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DotMotif: an open‑source 
tool for connectome subgraph 
isomorphism search and graph 
queries
Jordan K. Matelsky1, Elizabeth P. Reilly1, Erik C. Johnson1, Jennifer Stiso2,3, 
Danielle S. Bassett2,4,5,6,7,8, Brock A. Wester1 & William Gray‑Roncal1,9*

Recent advances in neuroscience have enabled the exploration of brain structure at the level 
of individual synaptic connections. These connectomics datasets continue to grow in size and 
complexity; methods to search for and identify interesting graph patterns offer a promising approach 
to quickly reduce data dimensionality and enable discovery. These graphs are often too large to be 
analyzed manually, presenting significant barriers to searching for structure and testing hypotheses. 
We combine graph database and analysis libraries with an easy-to-use neuroscience grammar suitable 
for rapidly constructing queries and searching for subgraphs and patterns of interest. Our approach 
abstracts many of the computer science and graph theory challenges associated with nanoscale brain 
network analysis and allows scientists to quickly conduct research at scale. We demonstrate the utility 
of these tools by searching for motifs on simulated data and real public connectomics datasets, and 
we share simple and complex structures relevant to the neuroscience community. We contextualize 
our findings and provide case studies and software to motivate future neuroscience exploration.

Modern nanoscale connectomics research commonly involves the conversion of microscopy imagery data into a 
graph representation of connectivity, where nodes represent neurons, and directed edges represent the synapses 
between them1. This process enables researchers to convert terabytes or even petabytes of imagery into megabytes 
or gigabytes of graph data. Conversion to a network format reduces the cost and complexity of interrogating the 
data, at the expense of losing information about cellular morphology2,3. Though this graph representation uses 
substantially less storage-space on disk, answering even seemingly simple network questions (e.g., identifying 
local graph structure around a particular neuron, or comparing the downstream  targets of a certain cell type) 
may still exceed the computational power, timelines, and budgets available to many research teams, due to 
the exponential nature of many graph algorithms4,5. This issue is often ameliorated by including node or edge 
attribute constraints in the search, though this places an additional limitation on the types of questions that a 
researcher can expect to ask of a connectome dataset.

Connectomics researchers have begun to address these challenges of large-scale graph analysis by adopting 
existing large-scale graph management software from other domains, such as graph databases, and by enforc-
ing consistent, well-architected data schemas6,7. These systems provide performant and cost-effective ways to 
manipulate larger-than-memory graphs, but tend to require familiarity with complex and nuanced graph query 
programming languages such as Gremlin or Cypher. Though graph databases continue to grow in popularity, 
the expertise to administer or use these technologies is still not common in the biological sciences.
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In order to make the study of connectomes accessible and computationally efficient, we developed DotMotif, 
an intuitive but powerful graph tool designed to reduce the expertise and time required to begin interrogating 
biological graphs of any size. DotMotif acts as an interface to common graph management systems such as the 
NetworkX Python library or the Neo4j graph database, abstracting the intricacies of subgraph-query design and 
enabling researchers to focus on field-specific scientific inquiry. DotMotif assists researchers in query design by 
exposing an intuitive, simple syntax that automatically validates and optimizes user queries, and adapts to dif-
ferent graph tool backends without the need for additional user input. We present the DotMotif Python package 
and software architecture, which enables researchers to write queries while remaining agnostic to underlying 
technologies. We demonstrate DotMotif ’s utility by assessing its advantages over manual query design, and we 
share several use-cases inspired by ongoing research in the connectomics community. We also share examples 
of how these findings might inform future work, including efforts to design better local connectivity rule sets, 
establish expected motif prevalence, and produce better generative models of a connectome for evaluation, null 
model design, or for comparison across species, brain region, and modality.

Background
Many of the fundamental questions of modern neuroscience rely on the study of simple circuits of neural con-
nectivity in the brain. These simple circuits are hypothesized to be repeated and reused many times to perform 
a similar role. Though they might comprise only a small number of neurons, as shown in Fig. 1, these simple 
circuits or graph motifs may be critical to understanding the functional role of larger structures in the brain, 
such as cortical columns or other modules of computational importance8–10. Due to the nature of available 
high-resolution imaging modalities such as electron microscopy, it is not always feasible to collect functional as 
well as anatomical data at synaptic resolution. In this work, we define motifs as repeating subgraphs, but do not 
make assumptions about their computational significance. That is, we consider a motif to be any “commonly 
used network architecture”11 or “recurring, significant [pattern] of inter-connections”12, even if that subgraph 
structure has unknown computational properties.

Identifying these motifs is one motivation for the field of connectomics, the study of the brain through the 
lens of its connectivity. Many related research efforts seek to construct graph representations of the brain, com-
monly represented by the notation G = (V ,E,A) , where a graph G is made up of nodes V, representing neurons; 
(optionally directed) edges E, representing synapses between neurons; and arbitrary attributes A, which may 
be associated with vertices, edges, or the graph as a whole. For example, node attributes might include qualities 
such as cell type or functional information. Edge attributes might include synapse weight or neurotransmitter 
type. Graph attributes might include the species or individual from which the connectome was generated. Neu-
roscience questions may be reformulated as analyses on a graph, and the neuroscientist may add graph theory 
to the toolbox of strategies with which to understand the brain8,13. Such questions include searching for specific 
subgraph structures, investigating the connectivity of specific neuron cell types or categories, proofreading con-
nectomes for accuracy, and generating summary statistics on the graph as a whole3,10,14–18.

