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Universal quantum computing 
using single‑particle discrete‑time 
quantum walk
Shivani Singh1,2,3, Prateek Chawla1,2,3, Anupam Sarkar1,2 & C. M. Chandrashekar1,2*

Quantum walk has been regarded as a primitive to universal quantum computation. In this paper, we 
demonstrate the realization of the universal set of quantum gates on two‑ and three‑qubit systems 
by using the operations required to describe the single particle discrete‑time quantum walk on a 
position space. The idea is to utilize the effective Hilbert space of the single qubit and the position 
space on which it evolves in order to realize multi‑qubit states and universal set of quantum gates on 
them. Realization of many non‑trivial gates and engineering arbitrary states is simpler in the proposed 
quantum walk model when compared to the circuit based model of computation. We will also discuss 
the scalability of the model and some propositions for using lesser number of qubits in realizing larger 
qubit systems.

Quantum  walk1–5, a quantum mechanical analogue of classical random walk has been the basis for many quantum 
 algorithms6–11 and schemes for quantum  simulations12–18. The dynamics of quantum walk have been described 
in several ways, however, they can be broadly classified under the two of the most distinct and prominent 
categories, the continuous-time and discrete-time quantum walks. Engineering quantum gates and realizing 
the set of universal quantum gates has been shown using both these forms of quantum  walks19–21. This means 
that any problem that can be solved on a quantum computer can also be solved using quantum walks. The one-
dimensional discrete-time quantum walk has also been used to engineer arbitrary qudit  states22. It has been 
experimentally implemented on a linear optical system which uses the orbital angular momentum degree of 
freedom of single photon states to represent the  particle23. The idea is to increase the control over the dynamics 
of walk by using appropriate evolution operators and thus driving the particles’ state towards the desired qudit 
state. Theoretically, this technique can be used to prepare any high-dimensional quantum state and experimen-
tally, a six-dimensional qudit state has been prepared and measured. All this highlights the versatility of quantum 
walks. The scheme for quantum computation presented here is based on controlled dynamics of the walk with 
the help of appropriate position dependent evolution operators and has a scope of designing an architecture for 
quantum processor using quantum walks.

Experimental demonstration of an eighteen-qubit entangled state ( 218 possible states) from six individual 
photons by simultaneously using three degrees of  freedom24 and demonstration of flexible two-qubit quantum 
computation from a single  photon25, highlight the potential power of associated Hilbert space with the photon 
in realizing higher number of qubits. This, along with the ability to engineer the quantum walk dynamics serve 
as a strong motivation for us to explore a resourceful way to use lesser number of particles to realize an entan-
gled state of a bigger system. Thus, in this work, we focus on exploring the power of single particle discrete-time 
quantum walk in order to realize a multi-qubit computational model.

One of the main criteria for a system to be considered as a suitable candidate for universal quantum com-
putation is its ability to realize a universal set of quantum gates. A set of gates is called universal for quantum 
computation if it can reproduce an approximation of any n ≥ 1-qubit unitary operator to an arbitrary accuracy 
on a quantum circuit. In general, the universal set of gates are {P,H ,CNOT}26, where phase (P) and Hadamard 
(H) are single qubit gates and controlled-NOT (CNOT) is a two qubit gate.

Quantum computing has been shown on both forms of quantum walks, i.e., continuous-time19 and discrete-
time quantum  walks20, where the position space of the particle represents quantum wires. They give a way of 
programming a quantum computer rather than modelling or mimicking one and hence do not exhibit a potential 
towards designing a physical architecture. On the other hand, our model, based on the discrete-time quantum 
walk, gives a physical and logical building block to model a quantum computer on lattice based system or 
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photonic systems. The scheme presented here maps the position basis state to the qubit state and then performs 
quantum computation by mimicking gates using evolution unitaries.

