describes the 
detailed confusion matrices of all previous models and ratings.

The results showed that the fine-tuned ResNet50 network based on L10PO-CV is the best in predicting cancer 
grading followed by the fine-tuned MobileNetV2 network. Figure 3A depicts the sensitivities and specificities 
of all models as a two-directions bar chart while Fig. 3B shows a summary plot of the mean sensitivities and 

Figure 2.  The identification of bladder tumor stage using the fine-tuned CNNs and urologist ratings. (A) The 
class sensitivities and specificities of the considered CNNs and both physician ratings as a two-directions bar 
chart. While both urologists could not assess well the last two invasive stages of bladder cancer, the detection of 
these tumor stages was quite good based on all CNNs (B) The obtained mean sensitivities and mean specificities 
for all classification models. The best classification results were achieved by the MobileNetV2 network 
with a mean sensitivity of 88% followed by the mean sensitivity obtained by the InceptionV3 network. The 
classification mean sensitivity decreased at least 50% when the same images were assessed by the urologists. (C) 
The class distribution of the BL image data set. The number of involved images for this task varies a lot from one 
class to another class.

Figure 3.  The classification results of bladder cancer grading. (A) Overview of the individual class sensitivity 
and specificity with respect to both physician ratings and the fine-tuned CNNs. (B) Summary plot of the 
mean sensitivities and mean specificities obtained by the fine-tuned CNNs and both physician’s ratings. An 
increase between 25 and 40% of the classification mean sensitivity can be observed if the fine-tuned CNNs were 
considered to identify bladder cancer grading based on the collected BL images. (C) Image class distribution 
with respect to the whole data size. Almost similar number of images were acquired from benign, low-grade, 
and high-grade lesions.
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mean specificities of all previous models. We see in this figure that the ResNet50 network shows the highest-class 
sensitivity for high-grade cancer and benign images among the other models, i.e., CNNs and physician ratings. 
Thereby, the observed sensitivity of the high-grade images and the benign images has the values of 89.86% 
and 95.95%; respectively. For the identification of low-grade images, the MobileNetV2 network introduced the 
highest sensitivity in comparison to the other models. Here, the classification sensitivity of low-grade images 
using the MobileNetV2 network is 91.78%. The overall results indicate that the best performing model is the 
fine-tuned ResNet50 network while the lowest classification mean sensitivities were obtained by the urologist 
ratings. Therein, the mean sensitivity and mean specificity of the fine-tuned ResNet50 networks is 92.07% and 
96.04%; respectively. On the other side, the mean sensitivity of the first and the second urologist is 53.71% and 
55.17%, respectively.

Discussion
In this contribution, we introduced the identification results of bladder cancer using BL endoscopic images 
acquired from four different urological departments. The data set consists of 216 BL images, that were recorded 
prior to resection of the respective lesions. The collected BL images were utilized to evaluate the ability of deep 
learning models in automating the classification of the endoscopic lesions and predicting histopathological 
results. The bladder cancer identification was demonstrated based on four deep CNNs, and the results were 
compared with those obtained by two experienced urologists. This comparison was evaluated to predict cancer 
malignancy, cancer invasiveness and cancer grading. For all these tasks, pre-trained versions of InceptionV3, 
MobileNetV2, ReNet50, and VGG16 networks were fine-tuned, and then they were evaluated using a L10PO-CV.

The results of the previous named CNNs showed that the fine-tuned MobileNetV2 network has the best 
performance in detecting images of malignant lesions with a sensitivity of 95.77% and a specificity of 87.84%. 
The detection performance of this MobileNetV2 network exceeds the performance of other imaging technolo-
gies typically used for enhancing bladder cancer detection. For example, probe-based techniques such as CLE 
or OCT provide sensitivity levels between 80 and 90% for the detection of malignant  lesions23,24. This underlines 
the potential of automated image analysis systems in urological endoscopy. For such a classification task, i.e., 
malignancy identification, an increasing sensitivity should be the primary target. Therefore, the detection of all 
cancerous lesions during TUR-BT is important for correct identification of bladder cancer staging and adjuvant 
therapy stratification. Moreover, the failure to remove all tumor tissues is a main reason for high residual tumor 
rates in patients with intermediate and high-risk NMIBC requiring a 2nd TUR-BT25. Recently, an image analysis 
platform, named: CystoNet, was constructed and evaluated resulting in a sensitivity of 90.9% in detecting papil-
lary bladder  tumors20. However, unlike the fine-tuned MobileNetV2 network in this study, its specificity was 
low. Accordingly, Gosnell and colleagues introduced an endoscopy image-based classification system with high 
sensitivity, but it also suffered of the low specificity (~ 50%)21. Consequently, the image analysis technology used 
in this study has not only shown promising results regarding sensitivity, but also for specificity levels.