Many graphs generated by the connectomics community in recent years have spanned multiple gigabytes 
of hard drive space2,10, rendering conventional graph toolkits, such as the common NetworkX library19 (or its 
counterparts in other programming languages) under-powered to address the needs of the scientific commu-
nity. These tools, which often require all graph data to be stored in RAM, would require impractically expensive 
compute hardware in order to run fully in-memory, and would require impractically long timelines in order to 
run while swapping data from memory to disk. Instead, some teams6 have opted to leverage “out-of-memory” 
tools, such as Neo4j7, Cayley20, or other graph databases7,21, which operate on graph data much like conventional 
relational databases operate on tabular data. Despite their power, such tools require expertise in specialized query 
languages such as Cypher or Gremlin, much like relational databases require knowledge of languages such as 
SQL. Developing or hiring for this sort of domain expertise may be impractical for many neuroscience research 

Figure 1.   Subgraph search. Subgraph search is formally defined in “Background” section. (a) A motif query is 
defined. In this example, the query is a simple directed triangle. One edge (red) has been assigned an attribute 
constraint (perhaps a neurotransmitter type or weight threshold). (b) A directed search graph, or “host” graph. 
Two edges in the host graph share the same attribute as the constrained edge in the motif. (c) The motif is 
discovered in the search graph. Two unique detections are shown here, highlighted in yellow and green. Note 
that edges and nodes in the host graph may appear in more than one mapping.
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laboratories and is independent from the core expertise needed to formulate and test neuroscience hypotheses. 
The need for computationally efficient, accessible, and intuitive neural graph analysis tools motivates this work.

Motif-based connectomics research is an emerging neuroscience sub-discipline. This community currently 
depends upon closed-form matrix algebra subgraph-counting techniques, which are only established for very 
specific types of motifs (e.g. fully connected motifs or star graphs). More complicated motifs, such as those which 
include information about cell or synapse types, or those with more topologically interesting graph connectivity, 
are currently understudied largely due to this technical gap. Existing tools, such as FANMOD, MAVisto, and 
others offer helpful interfaces for biological motif exploration with support for graph attributes, but encounter 
limitations when searching for arbitrarily large motifs, or when searching in many-thousand-node graphs11,12,22,23. 
In order to facilitate directed hypothesis testing in large-scale connectomics, the community will need motif 
search tools that are able to incorporate information about cell types, local morphology, functional and structural 
data, and other graph, node, and edge attributes, and which scale to arbitrarily large connectome network sizes.

Results
For DotMotif to be useful to the neuroscience community, it is important for potential end users to see its prac-
tical utility. We share illustrative DotMotif experiments run on a set of publicly-available, seminal connectome 
datasets. We first validate our results by comparing against existing online data, and then share a network-analysis 
result on both partial as well as complete connectomes. Lastly, we share performance benchmarks for graphs of 
various sizes. Collectively, these results serve to illustrate how our tools enrich the connectomics toolkit.

Datasets. 
We demonstrate the use of our tool on both near-complete (most or all of the organism’s neurons are included in 
the graph) connectomes as well as on partial connectomes. Here, we compare connectomes of the invertebrate 
nematode C. elegans24,27, the partial connectome of the invertebrate fruit fly from the Howard Hughes Medical 
Institute Janelia Hemibrain project2, and the partial vertebrate mouse visual cortex connectome from the Intel-
ligence Advanced Research Project Activity (IARPA) Machine Intelligence from Cortical Networks (MICrONS) 
project10,28,29. Further dataset details are available in Table 1. These published graphs do not adhere to a particular 
database schema or storage system, and each has different node and edge attributes. Despite these differences, 
all three can be analyzed using the techniques we detail here.

Tool validation: declarative queries.  As a simple first step towards tool validation, we begin by demon-
strating the utility of DotMotif in performing declarative queries on a large connectome graph. In order to illus-
trate compatibility with data stored in the neuPrint data format6, we ran a DotMotif search query on the partial 
Drosophila melanogaster connectome (dubbed “Hemibrain”)2. We then validated these results with the neuPrint 
API at neuprint.janelia.org6. In this example motif query (Fig. 2a), we wanted to find all Antennal Lobe inputs to 
Kenyon Cells with weights within a certain range. We identified seven instances of this motif (centered around 
antennal lobe neurons with IDs 1917188956, 1825085656, 5813063239, 1887163927, 1917188956, 1825085656 
and 1037293275). With these references to neurons in the host graph, we were equipped to look for further pat-
terns among these neurons. In order to confirm that the query above returned results that were identical to those 
obtained from the canonical neuPrint server, we validated these results with the equivalent Cypher command 
(Fig. 2b) in the neuPrint web application. This exercise demonstrates DotMotif can be used to easily convert 
declarative neuroscience questions into succinct, efficient graph queries.