In this work we consider a single physical particle (qubit) with positional degrees of freedom to mimic the 
computational basis of a multi-qubit system. By using a set of operations used to describe the dynamics of 
quantum walk we show the realization of universal set of gates and a controlled-Z gate on two- and three-qubit 
systems using the single particle quantum walk in a position space consisting of two and four points, respec-
tively (“Quantum computation via discrete-time quantum walk”). In our scheme, the ability of the particle to 
hop between different points in the position space in superposition makes the realization of many non-trivial 
gates much simpler when compared to the circuit model of computation. We demonstrate this by presenting the 
scheme for realization of a simple three qubit circuit and creation of a GHZ-state in “Circuit implementation on 
quantum walk based computation setup”. Scalability of the model, its practical relevance and some propositions 
for using lesser number of qubits in realizing larger qubit system are presented in “Scalability of the scheme”. We 
conclude with our remarks in “Discussion and conclusion”.

Quantum computation via discrete‑time quantum walk
Discrete‑time quantum walk. The dynamics of the one dimensional discrete-time quantum walk on a 
line are described by a particle with two internal degrees of freedom, which is defined on a combined Hilbert 
space Hw = Hc ⊗Hp . The coin Hilbert space, Hc = span{|0�, |1�} represents the internal coin states and 
position Hilbert space, Hp = span{|l�} , l ∈ Z represents the number of position states available to the particle.

Evolution of each step in the walk is defined by the action of the unitary quantum coin operation followed 
by the position shift operation. The general form of the quantum coin operator is a non-orthogonal  unitary27 
which acts only on the coin space, and is given by,

The position shift operators, Ŝ− and Ŝ+ translate the particle to the left and right, respectively, conditioned on 
the internal state of the particle. They are of the form,

Here, |k� and |j� are the basis states of coin Hilbert space Hc , i.e., |k�, |j� ∈ {|0�, |1�} . The operator 
Wss = (Ŝ1+Ĉ(τ2, ξ2, ζ2, θ2)⊗ Ip)(Ŝ

0
−Ĉ(τ1, ξ1, ζ1, θ1)⊗ Ip ) implements one step of split-step quantum  walk14,28 

and the operator Wd = (Ŝ1±
(

Ĉ(τ , ξ , ζ , θ)⊗ Ip

)

 implements one step of directed quantum walk (conditioned on 
the state |1�)29–31, a variant of discrete-time quantum walk which results in non-zero probability at all of the posi-
tion space it spans through while walking. The set of operators 

{

Ŝ0±, Ŝ
1
±, Ĉ(τ , ξ , ζ , θ)

}

 along with the identity 
operator Ŝ = I can be considered a generic set of operators that describes the quantum walk. We will use this set 
of operators for the realization of universal quantum gates on a two- and three-qubit system by mapping the 
position space to the computational basis.

Universal quantum gates. The universal set of quantum gates for quantum computation comprises of 
two single qubit gates—Phase gate (P) and Hadamard gate (H) and one two-qubit gate—controlled-NOT gate 
(CNOT), i.e.,

The action of phase gate is given by, P|0� = |0� and P|1� = eiφ |1� . The action of Hadamard gate is given by 
H|0� = 1√

2
(|0� + |1�) and H|1� = 1√

2
(|0� − |1�) . Similarly, the action of CNOT gate is given by, CNOT|00� = |00� , 

CNOT|01� = |01� , CNOT|10� = |11� , and CNOT|11� = |10� , where the first qubit is the control bit and the second 
qubit is the target bit.

Methods
In the quantum walk scheme, a gate operation is performed with the help of the evolution operations and initial 
state can be defined by the initial state of the particle. The direction of the quantum walk during the circuit 
operation is defined by the directed walk evolution operator. The particle remains at the initial position state 
with certain probability based on the form of coin operator, and moves with certain probability in either forward 
or backward direction based on the shift operation given by Eq. (2).

(1)Ĉ(τ , ξ , ζ , θ) = eiτ
[

eiξ cos(θ) eiζ sin(θ)
−e−iζ sin(θ) e−iξ cos(θ)

]

.