Moving to the classification of the cancer invasiveness (T stage), the fine-tuned MobileNetV2 network per-
formed quite well for the presented multiclass task. Thereby, the classification sensitivity of each of the tumor 
stage T1 and T2 is 100% and 90.91% even though the image sample size per class was quite small (< 15 images 
per class). Overall, the mean sensitivity and the mean specificity of the fine-tuned MobileNetV2 based on the 
cross-validation is 88.02% and 96.56%; respectively. For the identification of bladder cancer grading, the fine-
tuned ResNet50 network provided the best classification results compared to other CNNs. The observed mean 
sensitivity and mean specificity of the ResNet50 using the considered cross-validation strategy is 92.07% and 
96.04%, respectively. However, the identification performances of both urologists were much worse (mean sen-
sitivity between 35 and 37%) than the classification performance of any of the considered deep learning models.

Beside the challenges presented for identifying bladder cancer invasiveness and grading, flat malignant lesions 
constitute a challenging situation for urologists. Due to its flat growth pattern, the carcinoma in-situ (CIS) of the 
urinary bladder is hard to be detected in WL  imaging4. In contrast to other organs, CIS of the urinary bladder has 
high-grade characteristics and is potentially invasive. Therefore, it is important to correctly identify and hence 
cure this cancer type. Although PDD can assist physicians and significantly increase the detection rate of CIS, 
such flat lesions remain hard to be characterized for  urologists5. Furthermore, scar tissue and inflammation can 
mimic CIS characteristics; especially in BL cystoscopy resulting in a high number of false negative  biopsies26. In 
this discourse, artificial intelligence-based cancer identification might be an effective tool for better classification 
of the respective urothelial lesions. Consequently, we were interested in testing the prediction quality of deep 
learning models in differentiating flat bladder lesions, that include images of benign and CIS lesions. This was 
achieved using the proposed fine-tuned CNNs on the collected images of the respective bladder lesions, e.g., 
CIS, and benign tissue. Similar hyperparameters and similar network architectures were used for the aforemen-
tioned CNNs with the L10PO-CV being the validation method. In Table S4, the results of the previous binary 
classification obtained by all considered CNNs were summarized with respect to the class sensitivities, then 
they were compared with the class sensitivities resulted from the classification of bladder tumor invasiveness, 
i.e., multiclass models. It turned out that the fine-tuned MobileNetV3 network based on the multiclass training 
performed the best in the differentiation between benign and CIS lesions with a mean sensitivity of 78.10%. 
Remarkably, the specificity of CIS lesions in the binary model was high reaching 90% using the InceptionV3 
and ReNet50 networks. To improve and verify these findings, further clinical research is needed to enhance the 
low specificity, which introduces one of the major drawbacks of PDD imaging. Similar drawbacks exist in other 
imaging techniques such as Optical Coherence  Tomography27. The advantage of improving the detection sensi-
tivity and specificity of flat lesions would be of particular interest when PDD is utilized in an outpatient setting, 
where biopsies and resection are not  possible28. Indeed, a recent study revealed that refuting suspicious lesions 
is one of the major motivations physicians to use adjunct imaging  modalities28. Thus, cancer diagnosis based 
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on the combination of imaging technologies and artificial intelligence would be highly appreciated in clinics. 
Nevertheless, our classification results of flat lesions were highly influenced by the sample size when the CNNs 
were considered to perform the binary classification, i.e., CIS vs. benign lesions. Therein, the fine-tuned CNNs 
were trained and validated on 91 BL images with unequal class sizes. However, we expect to achieve better clas-
sification performance if the previous mentioned challenges are addressed in future studies.