Comparing undirected subgraph searches across connectomes.  As an illustration of the minimal 
configuration requirements of the DotMotif package, we searched the human-proofread subgraph from the 
IARPA MICrONS project10,28,29 for all undirected graphs of size |V | ≤ 6 , with the ordering taken from the Atlas 
of Graphs30[p. 8–30]. We then counted the number of times each subgraph appeared. For example, we counted all 
undirected triangles (Atlas of Graphs ID #7) and discovered that there were 6894 unique triangle monomor-
phisms in the MICrONS graph when ignoring edge direction. There were 123,264 unique undirected rectangle 
(Atlas of Graphs ID #16) monomorphisms. The only undirected graph in this set with no occurrences in the 
MICrONS graph was Motif ID #208, which was the complete graph of 6 nodes. We publish this complete dataset 
of all motifs and their respective counts for community use (see Supplemental Material 1).

To contextualize these results, we calibrated the parameters of four simple random graph models 
(Erdős–Rényi31, Undirected Geometric32, Watts–Strogatz33, and Barbarási–Albert34) to match the graph density 
(D = 2|E|

|V |(|V |−1)
 ) of each estimated connectome, and ran the same count of subgraph motifs on samples taken 

Table 1.   Connectome graphs reviewed in this work. The C. elegans connectome was derived from the July 
2020 C. elegans adjacency matrix at WormWiring.org, and synapses were filtered to only include chemical 
synapses for this analysis24,25. The MICrONS v185 graph was derived from the proofread soma subgraph at 
microns-explorer.org10,26. The Hemibrain v1.2 dataset was accessed through the neuPrint system6.

Dataset Nodes Edges Density Species/area

C. elegans chemical synapses 296 3427 0.064 Caenorhabditis elegans

MICrONS v185 334 1736 0.031 Mus musculus visual cortex

Hemibrain v1.2 21,740 3,550,404 0.011 Drosophila melanogaster
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from each random graph distribution. These models were chosen for their simplicity and small parameter 
spaces. We similarly performed the same subgraph motif counts on the configuration model (X-swap)35—a 
degree-preserving graph randomizer used in previous neuroscience efforts10. Unlike the other models, this model 
begins with an existing connectome graph and performs arbitrary swaps of edges such that the overall in- and 
out-degrees of each node remains the same, but the precise pattern of connectivity changes36. Because the X-swap 
procedure preserves the degree sequence of its source network, random permutations generated in this manner 
closely mirror the motif counts of the original source connectomes. More details about the random graphs used 
here are available in “Methods”. The graph densities were set to 0.03 for the MICRONS graph and 0.06 for the 
C. elegans graph (Table 1). In order to compare these results with a complete connectome example dataset, we 
ran this count-scan on all chemical synapses of the hermaphrodite C. elegans connectome24,25,27,37 available from 
WormWiring.org24. All motifs tested occurred at least once in the C. elegans connectome. We discovered that the 
motifs encountered most frequently in one connectome tended to be the most frequent in other connectomes 
and their random-graph counterparts, but the absolute counts of each motif differed dramatically based upon 
the connectome and motif in question (Fig. 3).

We also discovered that the distribution of undirected motifs (black datapoints, Fig. 3) followed a similar 
curve trajectory for many brain graph datasets including the two shown here, though the parameters of that 
curve varied across connectomes. Queries from this set of experiments were run using Neo4j, NetworkX, and 
GrandIso executors, as convenient, leveraging our ability to seamlessly switch between executors when using 
DotMotif. Random graph parameters selected for these experiments are explained in greater depth in “Methods”. 
All data and results from this study are available as described in Supplemental Material 1. These experiments may 
aid in the design or selection of random graph models to approximate a connectome graph, and in the design 
or selection of query graphs when studying reconstructed connectomes.

Figure 2.   A comparison of DotMotif query syntax and the equivalent queries when transpiled to Cypher using 
the Neo4jExecutor. (a) A simple query to find inputs to Kenyon cells (KC) from the medial antennal lobe tracts 
(mALT) in the Hemibrain dataset. Note that DotMotif comments are notated with the hash character. (b) The 
equivalent query as panel (a), when converted to the Cypher query language for use with neuPrint systems. Even 
in a small query such as this, DotMotif syntax tends to be more succinct and readable. (c) A simple DotMotif 
query for a repeated pattern with node and edge constraints. The motif includes a macro called BigInhibitsSmall, 
which establishes a connection between two neurons with a type edge-attribute of “GABA”, and with radius 
nodes attribute constraints on both neuron participants. This macro is reused multiple times in the final motif 
construction in order to avoid repetitive code. DotMotif automatically infers that nodes A and B are isomorphic 
(i.e. interchangeable), and that C and D are isomorphic. (d) DotMotif converts the query in panel (c) to the 
Cypher code in (d). The equivalent Cypher query is substantially longer and harder to maintain or edit, even 
in the case of this quite simple motif. It also requires explicit notation to avoid reporting duplicate motif 
automorphisms.
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Directed three‑node motif searches in MICrONS and C. elegans.  Recent work has investigated 
the relative prevalence of directed three-node motifs in brain graphs and the importance of such motifs for 
local computation10,38–40. Here we count all unique, directed, three-node motifs in the MICrONS Phase 1 and C. 
elegans connectomes. Lower-density three-node motifs appeared with greater frequency (due to the larger num-
ber of embeddable permutations. Despite similar neuron counts, the connectomes differed dramatically in both 
absolute count and distribution shape, with many directed motifs occurring frequently in the C. elegans graph 
but few to no times in the MICrONS graph (Fig. 4).