(2)

Ŝk− =
∑

l ∈ Z

j

[

|k��k| ⊗ |l − 1��l| + |j �= k��j �= k| ⊗ |l��l|
]

Ŝ
j
+ =

∑

l ∈ Z

k

[

|k �= j��k �= j| ⊗ |l��l| + |j��j| ⊗ |l + 1��l|
]

.
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Results
Quantum walk set‑up for computation on two and three qubit system. The quantum walk based 
quantum computation scheme proposed herein uses a directed shift operation with a position dependent coin 
operator to realize the gate operation. To perform the operations of universal set of gates on two qubit system, 
the particle will execute a quantum walk on an open graph of two vertices such that particle itself will act as first 
qubit with two internal degrees of freedom, span{|0�, |1�} representing the state of the first qubit. The second 
qubit will be represented by the position space on which the walk is performed as shown in the Fig. 1b. Similarly, 
for three qubit case, first qubit is represented by the particle’s internal degree of freedom and the remaining 
two qubits states are mapped on the position space. The position space is a two dimensional closed graph with 
four vertices and four edges, span{|00�, |01�, |11�, |10�} as shown in the Fig. 1c, on which gate operations are 
performed.

In the previously known  schemes19,20, position space (computational basis state) was used as a quantum ‘wire’ 
and gates required for universality were then attached to these wires. The flow of the computation from input 
to output was represented as a quantum walk on these wires. The computational basis states thus represented 
wires rather than qubits and thus these models did not admit a physical architecture straightaway. In the scheme 
presented here, however, the computation basis represents the qubit and the universal gates are mimicked with 
the help of controlled evolution operators. As a consequence, the proposed scheme is closer to physical architec-
ture. Direction of the flow (role of wire), is given by the shift operators (evolution operator) of directed quantum 
walk type. This scheme has a scope of being used for quantum computation on a system with access to position 
basis states e.g., photonic or lattice based system. Quantum walks in position space with sufficient control over 
dynamics have already been experimentally implemented for different  purposes23,24 and it favours our scheme 
to be used in future for quantum computation due to the fact that it is simpler and straightforward.

Quantum gates on discrete‑time quantum walk. Below we describe the mapping of the single parti-
cle quantum walk system to the computational basis of the two-qubit and three-qubit system. The arrow shows 
the forward (positive) direction of the particle. We further present the appropriate combination of shift and coin 
operations that describes the quantum walk and effectively implements the universal set of gates on the com-
putational basis. In order to realize the two-qubit gates using single particle quantum walk, the mapping of the 
physical system to the gate implementation is done by using the coin space as the first qubit and the two points 
in the position as the second qubit. Similarly, mapping for the three-qubit system is done using a single particle 
on a four points in position space. Since we shall use only a single qubit in our scheme, most of the operations 
described in the rest of this work are essentially position-specific operations in the particle Hilbert space.

Phase gate. To implement a phase gate on a quantum walk system we need only a position dependent coin 
operation and thus the shift operator takes the form of identity operator. For both the two-qubit and three-qubit 
systems, when the computational basis of the particle in position space is in the desired two- or three qubit-state, 

Figure 1.  (a) Shows an illustration of a real qubit state. (b) Shows a mapping between the two states of 
position Hilbert space in one-dimension to the computational basis of second qubit in two qubit system, and 
(c) shows a mapping between the position Hilbert space in one-dimensional closed quantum walk state to the 
computational basis of the second and third qubits in the three qubit system. These two graphs for quantum 
walk form the building blocks for the scheme to perform computation using quantum walks.
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phase gate on the first (real) qubit (particle) can be applied by using phase operator as quantum coin operation, 
and identity operator in the position space,

Applying a phase operator to the second and third qubits requires the implementation of two different types 
of position specific identity operator separated by a phase,

In Fig. 2 we illustrate the mapping of two states in position space to the computation basis of the second qubit in 
the two-qubit system. The position dependent coin operation on the particle, i.e., I and � on the space labeled |0� 
and |1� , respectively, will implement the phase gate on the second qubit. Similarly, in Fig. 3, we illustrate the map-
ping of four points in position space to the computation basis of the second and third qubits in the three-qubit 
system. The position dependent coin operations I and � on the relevant state in the position space, as shown in 
Fig. 3 will implement the phase gate on the second and third qubits.

Hadamard gate. Hadamard operation on the first qubit, i.e., the coin state of the particle is given by the evolu-
tion operation,

(4)P =
[

1 0

0 eiφ

]

⊗ IP .

(5)� = eiφ
[

1 0

0 1

]

⊗ Ip and I = I⊗ Ip.

