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Gene expression changes and DNA 
damage after ex vivo exposure 
of peripheral blood cells to various 
CT photon spectra
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Dual-energy CT provides enhanced diagnostic power with similar or even reduced radiation dose as 
compared to single-energy CT. Its principle is based on the distinct physical properties of low and high 
energetic photons, which, however, may also affect the biological effectiveness and hence the extent 
of CT-induced cellular damage. Therefore, a comparative analysis of biological effectiveness of dual- 
and single-energy CT scans with focus on early gene regulation and frequency of radiation-induced 
DNA double strand breaks (DSBs) was performed. Blood samples from three healthy individuals 
were irradiated ex vivo with single-energy (80 kV and 150 kV) and dual-energy tube voltages (80 kV/
Sn150kV) employing a modern dual source CT scanner resulting in Volume Computed Tomography 
Dose Index (CTDIvol) of 15.79–18.26 mGy and dose length product (DLP) of 606.7–613.8 mGy*cm. 
Non-irradiated samples served as a control. Differential gene expression in peripheral blood 
mononuclear cells was analyzed 6 h after irradiation using whole transcriptome sequencing. DSB 
frequency was studied by 53BP1 + γH2AX co-immunostaining and microscopic evaluation of their 
focal accumulation at DSBs. Neither the analysis of gene expression nor DSB frequency provided 
any evidence for significantly increased biological effectiveness of dual-energy CT in comparison to 
samples irradiated with particular single-energy CT spectra. Relative to control, irradiated samples 
were characterized by a significantly higher rate of DSBs (p < 0.001) and the shared upregulation of five 
genes, AEN, BAX, DDB2, FDXR and EDA2R, which have already been suggested as radiation-induced 
biomarkers in previous studies. Despite steadily decreasing doses, CT diagnostics remain a genotoxic 
stressor with impact on gene regulation and DNA integrity. However, no evidence was found that 
varying X-ray spectra of CT impact the extent of cellular damage.

Dual-energy computed tomography (DECT) has become a well-established and widely used technique in modern 
medical diagnostics. Image acquisition at two energy levels—typically 70–80 kV and 140–150 kV—takes advan-
tage of the different physical properties of low and high energetic photons to unravel the elemental composition 
of materials, which would not be resolvable based on CT numbers of voxels defined by single-energy CT (SECT) 
alone1. The combination of two attenuation measurements enhanced the power to delineate different tissues and 
paved the way for novel applications, e.g. in cardiovascular, thoracic, bone and abdominal imaging2.

Next to diagnostic benefits, DECT offers the chance of significant dose reduction, in particular by abolishing 
the obligation of a complete unenhanced scan due to reconstruction of virtual unenhanced images3–7. Neverthe-
less, comparative risk assessment of SECT and DECT should not only focus on radiation dose and dose rate, 
but also has to consider differences in biological effectiveness (BE) associated with varying photon energies8–10. 
In case of DECT, BE of the contributing energy spectra may presumably account only for a small fraction of 
individual risk in comparison to dose reduction opportunities by DECT in clinical routine. Yet, it might be a 
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pivotal point of criticism as to risk assessment by means of the linear no-threshold model which is routinely 
applied in clinical risk assessment.

The importance of higher BE associated with exposure to low-energy photons has already been addressed in 
the context of mammography (X-ray tube voltage usually 25–35 kV). Several in vitro experiments comparing 
low-energy mammography X-rays with higher energetic radiation qualities showed an increase in dicentric 
chromosomes11, neoplastic cell transformation12–15, enhanced mutagenicity16 and micronuclei induction17. This 
raises the question whether the low-energy portion in X-ray spectra of CT might cause measurable differences 
in biological effectiveness between SE- und DECT which could reduce the apparent benefit of DECT. Against 
this background there is need for a profound knowledge-base that could assist radiologists in finding the optimal 
risk–benefit balance for DECT. To the best of our knowledge only one study so far has investigated biological 
effects of single- versus dual-energy scans and found no significant differences after pulmonary CT angiography 
comparing single- and dual-energy CT protocols based on the measurement of DNA double strand breaks (DSB) 
by means of the γH2AX-assay18.