These simple motifs serve as a useful frame for further investigations. Though there are only thirteen three-
node directed graphs, exhaustively searching for all larger directed motifs quickly becomes computationally 
infeasible (there are 199 connected four-node directed graphs, 9364 connected five-node directed graphs, and 
over 1.5 million connected six-node directed graphs). It is possible now to search specifically for larger super-
graphs of only motifs which occur at least once in this study, greatly reducing the search space of future exhaustive 
motif searches in these connectomes. Unlike the distributions of undirected motifs, the relative distribution of 
these directed motifs does not appear to follow a consistent shape between connectomes. This suggests that even 
these small motifs may hold useful knowledge about the nature of connectome graphs, such as distinguishing 
between feed-forward-dominated or feedback-dominated tissue.

Benchmarks.  Users may find that different DotMotif executors suit the needs of different research ques-
tions. In order to illustrate these differences, we compared the performance of three DotMotif executors avail-
able for use in our downloadable Python module. The GrandIsoExecutor and NetworkXExecutor are both pure-
Python, and are therefore desirable for use in constrained compute environments such as shared servers. The 
Neo4jExecutor requires a Neo4j database, which runs as a standalone executable. Figure 5 illustrates that the 
novel GrandIso-based executor developed under this effort always outperforms the NetworkX executor, regard-
less of host-graph size and motif. (Due to the additional overhead-time spent provisioning Neo4j databases, we 
do not compare these much longer-running results here.) Though we compare searches for small undirected 
motifs in Erdős–Rényi graphs in Fig. 5, the GrandIso search outperformed NetworkX VF2 on the exhaustive 
connectome motif searches in Figs. 3 and 4. All graphs were generated using the NetworkX fast_gnp_ran-

Figure 3.   Undirected motif searches (monomorphisms) in connectomes and random graphs. (a,b) The count 
of every undirected subgraph with six or fewer vertices ( |V | ≤ 6 ). Each motif was counted in the connectomes, 
as well as in each of the random graph models calibrated to match the density of each connectome. The x-axis 
is the motif ID from the Atlas of Graphs text (e.g. all points on the line x = 7 represent the undirected triangle 
motif). Gaps along the x-axis indicate omitted motifs (i.e., those with multiple connected components). (a) 
Comparing C. elegans with random graphs calibrated to C. elegans density. Due to its higher density, the 
C. elegans graph has higher motif counts than those of the MICrONS graph, despite a lower vertex count. 
X-swap motif counts (blue) closely match those of the original connectome (black). In contrast, Erdős–Rényi 
approximations (yellow) are very poor predictors of true connectome motif count, and always under-estimate 
motif counts in the original connectome. The parameter-space of the Watts–Strogatz model (red) leads to 
a wide range of motif count predictions, some as low as those of the Erdős–Rényi model. (b) Comparing 
MICrONS with random graphs calibrated to MICrONS density. Like the C. elegans results in (a), Erdős–Rényi 
approximations always underestimate the number of motifs, for all motif graphs we searched. The same motifs 
( x = 77 , x = 78 , etc) occur with the highest frequency in the MICrONS graph as in the C. elegans graph. Motif 
x = 208 , the fully-connected graph on six nodes, appears many thousands of times in the C. elegans graph, 
but does not occur at all in the MICrONS connectome. Some models, like X-swap and Erdős–Rényi, likewise 
predict zero K6 motif occurrences. Others, like the geometric model (green), erroneously overpredict the 
number of expected K6 subgraphs. Full-resolution copies of this graphic are available online (see Supplemental 
Material 1).
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dom_graph algorithm with graph sizes uniformly sampled between 100 and 300, with densities uniformly 
sampled between 0.05 and 0.3. Complete results are available in Supplemental Material 1.

When choosing between Python-based and graph-database executors, there is a tradeoff between data-ingest 
rate and search speed. The NetworkXExecutor and GrandIsoExecutor, which convert DotMotif DSL syntax into 
a series of Python commands, are preferable for running graph queries on a small host graph, or for running 
the same queries on many host graphs, due to low startup-time overhead. The Neo4jExecutor, which converts 
DotMotif DSL syntax into a Cypher query for execution with the Neo4j graph database, has significant data-ingest 
overhead for the first query on a graph, and so it is not ideal for running individual motif queries. However, 
users may prefer a Neo4j executor when running multiple queries on the same host graph, when many users are 
running motif queries simultaneously on the same host, or if motif searches are likely to be repeated. For queries 
on host-graphs of sufficiently large size, the Neo4jExecutor startup overhead becomes trivial compared to the 
total runtime of the query, and for larger-than-memory host-graphs, the Neo4jExecutor and NeuPrintExecutors 
may be the only feasible options. For most in-memory exploratory data analysis, we recommend the use of the 
GrandIsoExecutor. DotMotif users may trivially switch between Executors without modifying their queries, as 
the DotMotif engine stores queries in an intermediate format after parsing and validation steps (Fig. 6).