(6)W = I(Ĉ(0, 0, 0,π/4)⊗ Ip) ≡ Ĥ1,

Figure 2.  Schematic illustration for the realization of phase gate on the computational basis of two-qubit system 
using a single particle quantum walk on two point position space using position dependent coin operation on 
the real qubit.

Figure 3.  Schematic illustration for the realization of the phase gate on the computational basis of three-qubit 
system using a single particle quantum walk on four point position space using the position dependent coin 
operation on the real qubit.
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which is a coin operation Ĉ(0, 0, 0,π/4) as in Eq. (1) on particle state followed by identity operation on position 
space as shift operation. The subscript of Ĥ represents the qubit on which the Hadamard operation is performed.

Hadamard operation on second and third qubits in this computational basis using the single particle quan-
tum walk can be performed by evolving the coin state of the particle in superposition of position space using 
the different combination of shift operations {Sk−, S

j
+} as given in Eq. (2), where {|k�, |j�} are the coin states, Pauli 

operations σx and σz , and Hadamard operation Ĥ on the coin space of the particle. The quantum walk operations 
to realize Hadamard operation on second and third qubit in computational basis take the form,

where, σm
x = σx ⊗ |m��m| + Ic ⊗

∑

l �=m |l��l| and |m� is the initial position state of the particle. In the Eq. (7), 
Hadamard operator is the coin operation on the particle’s coin space for all initial states followed by the condi-
tional shift operator on position space.

Figures 4 and  5 shows the mapping of the states of position space to the computational basis on the second 
qubit of two-qubit system, and second and third qubits of the three-qubit system, respectively. From the map-
ping shown in Fig. 4, it is possible to realize Hadamard operation on second qubit in two-qubit system, using 
H2|k0� ≡ W

(k mod 2)
+ (Ĥ ⊗ I)|k, l = 0� and H2|k1� ≡ W

((k+1) mod 2)
− (Ĥ ⊗ I)|k, l = 1� where |l� is the position 

basis state and |k� is the coin basis state.
Similarly, as shown in the Fig. 5, one can realize the Hadamard operation on the second and third qubit of 

the three-qubit system using operations,

(7)

W0
+|k� ⊗ |m� =

[

σm
x Sk+(σx ⊗ I)

]

W1
+|k� ⊗ |m� =

[

σm
x Sk+(σz ⊗ I)

]

W0
−|j� ⊗ |n� =

[

σ n
x S

j
−(σx ⊗ I)

]

W1
−|j� ⊗ |n� =

[

σ n
x S

j
−(σz ⊗ I)

]

,

Figure 4.  Schematic illustration of Hadamard operation on the computational basis of a two-qubit system using 
the W operator (Eq. (6)) on a single particle quantum walk on two-point position space. On the first qubit it is 
the Hadamard operation and on the second qubit Hadamard operation is realized using the σx and I operators.

Figure 5.  Schematic illustration of the Hadamard operation on the computational basis of the three-qubit 
system using position dependent quantum walk operators. The form W of the operators involved in realization 
of Hadamard operation on second and third qubit are in Eq. (7).
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and

where |k� is the coin basis state of the particle, given as span{|0�, |1�} . Here l are the labels to the points in the 
position space in a clockwise direction, as illustrated in Fig. 1c.

Controlled‑NOT gate. This gate can be engineered by evolving the state of the particle using evolution operator 
which consists of identity as coin operator followed by a position dependent shift operators. The shift operator 
can be either S1+ or S1− as given in Eq. (2) when the coin state is the control and position state (corresponding 
computational basis) is the target. But when the particle, i.e., coin state is the target, and position state is the 
control qubit, then the position-dependent coin operation Ĉ(0, 0, 0,π/2) ≡ σx followed by the identity shift 
operator will give controlled-NOT operation implementation on computational basis using single particle. This 
is schematically illustrated for the two-qubit system in Fig. 6.

When second qubit is the control and third qubit is the target in the computational basis of the three-qubit 
system, the position dependent conditional shift operator S0+S1+ and S0−S1− on the position space with identity 
operator on coin space implements the CNOT-gate. A similar architecture may be designed for third qubit as 
control and second as target. These implementations and the corresponding single particle quantum walk opera-
tors are schematically illustrated in Fig. 7.

