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Computational optimization 
for the deposition of bioconvection 
thin Oldroyd‑B nanofluid 
with entropy generation
Auwalu Hamisu Usman1,2,3, Noor Saeed Khan4,5*, Usa Wannasingha Humphries1*, 
Zafar Ullah4, Qayyum Shah6,8, Poom Kumam2,5,9*, Phatiphat Thounthong10, Waris Khan7, 
Attapol Kaewkhao11 & Amyia Bhaumik8

The behavior of an Oldroyd-B nanoliquid film sprayed on a stretching cylinder is investigated. 
The system also contains gyrotactic microorganisms with heat and mass transfer flow. Similarity 
transformations are used to make the governing equations non-dimensional ordinary differential 
equations and subsequently are solved through an efficient and powerful analytic technique namely 
homotopy analysis method (HAM). The roles of all dimensionless profiles and spray rate have been 
investigated. Velocity decreases with the magnetic field strength and Oldroyd-B nanofluid parameter. 
Temperature is increased with increasing the Brownian motion parameter while it is decreased with 
the increasing values of Prandtl and Reynolds numbers. Nanoparticle’s concentration is enhanced with 
the higher values of Reynolds number and activation energy parameter. Gyrotactic microorganism 
density increases with bioconvection Rayleigh number while it decreases with Peclet number. The 
film size naturally increases with the spray rate in a nonlinear way. A close agreement is achieved by 
comparing the present results with the published results.

Abbreviations
b1	� Chemotaxis constant
b	� Outer radius
C	� Nanoparticles concentration
Cw	� Nanoparticles concentration at the wall
Cb	� Nanoparticles concentration beyond the surface
Bo	� Magnetic field strength (N A−1 m−1)
Cf 	� Skin friction coefficient
DB	� Brownian diffusion coefficient (m2 s−1)
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Dm	� Mass diffusivity (m2 s−1)
DT	� Thermophoretic diffusion coefficient (m2 s−1)
E	� Arrhenius activation energy parameter
E′′′0 	� Dimensional characteristic entropy generation
E′′′gen	� Dimensional entropy generation
f 	� Dimensionless velocity function
g	� Acceleration due to gravity (m s−2)
Gr	� Thermal Grashof number
Gm	� Solutal Grashof number
k	� Thermal conductivity parameter
k0	� Relaxation time coefficient
k1	� Retardation time coefficient
k∗∗	� Mean absorption coefficient
Lb	� Bioconvection Lewis number
M	� Magnetic field parameter
N	� Motile density of microorganisms
Nb	� Motile density of microorganisms beyond the surface
Nw	� Motile density microorganisms at the wall
Nb	� Dimensionless Brownian motion parameter
NG(ς)	� Dimensionless entropy generation
Nt	� Dimensionless thermophoresis parameter
Nu	� Local Nusselt number
P	� Pressure (kg m−1 s−2)
Pe	� Peclet number
Pr	� Prandtl number
qrz	� Wall heat flux
qh	� Wall mass flux
qn	� Wall density flux
Rb	� Bioconvection Rayleigh number
Rex	� Local Reynolds number
Rd	� Thermal radiation parameter
Sc	� Schmidt number
Scb	� Bioconvection Schmidt number
Sh	� Sherwood number
Sn	� Local motile microorganism density number
T	� Temperature of the fluid (K)
Tb	� Temperature at the outer radius of the film surface (K)
Tw	� Temperature at the wall (K)
u, w	� Velocity components (m s−1)
V 	� Radial axisymmetric spray velocity (m s−1)
Wc	� Speed of gyrotactic cell

Greek symbols
ζ	� Dimensionless similarity variable
ρf 	� Density of nanofluid (kg m−3)
ρm	� Motile microorganism density (kg m−3)
ρp	� Density of nanoparticles (kg m−3)
�1	� Deborah number on behalf of relaxation time
�2	� Deborah number on behalf of retardation time
γ1	� Chemical reaction rate
σ	� Electrical conductivity (S m−1)
σ ∗∗	� Stefan–Boltzmann constant (J K−1)
µf 	� Dynamic viscosity (N s m−2)
vf 	� Kinematic viscosity (m2 s−1)
α1	� Thermal diffusivity(m2 s−1)
β1	� Nondimensional film thickness parameter
χ	� Dimensionless motile microorganism’s concentration
φ	� Dimensionless nanoparticles concentration
θ	� Dimensionless temperature
(