Methods
In developing DotMotif, we aimed to ensure that our software was both accessible—intuitive for new users but 
powerful enough for power-users—as well as sufficiently computationally efficient to execute most common 
queries on commodity hardware. In the interest of research flexibility, we also required that the software adapt 
to best utilize available hardware resources. For this reason, DotMotif includes several executors, each of which 
leverage a different graph analysis technology. Executors are discussed in greater depth in the Benchmarks section.

Formal definition of the subgraph search task.  Here we consider the ideas of subgraph isomorphism 
and subgraph monomorphism, which have slightly varying definitions in the graph theory literature. When 
we refer to a subgraph, we always refer to a node-induced subgraph, which is inline with the usage in popular 
subgraph isomorphism research, including research on the commonly used VF2 algorithm41–43. Given graphs 
G = (V1,E1) and H = (V2,E2) , we say G is isomorphic to H if there exists a bijection f : V1 → V2 such that 
{u, v} ⊆ E1 if and only if {f (u), f (v)} ⊆ E2

44. An extension of this idea is that a subgraph isomorphism exists 
between G and H if and only if there exists a subgraph G′ of G such that G′ is isomorphic to H. A monomorphism 
loosens the bijection requirement to simply injection, meaning that the match in the host graph may contain 
extra edges.

DotMotif finds all subgraphs in a search graph that match a query graph, where the term match used here 
means that one of the above described mappings exists. By default, DotMotif will perform a search for all sub-
graphs that are monomorphic to the query subgraph. A user may choose to search for exact matches only, in 
which case DotMotif identifies subgraph isomorphisms, rather than monomorphisms. This behavior is controlled 
by a user toggle during the construction of a query.

Optimizations to the subgraph isomorphism task in Python.  For the purposes of quick iteration 
upon neuroscience hypotheses, our team required a high-speed subgraph isomorphism algorithm that was both 
pure Python—in order to reduce the barrier to entry for a fresh installation—as well as optimized to minimize 
CPU and memory usage. To satisfy this need, we developed a subgraph monomorphism search implementation 

Figure 4.   Quantities (monomorphisms) of directed three-node motifs from the C. elegans chemical synapse 
connectome and the MICrONS v185 graph. (a) C. elegans directed three-node motif counts. The most 
commonly encountered directed three-node motif is the “fan-in” motif, where two neurons converge to a single 
downstream target. All directed three-node motifs occur at least once. (b) MICrONS v185 directed three-node 
motif counts. The most common motif is the “fan-out” motif, where one neuron synapses onto two downstream 
targets. Several three-node motifs appear infrequently or do not appear at all. This illustrates differences between 
the connectivity patterns of a complete connectome such as the worm’s and a mammalian brain region that is 
expected to be largely feed-forward.
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that performs favorably against the standard NetworkX implementation (Fig. 5). Our pure-Python implementa-
tion matches the results of the NetworkX GraphMatcher monomorphism detection module, with significantly 
lower CPU and memory overhead. Additionally, while many modern subgraph iso- and monomorphism imple-
mentations rely on a directed, acyclic graph state-space representation, our implementation stores its state space 
in a one-dimensional queue (Algorithm 1). In future work, we expect that due to this property, our algorithm 
may be trivially parallelized to operate on multiple cores at once.

Optimized interfaces for common graph libraries.  Many existing research questions have been 
explored with RAM-sized graphs in mind, and have utilized popular Python graph libraries such as NetworkX 
or IGraph19,45, or emerging libraries such as Networkit46. In order to easily transition these algorithms and analy-
ses to graphs of larger size, we developed an open-source graph library that enables a user to write code using 
familiar graph APIs (e.g. NetworkX’s nx.DiGraph), but which automatically converts these commands to run 
instead on any of a number of optimized, scalable backends, such as a graph database implemented in SQL or 
Amazon Web Services DynamoDB. This tool, alongside the subgraph iso- and monomorphism improvements 
detailed above, enabled us to achieve substantial performance speed-ups in performing the analyses in this 
paper. Links to documentation and the source code for this library are available in Supplemental Material 1. All 
benchmarks listed here were performed on consumer laptop hardware with 16 gigabytes of RAM and a 3.1 GHz 
Intel Core i7 processor. 

Figure 5.   Comparison of wall-clock runtime when counting undirected motifs. All runtimes are measured 
during motif searches in Erdős–Rényi graphs with node-count sampled uniformly on the interval of 100–300 
nodes, and with densities randomly sampled between 0 and 0.3. See Benchmarks for more details. Here, we 
compare performance on a variety of motifs, such as the three-node path graph, the four-node cycle graph, and 
complete cliques of various sizes.
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Comparison to random graph models.  One way to determine if a motif is significant within a real 
biological dataset is to compare its observed frequency to its expected frequency within a random graph model. 
There are many different random graph models, each with different properties and capturing a different aspect 
of real world data47. Here, we perform subgraph search on five different random graph models.

The Erdős–Rényi random model has parameters n, or the number of nodes, and p, or the probability that any 

of the potential 
(

n
2

)

 edges will independently exist within the graph31. The Erdős–Rényi model is easy to analyze 

and understand, and thus is included in this analysis. However, the edge independence assumption often fails 
for real datasets. Thus, other models are required to provide further context.