In summary, transfer learning based on pre-trained CNNs enabled us to identify bladder cancer despite the 
small sample size and the unbalance in data set. For all tasks, the fine-tuned CNNs provided promising results. 
Moreover, the misclassification of BL images in most cases was expected due to the high variations between the 
images and due to other systematic errors. Figure 4 presents examples of correctly classified and misclassified 
images related to two of the considered classification tasks, i.e., the classification of malignant lesions and the 
classification of cancer grading. It is clear in this figure that the fluorescence of some images is very low while 
it is very spotty in others. Additionally, the urine fluorescence within some images may drown out the red 
fluorescence; therefore, these images were mostly incorrectly identified. Beside the fluorescence issues, some 
images depicted flat lesions while others were not close enough to capture the suspicious lesions. As a result, 
these images were also misclassified.

Nevertheless, the main limitations of the current study its retrospective design. Further, the image identifica-
tion results provided by both urologists are not the typical procedure considered for such cancer diagnosis in 
clinical practice. Due to the low morbidity of additional biopsies, urologists tend to biopsy some to all suspicious 
lesions, which results in a high sensitivity and low specificity. Another limitation is the low number of BL image 
for all lesions, specifically for CIS lesions. These small sample sizes allowed for exploratory analyses on lesions. 
However, only BL images with obvious histopathological correlates were included while all four centers used 
equivalent clinical and technical set-ups.

Conclusion
The results in this study demonstrated the potential of artificial intelligence-based classification models for 
the diagnostics of bladder cancer based on BL cystoscopic images. In this context, further studies need to be 
performed in order to build an automatic BL cystoscopic platform that assists physicians in identifying and clas-
sifying potential lesions of interest. Applying such platforms into clinical routines aims to assist surgeons and 
aids the cancer diagnoses. Potentially this technology could increase the detection rates of cancer and improve 
the relative low specificity of BL imaging. However, the system will not be considered to substitute the opinion 
of endo-urologists or pathologists for clinical decision making.

Material and methods
Image acquisition and pathological evaluation. A total of 216 BL images acquired during PDD-
guided transurethral resection of bladder tumor (TUR-BT) were collected from four urological departments 
retrospectively and one image was taken for an individual patient. Therefore, every image represents a patient. 
Routine pathological evaluation was performed, and all tumors were classified according to the world health 
organization (WHO) classification 2004. Only endoscopic images recorded prior to the resection of the respec-
tive lesions were used while the distance from the endoscopy to the region of interest was not standardized. 
For PDD, intravesical instillation of 85  mg Hexaminolevulinathydrochlorid (Hexvix®, IPSEn Pharma, Bou-
logne, France) was performed 60 min prior to PDD. Imaging was performed using the Tricam II® system and a 
30-degree Hopkins II optic (Karl Storz, Tuttlingen, Germany) in all centers. Further, two experienced urologists 
(CB and MCK, both > PDD 300 TUR-BTs) assessed the endoscopic images. Therein, the following distinctions 
were requested from the urologists and subsequently performed by different deep CNNs based on the PDD 
images only:

 (i) Malignancy: malignant vs benign lesions
 (ii) Tumor invasiveness (T-Stage): benign lesions vs carcinoma in situ (CIS) vs Ta vs T1 vs ≥ T2
 (iii) Tumor grading: benign vs high-grade vs low-grade cancer
 (iv) Flat lesions: benign vs CIS

For the previous classification tasks, the number of collected image per class is not equal; therefore, class 
weights were considered to correct this unequal class sizes within the data set while the classification models 
were trained.

Nevertheless, the data was collected retrospectively. Written informed consent was obtained, if possible. Data 
was analyzed and forwarded anonymized from the respective clinical center to all other study participants. This 
study was approved by the local ethical committee of the leading study side Mannheim (Ethics Committee II of 
the University of Heidelberg at the Medical Faculty Mannheim, Ref Number: 2015 549N MA) and in accordance 
with the Declaration of Helsinki.