ρcp
)

f
	� Heat capacity of nanofluid (J K−1)

(

ρcp
)

p
	� Heat capacity of nanoparticle (J K−1)

τ	� Ratio of heat capacity
τw	� Wall shear stress

The progress in non-Newtonian liquids has a great deal of importance in projects and emerging developments. 
Magnetohydrodynamics (MHD) applied to electrically conductive fluids primarily concerned with the results 
that can be obtained from the connection between fluid motion with any external magnetic field current. Albano 
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et al.1 reported that metallurgy (form control, homogenization, sample levitation material), molten steel flow, 
planetary science and astrophysics, fusion reactors are some of non-Newtonian main applications. Various of 
fluids commonly used in industrial applications like poultry, cement, polymers, chemical, fermentation cycles, 
geothermal pools, pore drying, heat insulation, improved oil regeneration, etc., are non-Newtonian in nature. 
Khan and Nadeem2 analyzed the non-Newtonian Maxwell nanofluid flow past a linear/exponential stretching 
sheet in rotating system with double stratification, Arrhenius activation energy, temperature dependent thermal 
conductivity and thermophoresis. They used the bvp4c Matlab to evaluate the coupled ordinary differential equa-
tions and showed that rotation and stretching have remarkable effect on the velocity and temperature profiles. 
Khan and Nadeem3 presented the heat and mass transfer time dependent two-dimensional flow of bio-convective 
Maxwell nanofluid over an exponentially stretching sheet with viscous dissipation, external magnetic field, 
multiple slip conditions and chemical reaction. Due to the special behaviors, the Oldroyd-B fluid model is very 
important among the rate type fluids. Khan et al.4 explored the two- dimensional radiative Oldroyd-B nanofluid 
in transient flow past a permeable convectively heated stretching surface with gyrotactic microorganisms to 
explore that for the higher values of retardation parameter, velocity increases and heat transfer decreases. Khan 
et al.5 investigated dynamics with Cattaneo–Christov heat and mass flux theory of bioconvection Oldroyd-B 
nanofluid. Khan et al.6 investigated for the rotating flow of an Oldroyd-B fluid for improved thermal conduction 
and developed mass diffusion models. More detail on non-Newtonian fluids can be seen in the references7–26.

The cooling of liquid is enhanced by the nano-sized particles whose diameter ranges from 1− 100 nm. These 
nanoparticles are added into to the base fluid which enhance the cooling process, due to its higher heat trans-
fer coefficient as compared to the conventional liquids. This mixture is called nanofluid. Choi and Bestman27 
introduced the concept of nanofluid at Agronne National Laboratory, USA. Nanotechnology is one of the most 
interesting field nowadays. It is interesting due to its vast applications in medicine, electronics, solar cells, food, 
fuel cells, batteries etc. In simple, nanotechnology has made its way to every branch. The enhancement of the 
thermal properties of the liquids can be made by either metals or by metal oxides. It is often a special type of 
fluid with higher thermal conductivity than conventional host fluids (such as motor oil, glycols, water, etc.). 
Nanoparticles include metals (for example, aluminum, copper, nickel) and other elements (for example, carbon 
nanotubes, graphene, silicon carbide, calcium carbonate, titanium, etc.) as well as oxides (for example, alumina, 
titanium, silicone, silicon carbide, silicone carbonate, silicone, etc.). Buongiorno28 implemented a second phase 
nanofluid model in the awake of these models. Ellahi et al.29 investigated the heated couple stress bi-phase fluid 
with spherical particles of metal Hafnium. In that paper the flow bounded by two parallel plates is caused by 
solely the influence of pressure gradient in an axial direction. More studies on nanofluids can be found in the 
references30–45.