In this study we aimed to gain further insights into the varying biological response possibly associated with 
very low dose, low-energy X-ray exposure during DECT. In the controlled setting of an ex vivo exposure of 
peripheral blood cells to adapted modern SECT and DECT scan protocols, we investigated differences in gene 
expression and the extent of DNA DSBs between the two CT techniques by means of whole transcriptome 
sequencing and 53BP1/γH2AX co-immunostaining19, respectively.

Results
Transcriptional response to irradiation with varying tube voltages.  The overall effect of CT expo-
sure on gene expression was only moderate. Unsupervised hierarchical clustering based on sample-to-sample 
distances indicated the clear dominance of inter-individual differences over irradiation associated effects. As 
depicted in Fig. 1 all samples of each individual clustered together, irrespective of whether they had been irradi-
ated or not. In line with this observation, only few genes were found deregulated with respect to corresponding 
sham irradiated controls (18–109 for 80 kV, 9–67 for 150 kV and 10–21 for dual-energy acquisition setting; 
Supplementary Table S1). Among the significantly deregulated genes, AEN (Apoptosis Enhancing Nuclease) was 
shared between all replicates, probands and CT protocols (Fig. 2).

A direct comparison of 80 kV, 150 kV and DECT experiments did not reveal any common gene expression 
signature characteristic for one of the three tube voltages. In total this direct comparison identified 48, 49 and 
45 significantly differentially expressed genes. None of them was shared among all probands (Fig. 3).

Figure 1.   Unsupervised hierarchical clustering based on sample-to-sample distances of all 36 RNA sequencing 
experiments. Naming of samples indicates treatment (Sham, 80 kV, 150 kV and DE) and proband (1, 2, 3). 
Probands have additionally been highlighted in yellow (proband 1), green (proband 2) and red (proband 3) to 
the right and at the top of the heatmap. The order of samples in combination with the dendrogram at the top or 
to the left of the heatmap denote the clusters of samples arising as a result of the hierarchical clustering process. 
Given the dominance of inter-individual differences of gene expression profiles over CT-induced effects, all 
samples derived from the respective probands group together in distinct clusters, independent of whether 
they have been irradiated or not. Within the heatmap sample-to-sample distance based on log2-transformed 
normalized read count data is displayed by a blue color gradient with dark blue indicating a high degree of 
similarity.
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A second round of analysis with less stringent criteria (see “Materials and methods”) added BAX, DDB2, 
EDA2R and FDXR to the list of CT associated candidate genes. Upregulation relative to corresponding sham 
irradiated controls was verified for all of these five CT associated genes by qRT-PCR (Supplementary Fig. S1). As 
the good concordance of sequencing and qRT-PCR data suggested a high accuracy of fold-change quantification, 
we further investigated the dependency of fold-change magnitude on the type of CT exposure. For this purpose 
we calculated the average fold-change for each gene and treatment (i.e. the average over three individuals and 
their three replicates). The resulting 15 average fold changes (five genes x three exposure types) were categorized 
according to whether they represent the lowest, middle or highest fold-change of each gene. The frequency distri-
bution within these categories was non-random (Chi square p = 0.0004), with all fold-changes induced by DECT 
falling in the lowest fold-change category. Apart from AEN, highest fold-changes for each gene were associated 
with 80 kV SECT, whereas four out of five middle fold-changes were induced by 150 kV SECT (Fig. 4). The same 
trend was found when considering probands individually (Chi Square p = 0.0342).

Figure 2.   Gene expression plots for AEN for 80 kV single-energy CT (SECT), 150 kV SECT and dual-energy 
CT (DE) irradiation: Each plot depicts gene counts obtained from RNA sequencing data of the respective 
proband (G1-3) with post-irradiation gene count displayed to the left and corresponding sham-irradiated gene 
counts displayed to the right. Colored lines (green, blue and red) indicate the three replicate experiments.
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Within the sets of up-regulated genes, functional enrichment analysis identified shared overrepresentation of 
transcriptional regulatory processes (p ≤ 1.32 × 10−4) in either single-energy level of two probands and of intrinsic 
apoptotic signaling pathways (p ≤ 5.95 × 10–5) partly linked to the WNT signaling pathway (p ≤ 4.16 × 10−5) in 
80 kV and dual-energy setting of two probands.