Geometric random graphs are desirable because they naturally capture spatial relationships that occur within 
the brain48. Nodes are uniformly distributed within a region and two nodes are adjacent if they fall within a radius 

Figure 6.   The DotMotif query execution process. Graph import. A user may import a search graph (also 
commonly referred to as a host graph) from a variety of industry standard formats, including an edgelist 
CSV, GraphML, numpy adjacency matrix, and any format supported by the NetworkX library. Furthermore, 
DotMotif is compatible with graphs stored in neuPrint schemas in a Neo4j database6. Query design. The user 
may select from a library of pre-built motifs, or write a novel query. The query may be written in the DotMotif 
DSL, encoded as a NetworkX graph, or written as text directly in the target graph database query language, such 
as Cypher. A user may choose to save this query as another standalone file on disk for future use. The .motif file-
format stores both the motif itself and provenance metadata such as the date of creation, comments associated 
with the motif, and author information. Query validation. DotMotif supports several pre-execution validation 
steps in order to fail quickly when asked to perform an impossible or self-contradictory query. Several other 
optional validators may be invoked to check a motif for biological feasibility and to warn the user if a potential 
error is detected. Execution and results. The user may choose from the available DotMotif Executors in order 
to use the most appropriate subgraph matching tool for the compute resources available. No further query 
modification is required in order to run the same motif on several different Executors. A user may also choose 
to simply use DotMotif as a query executor without leveraging the query validation or query design tools.
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r, which is an adjustable parameter32. This model, however, does not capture long-range neural connections, 
resulting in some spatial relationships that are not captured by the point cloud approach of the geometric model.

The Watts–Strogatz model addresses the edge dependence issue more directly, recognizing that many real 
world networks have high clustering coefficients, which is a measure of the extent to which two adjacent nodes 
have similar neighbors33. The Barabási–Albert model is a preferential-attachment model that ensures a power-
law degree distribution, making it a scale free graph model34,47.

The degree-preserving edge-randomization graph model implemented here, based upon efforts such as those 
in Refs.36,49, accepts a graph as input-parameter and performs edge-swaps between two randomly-selected edges 
{u1, v1} and {u2, v2} so that the resulting edges are {u1, v2} and {u2, v1} . This model preserves the in- and out-
degree distribution, as well as the in-degree sequence. Here, this model serves as a control in order to determine 
the role of degree distribution when determining the prevalence of a motif.

Each of the described random models has a set of parameters resulting in different graph properties. These 
parameters may be selected to generate graphs “similar” to the real dataset in question. Similarity can mean dif-
ferent things and we try to match the models to a characteristic that is closely tied to motif search. One obvious 
choice is to match the graph density (D= 2|E|

|V |(|V |−1)
 ) of each estimated connectome because density is a metric 

that can be more easily tweaked across models. Furthermore, a density that is too high or too low can result in 
inflated or underestimated subgraph counts, respectively50. Other metrics besides graph density may be con-
sidered, such as the degree distribution. Regardless of the metric, the parameters selected for a random graph 
model will differ for each connectome being analyzed. More specifically, differences in density for C. elegans and 
MICrONS datasets will result in differently parametrized random graph models. By performing subgraph search 
across these models tuned or calibrated to some characteristic of the real dataset, we narrow the problem space 
of what drives a given motif to occur at a given frequency. By understanding which models closely approximate 
certain phenomena such as motif count, we may be able to better identify biological mechanisms that induce 
these patterns of connectivity in the connectome.

Architecture.  DotMotif is comprised of three submodules: a parser module, an optimizer module, and finally 
an executor module. In order of use, the parser module is responsible for converting the DotMotif domain-
specific language into an in-memory representation. The optimizer module is then responsible for converting 
and simplifying the in-memory motif into its simplest possible representation. The optimizer module may also 
optionally check for violations of biological priors, in a validation step. Finally, the executor module converts 
the optimized motif into a query that can be submitted to a graph analysis tool. Each executor is responsible for 
generating its own target-specific queries. (For example, the Neo4jExecutor generates Cypher queries, and the 
NetworkXExecutor converts queries to a sequence of Python commands.) Through the coordination of these 
submodules, DotMotif provides a framework for posing and answering complex graph queries.

DotMotif domain‑specific language parser.  We identified an impedance mismatch between the flexibility of 
common query languages (such as Cypher7) and the needs of the research community, where many research 
questions require overwhelmingly complex or verbose queries. We opted to develop a domain-specific query 
language to aid in the construction of queries. This enables research-driven query design agnostic to the under-
lying frameworks.

The DotMotif domain-specific language (DSL) borrows from DOT-like syntax51 as well as from SQL-like 
syntax in order to expose a succinct and user-friendly query language. For example, the simple query A -> B 
will return a list of all edges in the complete graph (in other words, the list of all subgraphs of G = (V ,E) that 
comprise one edge from a node A ∈ V  to node B ∈ V  ). In order to make queries understandable and maintain-
able, the DotMotif DSL supports “macros”, or composable building-blocks that can be combined to generate 
more complicated queries (Fig. 2c). These macros minimize “boilerplate” syntax without leading to duplicate 
notation (Fig. 2d). Further illustrations of the DotMotif DSL syntax are available in Fig. 7a,b.