Entropy optimization in terms of irreversibility rate was investigated using thermodynamic second law. 
Entropy augmentation is used to illustrate the quality of various contexts in advanced and composition applica-
tions. Entropy is derived from the Greek word entropia, which means "change" or "movement in the direction 
of." The calculation of entropy is important because it categorizes the parameters for energy loss. Bejan46 intro-
duced the concept of an entropy optimization problem. Khan et al.47 investigated entropy optimization in MHD 
viscous fluid flow using a stretchable sheet. Khan and Ali48 provided the modeling and simulation of entropy 
generation in dissipative cross materials with quartic autocatalysis. Further studies about entropy generation 
may be read in the references49–55.

Thin film flow is an important subject of research. Thin film fluids are used to produce different heat exchang-
ers and chemical tools and these applications require a complete understanding of the motion procedure. Thin 
film fluids applications also include wire and fiber coating, preparation of polymers, etc. This motion is attached 
to the manufacturing of different types of sheets, either metal or plastic. In recent years, some researchers have 
considered working on this type of flow. Ellahi et al.56 studied the thin film coating on multi-fluid flow of a 
rotating disk suspended with nano-size silver and gold particles. More studies in this regard can be found in 
the references57–59.

Among the most significant indicators where the species does not usually respond to the chemical reactions 
are related with Arrhenius activation energy. The term energy activation was initially proposed by Arrhenius60. 
However, the minimum energy required for the operation of chemical reactions molecules or atoms is defined 
as energy activation. Perhaps for the first time, Bestman61 identified a primary model consisting of a limiting 
layer of fluid flow problems due to binary chemical reactions with Arrhenius activation energy. The emphasis 
here is on the flow of a binary chemical reacting fluid with Arrhenius activating energy and convective boundary 
conditions. The purpose of this work is to discuss the effect of activation energy on fluid flow and binary chemical 
reactions. The effect of frictional heating on binary chemical reactions can significantly reduce undue surface 
reactions and, as a result, improve deposition. Further studies can be found in the references62–64.

In food industry and many physiological fluid flow problems, the density of motile gyrotactic microorganisms 
is significant and this density of motile microorganisms plays a vital role in fluid flow. Bioconvection phenom-
ena is a common phenomenon usually occurs in suspensions due to the up swimming of microorganisms that 
are marginally with high density than water. If the upper surface of the suspensions gets so dense due to the 
proliferation of microorganisms, then it becomes porous and the microorganisms collapse to cause bioconvec-
tion. The concept explains the formation of impulsive patterns and dense streaming formed at the concurrent 
boundary of more autonomously propelled microorganisms, nanoparticles, and buoyant forces. However, some 
forms that may constitute parts of these microorganisms are gravitaxis (describe the swimming motion against 
gravity), gyrotaxis (describe the way the swimming is guided through a balance between the physical torques 
generated by viscous drag and by gravity operating on an asymmetric distribution of mass within the organ-
ism) or oxytaxis (describe the swimming along an oxygen gradient). Supporting gyrotactic microorganisms for 
nanofluid helps to convert the mass to mix micro-scales and to increase the stability of nanofluids particularly 
in micro-volumes. The analysis highlights the principle of nanofluid bioconvection. Several researchers have 
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investigated its numerous effects on fluid flow including nanofluid gyrotactic microorganisms which plays a 
very important role in increasing the greenhouse effects. Ghorai and Hill65 have shown stability and growth 
within a deep cavity with free stress on the side walls in the presence of gyrotactic microorganisms. Chamkha 
et al.66 investigated the radiation effects of gyrotactic microorganisms on a vertical plate with fluid variability in 
temperature on natural bioconvection flows. Rashad et al.67 studied a mixed bioconvection nanofluid flow with 
gyrotactic microorganisms through a thin vertical cylindrical under closed saturated porous medium using the 
transient mixed boundary layer convection. Hady et al.68 presented the unsteady bioconvection thermal bound-
ary layer nanofluid flow in the presence of gyrotactic microorganisms on a stretching plate and a vertical cone 
in porous medium. More studies on bioconvection can be found in the references69–73.