DNA double strand break frequency after SE‑ and DECT exposure.  DNA double strand breaks 
(DSBs) were estimated by counting γ-H2AX + 53BP1 colocalizing foci in PBMCs19,20 of three different probands 
in triplicates (Fig. 5). The mean of the average number of baseline DSB foci per cell (FPC ± SD) detected in 
the control samples was 0.27 ± 0.11. For all three radiation modalities the CT-induced increase in average DSB 
FPC values over that of the sham irradiated samples was highly significant (p < 0.001). The average FPC values 
between the three irradiation modalities was 0.78 ± 0.077 for 80 kV, 0.78 ± 0.069 for 150 kV and 0.73 ± 0.073 for 
DECT, an insignificant difference (p > 0.15) between DECT and each of the SECT modalities. These data show 
that there is no difference for the average DSB numbers induced between the two single-energy CT modalities 
(p = 1) and between these two and the DE mode (p > 0.15). Hence, the different CT energies alone or in combina-
tion do not induce different amounts of DSBs indicating a similar biological effect of the different CT settings.

Scrutinizing the frequency distribution of DSBs analogous to the procedure described in the context of gene 
expression fold changes did not reveal any significant dependency of DSB frequency on the type of CT exposure.

Discussion
Low energy photons emitted during DECT may inherit the risk of increased biological effectiveness, a fact that 
has to be taken into account when weighing up benefits and potential risks of DECT diagnostics. In this study, 
we investigated the consequences of ex vivo exposure of peripheral blood inside a X-ray phantom to 80 kV SECT, 
150 kV SECT and DECT irradiation with regard to two biological endpoints: gene expression and DNA double 
strand break frequency.

Figure 3.   Venn diagram summarizing the number of differentially expressed genes identified by direct 
comparison of 80 kV single-energy CT (SECT), 150 kV SECT and dual-energy CT (DE), respectively. The 
corresponding gene lists can be found in Supplementary Table S2.

Figure 4.   Frequency distribution of mean fold changes on a linear scale for the genes EDA2R, FDXR, AEN, 
DDB2 and BAX. Mean fold changes for each gene and treatment averaged over all probands and replicates 
were categorized according to whether they represent the lowest, middle or highest fold change of each gene. 
Exposure groups are indicated by red (80 kV), green (150 kV) and yellow (dual-energy (DE)) coloring of boxes. 
Mean fold changes given in the boxes refer to qRT-PCR results based on nine measurements (3 probands × 3 
technical replicates per proband). See “Results” section for details.
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Irrespective of the CT protocol applied, CT-associated effects on gene regulation were only moderate when 
compared to inter-individual differences of gene expression profiles. Nevertheless, we observed shared upregula-
tion of five genes in CT-irradiated samples, namely, AEN, DDB2, FDXR, BAX and EDA2R. These five genes have 
already emerged as potential radiation biomarkers in studies with exposures to doses ≥ 50 mGy21 or ≥ 0.5 Gy22,23. 
Moreover, they largely overlap with the candidate genes defined in our previous CT study using 150 kV SECT 
alone24. Altogether, these findings underscore the potential of these genes as biomarkers for irradiation, whose 
upregulation can even be triggered by very low doses. Noteworthy, all of these five genes are known targets of 
the p53 tumor suppressor with impact on cell cycle control, apoptosis and DNA damage repair, activated by 
cellular damage25–27.