Image region of interest. To improve the identification results of bladder cancer, only the regions of inter-
est (ROI) in the PDD images were included in the data modeling (see Fig. 5). Here, the ROI of an image refers 
to the image area containing the bladder tissue. This determination of ROIs was performed automatically based 
on image processing techniques, and it started by enhancing the contrast of the red and blue channels of all PDD 
images using the contrast limited adaptive histogram equalization  algorithm29. Thereafter, the tissue area of each 
image was extracted by fitting a disk in order to remove background areas. Finally, the ROI of an image was 
acquired as an inscribed square region within the extracted image disk. Applying the previous image preprocess-
ing pipeline returns images of the size of 384 × 384 pixels.
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Transfer learning based on deep convolutional neural networks. The basic idea of transfer learn-
ing for deep learning models is to utilize knowledge gained by training a deep neural network on a large and 
annotated data set to solve another classification  task12,13. In this contribution, we proposed a transfer learning 
strategy in which an ensemble of different pre-trained deep CNNs were fine-tuned to improve the classifica-
tion of BL images. The respective CNNs are the InceptionV3  network30, MobileNetV2  network31, ResNet50 
 network32 and VGG16  network33, and they represent common freely available fully connected CNNs that were 
pre-trained on the ImageNet dataset. As we mentioned, the identification ability of the previous pre-trained 

Figure 4.  Examples of correctly predicted images and misclassified images using the fine-tuned CNNs.
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CNNs can be transferred via a fine-tuning approach, which was accomplished by appending additional layers on 
top of each network. These additional layers are two batch normalization layers, a global average pooling layer, 
dropout layers with the probability of 50%, and a dense layer to find the best combinations of the already learnt 
features that improve bladder cancer identification. The last additional layer is a Softmax activation layer, which 
provides label probabilities for each image with respect to the considered classification task (see Fig. 6 for more 
details). The parameters of these layer were optimized by an Adam optimizer, which was trained for 100 epochs 
based on a mini-batch of 5 patches. The optimization hyperparameters were a learning rate of 0.001 and the 
categorical-cross entropy loss function. Class imbalance was tackled by the SckiKit Learn function class_weight.
compute_class_weight (‘balanced’).

Figure 5.  Overview of image acquisition and image processing using the blue light cystoscope.

Figure 6.  Schematic diagram of the CNN fine-tuning considered for identifying bladder cancer. Each pre-
trained CNN was fine-tuned by appending two batch normalization layers, a global average pooling layer, 
dropout layers with the probability of 50%, a dense layer to improve cancer identification, and Softmax 
activation layer. The last layer delivers different label probabilities for each input image with respect to each 
classification task.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11629  | https://doi.org/10.1038/s41598-021-91081-x

www.nature.com/scientificreports/

Image augmentation and cross validation. The input image size of all previous CNNs was fixed to be 
224 × 224 pixels; therefore, all endoscopic images were first down-sampled to that size. Then, class labels of all 
down-sampled images were predicted four times based on the four fine-tuned CNNs. These CNN were evalu-
ated using the L10PO-CV as a validation strategy. Therein, we always fixed 10 images (from 10 patients) as test 
set and 10 images as validation set while the remaining images were utilized to train the considered fine-tuned 
CNN. The last procedure was repeated 22 times until labels of all images (and patients) were predicted by all 
fine-tuned CNNs. Because the training set has a maximum size of 196 images per each cross-validation iteration, 
the BL images utilized to train the CNNs within each iteration were augmented automatically using random 
rotations by steps of 10° degrees within the range of 0° to 180°. Thereafter, each fine-tuned CNN was trained for 
100 epochs based on a mini-batch of 5 patches and using the Adam optimizer with a learning rate of 0.001 to 
minimize the categorical-cross entropy loss function.

Data modeling and models evaluation. For interpretation of the cross-validation results, we calculated 
the confusion matrix and the classification sensitivity and specificity with respect to all tested classification tasks 
and all fine-tuned CNNs. For ratings of the urologists, confusion matrices were also computed by comparing 
these ratings with the image ground truth, e.g., the pathological annotation of the biopsied tissue sample. Lastly, 
the resulting mean sensitivities and mean specificities were calculated for all CNNs results and for both urolo-
gists’ results.

All computations in this work were accomplished based on in-house written functions using the program-
ming language Python version 3.734 and the statistical programing language R version 3.635.