It is observed that due to stretching cylinder the flow receives adequate attention. Wang74,75 was the first 
to study the steady-state incompressible viscous fluid across the growing hollow cylinder. Bachok and Ishak76 
examined and reported the numerical flow and thermal transfer solution for the stretching cylinder. Chuhan 
et al.77 investigated the effects of magnetohydrodynamics and thermal radiation on the movement of fluid past 
a porous stretching cylinder. Irfan et al.78 studied the motion of a nanofluid past a stretching cylinder with heat 
transfer and magnetic field.

Literature has several interesting studies on stretching cylinder like references79,80 which are followed by the 
present study. Spraying phenomena occurs in the analysis and design of coating processes. This paper is unique 
in the sense that it investigates the film deposition of a bioconvection Oldroy-B nanofluid containing motile 
gyrotactic microorganisms on a stretching cylinder. In the present article, the steady two-dimensional, incom-
pressible radiative flow of the Oldroy-B axisymmetric sprayed thin film nanofluid past a stretching cylinder is 
analyzed. The fluid flow problem is governed by the partial differential equations and are converted into ordinary 
ones by means of suitable similarity variables. Initially, Liao presented HAM81–83 in 1992. The solution of this 
method is fast convergent. Due to its rapid convergence, various researchers84–88 have used HAM to solve their 
fluid flow problems. The computed results concerning the effects of all the related parameters on all the profiles 
are presented graphically.

Problem formulation
The steady, two-dimensional, and incompressible radiative Oldroyd-B and axisymmetric sprayed thin film nano-
fluid flow is considered past a stretching cylinder at r = 0 . The flow is in the domain r > 0 . The z − axis is taken 
along the axis of cylinder and r − axis is measured along the radial direction. The effects of the magnetic field 
are used in the direction of r − axis . Assuming induced magnetic field effects to be negligible. The expression 2cz 
is the surface velocity, where z is the axial coordinate and c is a proportional constant. As the material stretches, 
the cylinder’s thickness decreases, but the cylinder’s outer radius a remains relatively constant. A radial axisym-
metric spray with a V  velocity condenses as a film and is drawn in by the cylinder’s outer surface (see Fig. 1).

The basic governing equations for the fluid flow are as 56–59,74,75,79,80:
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Figure 1.   Geometry of the problem.
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where δ is the film size.
According to the Rosseland approximation the thermally developed flow can be expressed as a modification2,

Introducing the transformation for non-dimensionless functions f , θ ,φ,χ and similarity variable ζ 74,79 as

At the outer radius b of the film thickness

Equation (1) is satisfied through Eqs. (9, 10) whereas Eqs. (2)–(7) have the following form

with boundary conditions

The dimensionless parameters are defined as
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The shear stress on the surface of the outer film is zero i.e.

And the shear stress on the cylinder is

The deposition velocity V  in terms of film thickness β1 is given by

Mass flux m1 is another interesting quantity which in connection with the deposition per axial length is

The normalized mass flux m2 is

Physical quantities.  The physical quantities of interests are given as following.

Skin friction coefficient. 

Nusselt number. 

Sherwood number. 

Local density motile flux. 

Analysis of entropy generation.  For the bio-nanofluid system, the irreversibility formulation is
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where R denotes the ideal gas constant and D represents the diffusivity.
In Eq. (26), the first term represents the irreversibility due to heat transfer, the second term is entropy genera-

tion due to viscous dissipation and third to six terms are irreversibility due to diffusion effect. The seventh term 
stands for the entropy generation due to magnetic field. The characteristic entropy generation rate is

Notice that irreversibility NG(ς) in scaled form is

Using Eqs. (9, 10), dimensional Eq. (28) converted into the following dimensionless form
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are respectively the dimensionless heat, nanoparticle concentration and microorganism concentration ratio 
variables.

Solution of the problem by homotopy analysis method (HAM)
Taking the initial guesses and the linear operators as

satisfying the properties as given below

where {Ci}9i=1 are the arbitrary constants.
The zeroth order form of the problems are given as
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2
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2

Tb
,

(27)E′′′0 =
α1(Ta − Tb)

2

T2
b

.