Toffoli gate. This gate can only be realized for a system with three or more qubits. We demonstrate a possible 
realization of this gate for a three-qubit system. When the first and second qubits are the controls and the third 
is the target, realization of this gate simply requires conditional shift operations, given by the shift operator S1± , 
as defined in Eq. (2). The shift operators are to be applied on certain position basis states only, and other posi-
tion basis states are simply operated upon by the identity operator. The corresponding scheme is schematically 
illustrated in Fig. 8.

The Fredkin gate is a controlled swap operation, and closely resembles the Toffoli gate in its implementation. 
In case when the first or third qubit are the target and other one is the control qubit, this operations for its reali-
zation can be worked out exactly the same way as described for the corresponding Toffoli gate.

(8)

H2|k00� → W
(k mod 2)
− (Ĥ ⊗ I)|k, l = 0�,

H2|k01� → W
(k mod 2)
+ (Ĥ ⊗ I)|k, l = 1�,

H2|k11� → W
((k+1) mod 2)
− (Ĥ ⊗ I)|k, l = 2�,

H2|k10� → W
((k+1) mod 2)
+ (Ĥ ⊗ I)|k, l = 3�

(9)

H3|k00� → W
(k mod 2)
+ (Ĥ ⊗ I)|k, l = 0�,

H3|k01� → W
((k+1) mod 2)
− (Ĥ ⊗ I)|k, l = 1�,

H3|k11� → W
((k+1) mod 2)
+ (Ĥ ⊗ I)|k, l = 2�,

H3|k10� → W
(k mod 2)
− (Ĥ ⊗ I)|k, l = 3�,

Figure 6.  Schematic illustration of the controlled-NOT gate on the computational basis of two-qubit system 
using a single particle quantum walk on two point position space using position-dependent coin operation on 
the real qubit. Form of the shift operator S1± is given in Eq. (2).
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Controlled‑Z gate. In a two-qubit system, controlled-Z gate is closely related to the phase gate, and is imple-
mented exactly like the phase gate applied to the second qubit in the position space, as illustrated in Fig. 2. The 
only distinction in the realization of these two gates is that in the controlled-Z gate, the parameter φ is fixed, so 
that φ = π.

In a three-qubit system, this gate can be implemented by using the position dependent application of the 
phase operator P on some position basis states and identity operator on the others. It is also observed that the 
implementation of this gate is symmetric, i.e., the implementation of the gate between the ith and jth qubits is 
the same as the implementation between the jth and ith qubits, where i, j = 1, 2, 3 , and i  = j . As in the case of a 
two-qubit system, the parameter φ is fixed to π.

In case the gate is applied between the second and third qubits, the scheme can be implemented by using 
just two kinds of identity operators, separated by a phase of π . The identity with the phase eiπ I⊗ Ip is applied 
only to one position state, whereas all the other states are acted upon by the identity operator I⊗ Ip . This is 
schematically illustrated in Fig. 9.

Implementing simple circuits and scalability
Circuit implementation on quantum walk based computation setup. Any two or three qubit cir-
cuit can be implemented very easily on this scheme. In Fig. 10, a simple three qubit circuit and the quantum walk 
scheme to implement those same gates to get the same output result is shown. The input state for this circuit is 
|��in = |000� and the output is |��out = 1

2

(

|000� + |011� + |100� + |111�
)

 . The quantum walk-based scheme 

Figure 7.  Schematic illustration of the controlled-NOT gate on the computational basis of three-qubit system 
using position-dependent quantum walk operators. Form of the shift operator Sj± is given in Eq. (2).

Figure 8.  Schematic illustration of the Toffoli gate on a three-qubit system using position dependent quantum 
walk operators.
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can implement the circuit shown in three steps. The first step would be the coin operation followed by shift 
operation of the form W0

− to get Hadamard on the second qubit, the second step would be coin operation 
ˆC(0, 0, 0,π/4) followed by identity shift operation to get Hadamard on first qubit and the third step would be 

identity on coin state followed by position dependent shift operation S0−S1+ on position state |10� to get CNOT-
operation, where the coin operator Ĉ has been defined in Eq. (1), the S1+ in equation (2) and W0

− in Eq. (8).
The scheme can help in reducing the time complexity for some circuits. One example is the circuit for prepar-

ing GHZ state, the complexity reduces by one step. Figure 11 shows a three qubit circuit to create a GHZ-state 
and simplified implementation on quantum walk scheme. Notice that unlike the circuit model, which requires 
the application of three gates, the quantum walk can achieve the output in only two steps.