Received: 11 December 2020; Accepted: 18 May 2021

References
 1. Antoni, S. et al. Bladder cancer incidence and mortality: A global overview and recent trends. Eur. Urol. 71(1), 96–108 (2017).
 2. Burger, M. et al. Epidemiology and risk factors of urothelial bladder cancer. Eur. Urol. 63(2), 234–241 (2013).
 3. Cina, S. J. et al. Correlation of cystoscopic impression with histologic diagnosis of biopsy specimens of the bladder. Hum. Pathol. 

32(6), 630–637 (2001).
 4. Burger, M. et al. Photodynamic diagnosis of non-muscle-invasive bladder cancer with hexaminolevulinate cystoscopy: A meta-

analysis of detection and recurrence based on raw data. Eur. Urol. 64, 846–854 (2013).
 5. Rink, M. et al. Hexyl aminolevulinate-guided fluorescence cystoscopy in the diagnosis and follow-up of patients with non-muscle-

invasive bladder cancer: A critical review of the current literature. Eur. Urol. 64(4), 624–638 (2013).
 6. Daneshmand, S. et al. Blue light cystoscopy for the diagnosis of bladder cancer: Results from the US prospective multicenter 

registry. Urol. Oncol. 36(8), 361–361 (2018).
 7. Gravas, S. et al. Is there a learning curve for photodynamic diagnosis of bladder cancer with hexaminolevulinate hydrochloride?. 

Can. J. Urol. 19(3), 6269–6273 (2012).
 8. Saba, L. et al. The present and future of deep learning in radiology. Eur. J. Radiol. 114, 14–24 (2019).
 9. Srinidhi, C., Ciga, O., & Martel, A. Deep neural network models for computational histopathology: A survey. (2019). http:// arxiv. 

org/ abs/ 1912. 12378.
 10. Kietzmann, T. C., McClure, P. & Kriegeskorte, N. Deep Neural Networks in Computational Neuroscience (Oxford University Press, 

2019).
 11. Cichy, R. M. et al. Comparison of deep neural networks to spatio-temporal cortical dynamics of human visual object recognition 

reveals hierarchical correspondence. Sci. Rep. 6(1), 27755 (2016).
 12. Shin, H. C. et al. Deep convolutional neural networks for computer-aided detection: CNN Architectures, dataset characteristics 

and transfer learning. IEEE Trans. Med. Imaging 35(5), 1285–1298 (2016).
 13. Pradhan, P. et al. Deep learning a boon for biophotonics?. J. Biophoton. 1, e201960186 (2020).
 14. Ali, N. et al. Automatic label-free detection of breast cancer using nonlinear multimodal imaging and the convolutional neural 

network ResNet50. Transl. Biophoton. 1(1–2), e201900003 (2019).
 15. Aubreville, M. et al. Automatic classification of cancerous tissue in laserendomicroscopy images of the oral cavity using deep 

learning. Sci. Rep. 7(1), 11979 (2017).
 16. Wu, E. et al. Deep learning approach for assessment of bladder cancer treatment response. Tomography 5(1), 201–208 (2019).
 17. Xu, H. et al. Using transfer learning on whole slide images to predict tumor mutational burden in bladder cancer patients. BioRxiv 

1, 554527 (2019).
 18. Tokas, T. et al. A 12-year follow-up of ANNA/C-TRUS image-targeted biopsies in patients suspicious for prostate cancer. World 

J. Urol. 36(5), 699–704 (2018).
 19. Xue, J. et al. Deep learning-based detection and segmentation-assisted management of brain metastases. Neuro Oncol. 22(4), 

505–514 (2019).
 20. Shkolyar, E. et al. Augmented bladder tumor detection using deep learning. Eur. Urol. 76(6), 714–718 (2019).
 21. Gosnell, M. E. et al. Computer-assisted cystoscopy diagnosis of bladder cancer. Urol. Oncol. 36(1), e9–e15 (2018).
 22. Mari, A. et al. Novel endoscopic visualization techniques for bladder cancer detection: A review of the contemporary literature. 