(28)NG(ς) =
E′′′gen

E′′′0
.

(29)

NG(ς) =
4

a2

(

1+
4

3
Rd

)

θ ′2 +
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θ2w
f ′2 + B1

(

φw

θw

)2

φ2 + a2B1
φw

θw
φ′θ ′ + B1

φw
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(

χw

θw

)2
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χw

θw
χ ′θ ′ + B3

φwχw

θ2w
φθ +Mf ′2,

(30)fo(ζ ) = (1− e−ζ ), θo = e−ζ ,φo = e−ζ ,χo = e−ζ ,

(31)Lf = f ′′′ − f ′, Lθ = θ ′′ − θ , Lφ = φ′′ − φ, and Lχ = χ ′′ − χ ,

(32)Lf
[

C1 + C2e
ζ + C3e

−ζ
]

= 0,

(33)Lθ
[

C4e
ζ + C5e

−ζ
]

= 0,

(34)Lφ
[

C6e
ζ + C7e

−ζ
]

= 0,

(35)Lχ
[

C8e
ζ + C9e

−ζ
]

= 0,

(36)(1− p)Lf
[

f (ζ , p)− fo(ζ )
]

= p�f Nf

[

f (ζ , p), θ(ζ , p),φ(ζ , p),χ(ζ , p)
]

,

(37)(1− p)Lθ
[

θ(ζ , p)− θo(ζ )
]

= p�θNθ

[

f (ζ , p), θ(ζ , p),φ(ζ , p)
]

,

(38)(1− p)Lφ
[

φ(ζ , p)− φo(ζ )
]

= p�φNφ

[

f (ζ , p), θ(ζ , p),φ(ζ , p)
]

,

(39)(1− p)Lχ
[

χ(ζ , p)− χo(ζ )
]

= p�χNχ

[

f (ζ , p), θ(ζ , p),φ(ζ , p),χ(ζ , p)
]

,

(40)
f (1, p) = 1, f ′(β1, p) = 0, f ′(1, p) = 1, θ(1, p) = 1, θ(β1, p) = 0,

φ(1, p) = 1,φ(β1, p) = 0,χ(1, p) = 1,χ(β1, p) = 0,
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where p is an embedding parameter in this case and �f , �θ , �φ , �χ are the non-zero auxiliary parameters. 
Nf ,Nθ ,Nφ ,Nχ represent the none-linear operators and can be obtained through Eqs. (11)–(14) as follows

For p = 0 and p = 1 , the following results are obtained

Obviously, when p is increased from 0 to 1 ,  then f (ζ , p), θ(ζ , p),φ(ζ , p),χ(ζ , p) vary from 
fo(ζ ), θo(ζ ),φo(ζ ),χo(ζ ) to f (ζ ), θ(ζ ),φ(ζ ),χ(ζ ) . Through Taylor’s series expansion, the expressions in Eq. (45) 
become as the following

(41)
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f (ζ , 0) = f0(ζ ), θ(ζ , 0) = θ0(ζ ),φ(ζ , 0) = φ0(ζ ),χ(ζ , 0) = χ0(ζ ),

f (ζ , 1) = f (ζ ), θ(ζ , 1) = θ(ζ ),φ(ζ , 1) = φ(ζ ),χ(ζ , 1) = χ(ζ ).
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The convergence of the series in Eqs. (46)–(49) depend strongly upon �f , �θ , �φ , �χ . By considering that 
�f , �θ , �φ , �χ are selected properly so that the series in Eqs. (46)–(49) converge at p = 1 , then the following 
simplifications are achieved

The result of the problems at order m deformation can be constructed as follow

where Rm
f (ζ ),R

m
θ (ζ ),R

m
φ (ζ ) and Rm

χ (ζ ) can be calculated as
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ηm =
{

0, m ≤ 1

1, m > 1

}

.

The general solutions are

in which f ∗m(ζ ), θ∗m(ζ ),φ∗
m(ζ ),χ

∗
m(ζ ) are the special solutions.