By default, DotMotif returns a single representative element of each automorphism group in the result set. 
An automorphism is an isomorphism from a graph onto itself44. Returning a single representative of the auto-
morphism group avoids over-counting motifs in the search graph due to motif symmetries. The ability to count 
only one representative of this group is useful to many common neuroscience questions, but it is not easily 
accomplished with conventional graph tools. A DotMotif user may also explicitly specify that two nodes in a 
motif are interchangeable with the automorphism operator (Fig. 7a). Whether the user uses automatic query 
automorphism detection or notates it manually, the DotMotif optimizer will enrich the query motif to lower 
the space of possible matches, and thus return a result more rapidly. DotMotif considers both semantic as well 
as syntactic feasibility when automatically determining automorphism mappings42.

This language is formally defined in Extended Backus–Naur Form52,53 by the grammar file referenced in Sup-
plemental Material 1. This syntax is visualized using the railroad-diagram convention in Fig. 8.

Query optimization and validation.  After a query has been parsed and ingested, it is passed to an optimiza-
tion stage in which the query is reduced to a simplified form in order to improve the speed of query execu-
tion. Optionally, a user may also enable the automatic detection of impossible structures—or even biologically 
implausible structures—in a Validation step (Fig. 7c).

These verbose error messages are intended to warn a user quickly and clearly if a graph query is unlikely 
or impossible, rather than allowing the user to proceed with a long-running query that is destined to fail. In 
contrast, the equivalent Cypher command running in Neo4j will still go through the process of execution on the 
full host graph, but will return no results. DotMotif includes the option to add validators for biological plausibil-
ity. These options allow the user to prohibit motifs that—for example—require inhibition and excitation to be 
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performed by the same neuron. These validators, like all validators in the DotMotif package, are both optional 
as well as modifiable.

Query execution.  A parsed, optimized, and validated query can now be evaluated against a large graph. Where 
necessary, it is possible to run these queries fully in-memory on consumer hardware. DotMotif includes both 
pure Python as well as graph-database query executors. There is no difference between the results returned 
from each executor, and so they may be used interchangeably, depending upon the needs and parameters of the 
experiments and environments.

In order to take advantage of graph database technology, we have implemented a Neo4jExecutor, which 
leverages the Neo4j7 database and its built-in subgraph match detection algorithm, an implementation of the 
VF2 algorithm41,42. In order to run queries in this environment, our software converts the optimized query to 
Cypher, the database query language used natively by Neo4j. If a user does not have a running Neo4j database, 
our library also includes routines to provision a Docker container54 and quickly ingest the data in an appropriate 
format for Neo4j to use. A user may also direct queries to a running neuPrint database6. A list of all available 
executors is available in Table 2.

Discussion
Though modern connectomics research commonly interprets neural connectivity as a network, the field currently 
suffers from a lack of accessible, performant graph analysis and subgraph-search tools. In this work, we present 
DotMotif, a combined domain-specific language and interface to powerful graph-search tools. Our hope is that 
this tool and others like it will reduce the barrier-to-entry for researchers unacquainted with graph theory or 
graph databases, and will enable researchers to interrogate increasingly common connectome datasets with ease. 

Figure 7.   Examples of the DotMotif query language. (a) Features of the DotMotif domain-specific language 
syntax. Nodes are connected by directed edges, notated with an arrow operator. A user can specify whether 
a certain edge must not exist by using the non-edge operator. Both edges as well as nodes may be assigned 
constraints or attributes. Edge attributes are nested in square brackets on the same line as the edge notation, and 
node attributes are notated with ‘dot’ notation on their own line. A user can explicitly indicate that two nodes 
are interchangeable, and DotMotif will only return one representative of that automorphism group. (b) Example 
use of nested macros to construct a complex motif from simple building blocks. In this motif example, x, y, 
and z serve as macro arguments. These variables, similar to local function arguments in other programming 
languages, are only used within the macro, and are not participants in the motif. Nodes with names A–E serve 
as participants in the motif. Note that macros may be nested by calling one from within the body of another. (c) 
Examples of motifs that fail validation. The DotMotif query validation step reduces the likelihood of spending 
computational resources on impossible or biologically unfeasible queries. In the first example, validation 
fails because an edge has already been added to the motif but a new line (red underline) conflicts with this 
requirement. In the second example, validation fails because the condition is impossible (no value for A.size 
can be both greater than 50 as well as less than or equal to 5). These validation failures serve as early warning-
signs for a researcher to see that a query will fail if executed.
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Though the undirected graphs from the graph atlas study may not directly provide answers to open questions 
in neuroscience, this broad search can narrow down where it may be most impactful to dig deeper, perhaps 
leading to more interesting directed graph searches or neural simulations over smaller directed versions55. Such 
exhaustive motif searches may also enable better characterization of local network properties and dynamics39. 
Future work may include random assignment of edge-direction in order to perform an unbiased search across 
the space of all possible directed graphs, akin to other random-graph searches8. We intend to further explore 
other metrics beyond density for random graph model calibration in the future.