Curr. Opin. Urol. 28(2), 214–218 (2018).
 23. Goh, A. C. et al. Optical coherence tomography as an adjunct to white light cystoscopy for intravesical real-time imaging and 

staging of bladder cancer. Urology 72(1), 133–137 (2008).
 24. Wu, J. et al. Optical biopsy of bladder cancer using confocal laser endomicroscopy. Int. Urol. Nephrol. 51(9), 1473–1479 (2019).
 25. Soria, F. et al. The rational and benefits of the second look transurethral resection of the bladder for T1 high grade bladder cancer. 

Transl. Androl. Urol. 8(1), 46–53 (2019).
 26. Nassiri, N. et al. Detecting invisible bladder cancers with blue light cystoscopy. Urology 139, e8–e9 (2020).
 27. Schmidbauer, J. et al. Fluorescence cystoscopy with high-resolution optical coherence tomography imaging as an adjunct reduces 

false-positive findings in the diagnosis of urothelial carcinoma of the bladder. Eur. Urol. 56(6), 914–919 (2009).
 28. Lotan, Y. et al. Blue light flexible cystoscopy with hexaminolevulinate in non-muscle-invasive bladder cancer: Review of the clinical 

evidence and consensus statement on optimal use in the USA: Update 2018. Nat. Rev. Urol. 16(6), 377–386 (2019).
 29. Reza, A. M. Realization of the contrast limited adaptive histogram equalization (CLAHE) for real-time image enhancement. J. 

VLSI Signal Process. 38(1), 35–44 (2004).

http://arxiv.org/abs/1912.12378
http://arxiv.org/abs/1912.12378


10

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11629  | https://doi.org/10.1038/s41598-021-91081-x

www.nature.com/scientificreports/

 30. Szegedy, C. et al. Rethinking the inception architecture for computer vision. In 2016 IEEE Conference on Computer Vision and Pattern 
Recognition (CVPR) (2016).

 31. Sandler, M. et al. MobileNetV2: Inverted residuals and linear bottlenecks. In 2018 IEEE/CVF Conference on Computer Vision and 
Pattern Recognition (2018).

 32. He, K. et al. Deep residual learning for image recognition. In 2016 IEEE Conference on Computer Vision and Pattern Recognition 
(CVPR) (2016).

 33. Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale Image Recognition (2014). http:// arxiv. org/ abs/ 
1409. 1556.

 34. Van Rossum, G.A.D. & Fred, L. Python 3 Reference Manual. (CreateSpace, 2009).
 35. R Core Team, R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2019).

Acknowledgements
The funding from the DFG for the Project BO4700/4-1 is highly appreciated. Financial support by the BMBF 
for the Project Uro-MDD (FKZ 03ZZ0444J) is highly acknowledged.

Author contributions
Manuscript writing and review: N.A., C.B., T.T., A.S., P.D., M.K., T.K., S.P., A.H., J.P., M.C.K., T.B. Data genera-
tion: C.B., T.T., A.S., P.D., M.K., T.K., S.P., A.H., J.P., M.C.K. Medical information and diagnostics: C.B., T.T., 
A.S., P.D., M.K., T.K., S.P., A.H., M.C.K. Data analysis: N.A., T.B. Project conception: A.H., J.P., M.C.K., T.B.

Funding
Open Access funding enabled and organized by Projekt DEAL.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https:// doi. org/ 
10. 1038/ s41598- 021- 91081-x.

Correspondence and requests for materials should be addressed to M.C.K. or T.B.

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access  This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http:// creat iveco mmons. org/ licen ses/ by/4. 0/.

© The Author(s) 2021

http://arxiv.org/abs/1409.1556
http://arxiv.org/abs/1409.1556
https://doi.org/10.1038/s41598-021-91081-x
https://doi.org/10.1038/s41598-021-91081-x
www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Deep learning-based classification of blue light cystoscopy imaging during transurethral resection of bladder tumors
	Results
	Identification of malignant bladder tumors lesions. 
	The identification of bladder cancer invasiveness (T-stage). 
	The differentiation of the bladder cancer grading. 

	Discussion
	Conclusion
	Material and methods
	Image acquisition and pathological evaluation. 
	Image region of interest. 
	Transfer learning based on deep convolutional neural networks. 
	Image augmentation and cross validation. 
	Data modeling and models evaluation. 

	References
	Acknowledgements