Results and discussion
The dynamics of an Oldroyd-B nanoliquid coolant and shielding paint or film sprayed on a stretching cylinder is 
studied. The normalized spray rate m2 which is functionally correlated with the film size is shown in Fig. 2. The 
film size naturally increases with the spray rate at once, but not in a linear fashion. If the spray is not uniform, 
the film’s outer surface may be affected. It’s interesting to note that the spray rate increases the thickness of the 
film in a non-linear way. The spray deposits an Oldroyd-B nanoliquid film on the stretching cylinder, which can 
be used to cool the extruded material to promote solidification via a water bath or coolant spraying. Spraying 
also improves cooling because it creates a thinner boundary layer.

Figures 3 and 4 depict the effect of the magnetic field M and Oldroyd-B nanofluid parameter �1 on velocity 
profile. Figure 3 shows that the velocity decreases as the magnetic field parameter increases. In general, when a 
magnetic field is applied to a conduction-capable fluid flow, the momentum boundary layer becomes thin. The 
reason for this is that during this process, resistance forces known as Lorentz forces are produced, which have a 
negative impact on fluid flow. This force tends to slow the velocity of the nanofluid as it passes through the verti-
cal surface. Figure 4 demonstrates that increasing the value of �1 decreases the velocity and hence momentum 
boundary layer thickness decreases. Thermal Grashof number Gr and solutal Grashof number Gm effects on the 
velocity profile are shown in Figs. 5 and 6. The graphs show that the velocity is increased with Gr and Gm due to 
the dominant effects of the buoyancy force in the central region and generates changes in the velocity and high 
viscous effects across the walls. As a result, when Gm increases, the concentration of the liquid film increases 
directly and hence the viscosity increases. Figure 7 shows the effects of Reynolds number Re on the velocity 
profile. The velocity is enhanced with the Reynolds number. The reason is that as the Reynolds number increases, 

(62)
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ζ + C5e

−ζ
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(66)χm(ζ ) = χ∗
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Figure 2.   Spray rate as a function of β1.
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the inertial force overcomes the flow regarding the viscous forces. High viscous forces are highly resistive to the 
fluid flow and with strong inertial forces, the flow of the boundary layer decreases. When Re is small, then it 
means there exists small inertial effect compared to that of viscous effect. Since Re = ca2

νf
 so for Re = 0, the stretch-

Figure 3.   f′(ζ) as a function of M.

Figure 4.   f′(ζ) as a function of λ1.

Figure 5.   f′(ζ) as a function of Gr.
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ing rate c tends to vanishing since the cylinder radius a cannot be zero in the present case. Also, the thickness is 
made infinite for finite deposition rate and the steady form cannot exist.

Figures 8 and 9 depict the effects of the magnetic field and Prandtl number on the temperature profile. Fig-
ure 8 reveals that increasing the values of the magnetic parameter M , increases the temperature of the nanofluid. 
The magnetic field produces a resistive force that opposes the flow field and increases the thickness of the thermal 
boundary layer, consequently heat transfer increases. Figure 9 shows that the nanofluid temperature drops when 
the values of Pr increases, thus the thermal boundary layer decreases for higher quantities of Pr which shows that 
the effective cooling for nanofluid is achieved quickly. Given the relatively small size of the motion layer, the influ-
ence of a high Prandtl number is even clearer. The liquid retains a low thermal boundary layer for larger amounts 
of Pr which leads to a thinner thermal boundary layer resulting in an increase in heat transfer rate on the surface. 
Figures 10 and 11 show the effects of the Brownian motion parameter Nb and the thermophoresis parameter Nt 
on the temperature profile. Figure 10 shows that the enhancement in temperature of the fluid is observed with 
the increasing values of Nb which results in decrease in the friction of the free surface of nanoparticles. Figure 11 
shows that the temperature of nanofluid decreases as the Nt values increase. Thermophoresis is a phenomenon 
of the diffusion of particles because of a temperature gradient effect. The force that transfers nanoparticles to the 
ambient fluid due to the temperature gradient is called thermophoretic force. Increased thermophoretic force 
results in a wider transfer of nanoparticles to the fluid layer. Figures 12 and 13 show the impacts of thermal 
radiation parameter Rd and film thickness parameter β1 respectively on the temperature profile. As shown in 
Fig. 12, the radiation parameter is used to add heat to the temperature of the nanoparticles as the temperature 
of the nanofluid rises. The analysis of thermal radiation is essential in the cooling of the cylinder. The thin film 
parameter β1 has a special role in the temperature distribution. The temperature of the thermal boundary surface 
is high and small along with the transverse distance. The film thickness parameter, as shown in Fig. 13, reduces 
the temperature for greater values. The heat transfer rate is improved by thinning the nanofluid. In the present 
case, however, it is depreciating. The reason for this is that as the thickness of the fluid film increases, so does the 
mass of the fluid, which exhausts the temperature. As a result, heat enters the fluid and the environment cools. 
Thick film fluid requires more heat than thin film fluid.     