Through these directed and undirected motif studies, it may also be possible to build a heuristic to predict 
motif-counts in a connectome using a small number of simpler (i.e. lower computational cost) motif searches, 
and avoid explicit counting altogether. For example, if the goal of a research study were to determine if the actual 
count of a motif in question aligns with predictions for a connectome of a certain modality, size, species, and 
brain region, such a model would circumvent the need to search in random graph models, and would instead 
enable a simpler, analytic approach.

Recent neuroscience research10,12,38,56,57 has provided many valuable explanations for neuron-to-neuron con-
nectivity rules. We intend for these tools to offer a quantitative way to expand these rules to larger numbers 
of neurons, and to free the neuroscience community to explore new questions in the connectomics domain. 
Similarly, several efforts have begun to map subneuron connectivity patterns, identifying recurring motifs in the 
relationships of multiple synapses between the same neurons58–60. We believe that the systems presented here will 
provide a substrate upon which to build not only nanoscale connectivity research but also subcellular motif work 
and meso- to macro-scale connectomics, through modalities such as X-ray microtomography or MRI18,61,62, by 
identifying motifs in network connectivity across brain regions or in large-gauge neurites63–65.

Despite many of the simplifications and optimizations to the subgraph monomorphism task mentioned 
here, this task in general is NP-complete43,66–68. Even in a relatively small connectome such as that of C. elegans, 
certain sufficiently common or poorly-optimized motif searches may still remain infeasible to run on consumer 
hardware. In our experience, the addition of further constraints, such as specifying edge direction, specifying 
node- and edge-attributes, or searching for query graphs with nodes of high degree, may reduce the execution 
time of complex queries; but other seemingly helpful modifications, such as increasing the diameter of a query 
graph, may counter-intuitively increase runtime quite substantially. As a result of such longer query runtimes 
or more compute-hungry queries, researchers will be able to run fewer queries per study.

In our ongoing work, we hope to reduce this barrier by developing more rigorous automated query opti-
mizations and by publishing connectome query results for reuse. We also hope to use tools from probabilistic 
and Bayesian network analysis to better understand how global network properties (such as degree sequence or 
density) impact motif incidence. We will introduce and refine new validators that aid DotMotif query designers in 
identifying qualities of a query graph that may lead to long runtimes, and we hope that the atlas results published 
above may shed light on how to select query graphs for further study in a dataset. We intend to disseminate an 
open-data motif encyclopedia so that long-running or complex queries may be run on a dataset once and then 
shared with the community.

We also note that faster implementations of the motif-search problem—relevant to connectomics, pharma-
ceutical research, and other domains—may pave the way to faster and more efficient scientific discovery.

Figure 8.   The DotMotif Syntax in railroad-diagram form. The DotMotif DSL is a whitespace-agnostic language 
with hash-symbol comments and curly-brace bracketed macros. Edges are defined with ->-arrowlike syntax; 
edge attributes may be listed in JSON-like syntax. Node attributes may be listed in object dot-notation syntax. 
For example usage of this syntax system, refer to Architecture. This syntax is formally defined in Extended 
Backus-Naur Form. Both this formal definition as well as the language specification will be made available as per 
Supplemental Material 1. This figure was generated with the railroad-diagrams Node.js package77.
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The field of connectomics is at an inflection point as datasets continue to grow in size, as technology and 
neuroscience provide avenues to create and study large datasets at unprecedented scales beyond the analysis 
capabilities of a single lab. Open, free, and public datasets, as well as accessible and affordable tools to understand 
those public data, are of paramount importance.

We are releasing the DotMotif codebase, as well as all demonstration code and data in this manuscript, as 
open-source and open-data tools to support community discovery. We invite collaborators to share questions 
that allow us extend DotMotif to test scientific hypotheses.

Citation diversity statement
Recent work in several fields of science has identified a bias in citation practices such that papers from women 
and other minority scholars are under-cited relative to the number of such papers in the field69–73. Here we sought 
to proactively consider choosing references that reflect the diversity of the field in thought, form of contribution, 
gender, race, ethnicity, and other factors. First, we obtained the predicted gender of the first and last author of 
each reference by using databases that store the probability of a first name being carried by a woman73,74. By this 
measure (and excluding self-citations to the first and last authors of our current paper), our references contain 
7.94% woman(first)/woman(last), 14.29% man/woman, 22.22% woman/man, and 55.56% man/man. This method 
is limited in that a) names, pronouns, and social media profiles used to construct the databases may not, in every 
case, be indicative of gender identity and b) it cannot account for intersex, non-binary, or transgender people. 
Second, we obtained predicted racial/ethnic category of the first and last author of each reference by databases 
that store the probability of a first and last name being carried by an author of color75,76. By this measure (and 
excluding self-citations), our references contain 6.33% author of color (first)/author of color(last), 31.65% white 
author/author of color, 13.92% author of color/white author, and 48.1% white author/white author. This method 
is limited in that (a) names and Florida Voter Data to make the predictions may not be indicative of racial/ethnic 
identity, and (b) it cannot account for Indigenous and mixed-race authors, or those who may face differential 
biases due to the ambiguous racialization or ethnicization of their names. We look forward to future work that 
could help us to better understand how to support equitable practices in science.
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