The quantum walk operation for creation of GHZ in computational basis is quite straightforward. For 
instance, a walker prepared in the state |000� , upon being subjected to two steps of quantum walk can create a 

Figure 9.  Schematic illustration of the implementation of the controlled-Z gate on a three-qubit system. The 
operation P is a phase operation of the form (eiπ I⊗ Ip).

Figure 10.  Quantum circuit on three qubit system and equivalent quantum walk scheme to implement same 
circuit is illustrated. Red circle represents |0� of the real particle and green circle represents |1� of the real particle. 
The input state is |��in = |000� and output state is a superposition of four states 
|��out = 1

2

(

|000� + |011� + |100� + |111�
)

 . CNOT23 is a position dependent shift operation given by Ŝ0−Ŝ1− at 
position |01� and identity at other states.
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GHZ state. The first step would be the coin operator Ĉ(0, 0, 0,π/4) followed by S1+ shift operator and the second 
step would be identity on coin state followed by S1+ shift operator, where the coin operator Ĉ has been defined in 
Eq. (1) and the S1+ in Eq. (2). The sequence of steps, when executed will create the state 1√

2
(|000� + |111�).

Scalability of the scheme. The scheme can be scaled up to larger number of qubit by multiple ways. The 
basic structure should follow Fig. 1 which systematically demonstrates the mapping of real qubit and its presence 
in superposition of position state to the multi-qubit computational basis. Extending the same scheme to higher 
dimensions to represent larger qubit systems is one way of extending the scheme to multi-qubit computation is 
one straight forward option. A single particle can perform universal computation on multi-qubit system with the 
help of multiple closed graphs of four vertices in tensor product as shown in Fig. 12. With an increase in number 
of qubits, different levels of two-qubit equivalent graphs can be added to the system. Each level communicates 
with different levels with the help of appropriate unitary evolution operators which are the extension of the 
operators presented for one-dimensional walk in “Quantum computation via discrete-time quantum walk” For 
example, if a gate is implemented on the fourth qubit, then walk is performed by the particle on the second level 
of the graph. In such case, we will apply identity on every other level and perform walk on the second level. E.g., 
if Hadamard operation is applied on the fourth qubit of the five qubit system, one will need two levels of closed 
graph such that the qubit state is given by |φc� ⊗ |φ1� ⊗ |φ2� . If the initial state of the walker is |00000� then the 
equivalent state on quantum walk scheme would be |0�c ⊗ |00�1 ⊗ |00�2 , then applying H2 from Eq. (8) on the 
second level and identity on the first level will give Hadamard operation on fourth qubit,

Similarly, in this way, this scheme can be used to implement multi-qubit computation using quantum walk. 
However, this scaling scheme is not unique and we can have different other possibilities of scaling on this scheme 
of computation. Some of the other possibilities are given in Figs. 13 and 14.

Scaling onto a four-qubit system can be realized by either considering two-particle quantum walk on a four 
position states, or a single-particle on an eight position state as shown in Figs. 14 and 13, respectively. Similarly, a 
five-qubit system may be realized by a system with two-particle on an eight position state. In a system described 
as such, there will be two-particles and third qubit will be realized by superposition in the position space. An 
alternate realization of a five-qubit state can also be a three-particle quantum walk on a four position state.

(10)H4|0000� = (I1 ⊗W0
−)(H1 ⊗ I1 ⊗ I2).

Figure 11.  Quantum circuit to create GHZ-state on three qubit system and equivalent quantum walk scheme to 
obtain GHZ-state is illustrated. Red circle represents |0� of the real particle and green circle represents |1� of the 
real particle. Here the QW-based scheme is more simplified compared to quantum circuit implementation. The 
input state is |��in = |000� and output state is a GHZ-state |��out = 1√

2

(

|000� + |111�
)

.
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Figure 12.  An illustration of scaling of three-qubit equivalent system to N-qubit system. Multiple closed graphs 
of four vertices equivalent to two qubit can be used to extended the quantum walk based universal quantum 
computer physically. Red solid circle is represents |0� of the real particle.