Figure 6.   f′(ζ) as a function of Gm.

Figure 7.   f′(ζ) as a function of Re.
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Figure 8.   θ(ζ) as a function of M.

Figure 9.   θ(ζ) as a function of Pr.

Figure 10.   θ(ζ) as a function of Nb.



14

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11641  | https://doi.org/10.1038/s41598-021-91041-5

www.nature.com/scientificreports/

Figure 11.   θ(ζ) as a function of Nt.

Figure 12.   θ(ζ) as a function of Rd.

Figure 13.   θ(ζ) as a function of β1.
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Figures 14 and 15 portray the influence of the activation energy parameter E and the binary chemical reac-
tion parameter γ1 on the concentration profile and show that it is incremented with larger values of E while it is 
decreased with enlarging values of γ1 respectively. The effect of Schmidt number Sc on the nanoparticle’s con-
centration profile is presented in Fig. 16. The Schmidt number Sc is related to the mass diffusions and therefore 

Figure 14.   ϕ(ζ) as a function of E.

Figure 15.   ϕ(ζ) as a function of γ1.

Figure 16.   ϕ(ζ) as a function of Sc.
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increases the mass diffusivity values leading to lessen down the nanoparticle’s concentration due to the less mass 
diffusion transportation as observed in Fig. 16.

Figure 17 manifests the influence of Peclet number Pe . It shows a decrement in the boundary layer thickness 
of the motile microorganisms. The maximum values of Pe result a fall in the diffusivity of the microorganisms. 
Figure 18 portrays the influence of Rb on motile microorganism’s density. It shows that χ(ς) increases with 
increasing the bioconvection Rayleigh number. The density of motile microorganisms is higher than that of 
liquid (water) and generally swims upwards to the outside (wall) of the cylinders. 

The streamlines are the tangent curves to the local instantaneous velocity field. The formation of an inner 
mixing bolus within a fluid surrounded by streamlines is referred to as trapping. Figure 19 depicts the effect of 
the magnetic field parameter on the streamlines. It is shown that the number of the trapped boluses increases 
when the value of magnetic field parameter M is 0.30 which shows that the flow velocity is highly influenced 
by the magnetic field. The compression of streamlines is high at the lower portion compared to that of upper 
portion at the surface of stretching cylinder.

Figure 20 shows that the entropy generation increases as the magnetic field parameter increases. In general, 
increasing the magnetic field parameter causes a slight increase in entropy generation. Because the magnetic 
parameter has little influence on entropy generation, a wide difference in the magnetic field parameter results 
in a small variation in entropy.

Comparison of the present work with published work
The present work is compared with the published work79 in Table 1 for various values of Oldroyd-B nanofluid 
parameter which shows the close agreement. In Tables 2, 3, 4 and 5, the different profiles show the different values 
including maximum and minimum for different parameters.

Figure 17.   χ(ζ) as a function of Pe.

Figure 18.   χ(ζ) as a function of Rb.
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Conclusions
The heat and mass transfer flow of an Oldroyd-B nanoliquid film sprayed on a stretching cylinder containing 
gyrotactic microorganisms is investigated using similarity transformations. Thermodynamics and spraying phe-
nomena are mathematically modeled and then analyzed using HAM solution with profiles such as spray rate, 
velocity, heat and mass transfer, and gyrotactic microorganism’s motion.