Figure 13.  Illustration of an extension of position space mapping of three-qubit system to four-qubit system by 
connecting two three-qubit models position state by two edges. This is one of the many ways to multiply qubits 
for quantum walk based computational scheme.

Figure 14.  An illustration of the implementation of a three-qubit (eight point) position space for higher-qubit 
operations.
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A subtle point to be made in using the eight position states with each state connected to three other states is 
that the set of shift operators required needs to be expanded to include operators that makes the particle choose 
a certain path. This is required because the set of universal gates can only act on a maximum of two qubit at a 
time and thus, each point in the position space must be connected to either one or two other states. Therefore, 
on a position space with eight states, the shift operator at each position must have three different variants which 
at a time can create the required superposition between two states in position space. Different architectures with 
well connected or limited connection can be further engineered to expand the scheme. The configuration of the 
position space, connectivity and the ability to define the shift operators to transfer the particle across positions 
plays a crucial role in defining the operations of the larger qubits system.

Quantum space complexity. The discrete-time quantum walk based scheme presented here only uses a 
single qubit in the form of quantum particle with two internal degrees of freedom on a graph. This scheme is 
physically equivalent to a three-qubit system reducing the space complexity by at least two-qubits on a three-
qubit equivalent system. This scheme can be extended to n-qubit equivalent systems using the mapping between 
the position state and qubit state and hence reducing quantum space complexity. The extension scheme is not 
unique and it has many possibilities but a scheme with one-real qubit in the form of quantum particle on multi-
ple layers (levels) of graph with four position states as shown in Fig. 12 maps to n−qubit system and reduces the 
space complexity by up to (n− 1) qubits when compared to the standard circuit model implementation.

Discussion and conclusion
By using the provision of engineering the presence of a single particle in superposition of position space using 
discrete-time quantum walk, we have demonstrated the realization of universal quantum gates in a multi-qubit 
system. The main idea in this work is to demonstrate the effective use of controlled evolution of the particle on 
the position space and mapping the states of the system to the computational basis. We have presented different 
constructions to show that the scheme can be scaled up to realize higher number of computational basis but an 
efficient scaling scheme needs some work. Scaling using combinations of extended position space and a particle 
can be used to realize large dimensional computation basis. For larger computational basis, if only one particle 
is considered, the position space required quickly scales up. Therefore, a scheme of multi-particle quantum walk 
on extended position space could be more effective way to scale up the scheme. Although the realization of Had-
amard operation on computational basis looks a bit involved in the presented scheme, we can see that the gates 
like CNOT and Toffoli are more easily realizable. However some realizable task shown here by this framework, 
are by no means exhaustive, and only provide a small glimpse into the possibilities of this scheme. With many 
experimental implementations of quantum walks in lattice based and photonic systems being reported, the idea 
from our scheme might motivate a new quantum computer architecture based on hopping of quantum particle 
in superposition of position space (lattice). Our scheme exploring the power of single particle in superposition 
of position space can immediately lend towards controlled engineering of quantum states and quantum simula-
tions of sizable quantum systems using fewer qubits.

Quantum walks have been implemented on ion-traps32–35, photonic  systems36–39 and trapped  atoms40,41. Quan-
tum walk on a well-defined quantum system with access to one-dimensional closed graphs will be well suited to 
realize two and three qubit systems presented in this work. The experimental set-up for scaling needs multiple 
levels of one-dimensional closed graph to map to the many-particle states and position dependent evolution 
operators to implement quantum gates. Implementing any gate requires only few steps of quantum walk which 
are realizable, however, implementing a complete circuit requires a number of steps almost equivalent to the 
number of gates in the circuit. This implies that the scheme presented by us can be very well be used for quantum 
computation on small circuits implemented on near-term quantum devices. Limitations with realizability of the 
required shift operators could be seen as an equivalent to the restricted connectivity we are seeing in the current 
available quantum processors. Increasing the size of the Hilbert space accessible without increasing the number 
of particle required for implementation is the key in the demonstrated protocol.

Data availibility
All data generated or analysed during this study are included in this article itself.
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