Figure 19.   Streamlines for M = 0.30.

Figure 20.   NG(ζ) as a function of M.

Table 1.   Comparison of the present research with published paper for −f ′′(0).

�1 Published work80 Present study

0.0 1.000000 1.000000

0.2 1.0518899 1.0518799

0.4 1.1019033 1.1019133
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Table 2.   Variation in skin friction coefficient −f ′′(1) for M, �1, �2,Gr and Gm.

M �1 �2 Gr Gm −f ′′(1)

0.2 0.3 0.3 0.5 0.5 0.4231

0.6 0.3231

1.0 0.2231

0.5 0.1 0.1231

0.4 0.1231

0.7 0.0231

0.3 0.2 0.1031

0.4 0.1031

0.6 0.1231

0.3 0.1 0.0231

0.6 0.0231

1.0 0.1230

0.5 0.1 0.1201

1.0 0.1031

2.0 0.0031

0.5 0.1031

Table 3.   Variation in Nusselt number −θ ′(1) for M, �1, �2,Gr,Gm, Pr,Nb,Nt, Lb and Rd.

M �1 �2 Gr Gm Pr Nb Nt Lb Rd −θ ′(1)

0.5 0.3 0.3 0.5 0.5 2.0 0.3 0.3 5.0 0.8 0.2764

0.2 0.2763

0.6 0.2755

1.0 0.2745

0.1 0.2735

0.4 0.2725

0.7 0.2715

0.2 0.2754

0.4 0.2753

0.6 0.2760

0.1 0.2761

0.4 0.2762

0.7 0.2736

0.1 0.2735

1.0 0.2734

2.0 0.2733

0.1 0.2732

1.0 0.2731

2.0 0.2730

1.0 0.2729

3.0 0.2728

5.0 0.2727

0.1 0.2726

0.4 0.2725

0.8 0.2724

1.0 0.2723

2.0 0.2722

3.0 0.2721

0.1 0.2720

0.3 0.2717

0.5 0.2716
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The summary of findings are as follows:

•	 Spray rate increases with the film thickness nonlinearly.
•	 The velocity profile shows decreasing behavior for magnetic field parameter, bioconvection Rayleigh number 

and Oldroyd-B nanofluid parameter while increases with thermal Grashof, solutal Grashof and Reynolds 
numbers.

•	 The temperature increases with increasing the magnetic field, Brownian motion and thermal radiation param-
eters while it is decreased with the positive values of Prandtl number, film thickness and thermophoresis 
parameters.

•	 The concentration profile shows an increasing behavior with the activation energy parameter while it 
decreases with increasing the thermal radiation, chemical reaction parameter and Schmidt number as well.

•	 The gyrotactic microorganisms motion increases with increasing the bioconvection Rayleigh number while 
it is decreased with the Peclet and Lewis numbers.

•	 The entropy generation increases with the magnetic field parameter.
•	 Skin friction coefficient, heat and mass transfer rate, and motile density number consistently decrease with 

the different parameters.

Table 4.   Variation in Sherwood number −φ′(1) for E, �1, �2,Gr,Gm, Pr,Nb,Nt, Le and E..

M �1 �2 Gr Gm Pr Nb Nt Le E −φ′(1)

0.5 0.3 0.3 0.5 0.5 2.0 0.3 0.3 5.0 0.1 0.15479

0.2 0.15478

0.6 0.15477

1.0 0.15476

0.1 0.15475

0.4 0.15474

0.7 0.15473

0.2 0.15472

0.4 0.15471

0.6 0.15470

0.1 0.15469

0.6 0.15468

1.0 0.15467

0.1 0.15468

1.0 0.15467

2.0 0.15466

1.0 0.15465

3.0 0.15464

5.0 0.15463

0.1 0.15462

0.3 0.15461

0.5 0.15460

0.1 0.15459

0.4 0.15458

0.8 0.15457

1.0 0.15456

2.0 0.15455

3.0 0.15454

0.5 0.15453

1.0 0.15452

1.5 0.15451
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Availability exists for the data upon request.
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