While we have found a common set of genes distinguishing irradiated and non-irradiated samples, it was 
not possible to further specify whether a sample was irradiated with 80 kV SECT, 150 kV SECT or DECT. This 
suggests that in the experimental settings used in this study, involving exposition to very low X-ray doses in 
conjunction with varying X-ray spectra, the fraction of low energy photons emitted during DECT diagnostics has 
no detectable impact on gene regulation. Yet, further studies are needed to verify that this statement holds true 
for other points of time post irradiation, higher dose values and in vivo studies. One limitation especially in the 
context of the low doses applied is that it cannot be ruled out that the polyenergetic spectra of X-ray irradiation 
or the use of a phantom may have masked subtle effects. Unfortunately, this uncertainty cannot be addressed in 
the current study as local dose and its variability is unknown and diverging spectra may affect the ratio of local 
to effective dose. Moreover, CTDIvol and DLP values may vary by a systematic deviation of ± 10% as specified 
by the manufacturer (System owner manual SOMATOM Force; Chapter 1.1.8 “Accuracy of Dose Indications”) 
along with additional differences depending on the applied spectrum.

Results at the level of gene regulation were mirrored by the outcome of DNA damage assessment based on 
the focal colocalization of 53BP1 and γ-H2AX DSB damage markers. Estimation of DSB frequency by means of 
these two dsDNA damage markers is a well-established approach19,28,29. In line with previous in vivo studies18,20 
we clearly observed the induction of DSBs by CT irradiation in significant excess  over base line rate (p < 0.001), 
allowing the clear separation of irradiated and non-irradiated samples, which agrees with other SECT DSB 
studies20,30–32. With regard to single- and dual-energy CT irradiation modalities, the DSBs numbers induced 
were similar to each other (Fig. 4). These results show that SECT or DECT elicit a similar amount of dsDNA 
damage, suggesting a comparable biological effect for this endpoint. Future studies of other endpoints like e.g., 
chromosome aberrations or micronuclei33 shall provide further insights into the radio-response of PBMCs to 
SECT or DECT.

Clearly, most of the potential limitations mentioned in the context of gene expression may also be valid for 
DNA double strand break analysis. However, unlike for gene expression the optimal time slot for DSB analysis 
is predefined by DNA repair kinetics, mitigating this matter of concern.

Figure 5.   Average number of DNA double strand break (DSB) foci observed without (Sham) and after 
80 kV, 150 kV and dual-energy CT (DE) irradiation. Each box represents the interquartile range (25th to 75th 
percentile) of average DSBs per cell observed in three probands and their three replicates. Whiskers indicate 
the minimum and maximum. The median is shown as horizontal line within the boxes. Relative to control all 
CT applications led to a highly significant increase in DSB (p < 0.001). Relative to SECT the average number of 
foci per cell appears slightly lower in samples exposed to DECT, but this difference did not reach significance 
(p > 0.15).
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Altogether, the analysis of both gene regulation and DNA DSBs does not provide evidence for an increased 
biological effect of DECT as compared to 80 kV and 150 kV SECT. On the contrary, in light of the observation 
that the extent of upregulation of all genes tested by qRT-PCR is lower in DECT relative to 150 kV SECT and 
in particular to 80 kV SECT one may speculate that e.g. the modulation of radiation quality by the use of tin 
filtration, routinely added to the high-kilovolt tube during DECT exposures, could result in reduced biological 
effectiveness. Yet, given the rather small differences in gene upregulation observed in this study, this aspect has 
to be systematically addressed by future studies.

In conclusion, the results of this study do not suggest any increased biological effectiveness associated with the 
low energy spectrum of DECT. Yet, despite decreasing dose burden caused by CT scans, the genotoxic effect of CT 
irradiation still subsists and should remain a crucial aspect of risk assessment before performing CT diagnostics.

Materials and methods
Ex vivo CT exposure and dose estimation.  Ethical approval for this study was obtained from the 
responsible ethical review committee of the Medical Association of Rhineland Palatinate, Germany (reference 
number: 837.084.17(10918)). All experiments were performed in accordance with relevant named guidelines 
and regulations. Written informed consent was obtained from all probands. Peripheral blood samples were col-
lected from three healthy male donors (age 30, 32 and 53 years) in EDTA-Monovettes (5 ml; Sarstedt, Nümbre-
cht, Germany) in triplicates with matching sham control samples. Both, single-energy CT and dual-energy CT 
were performed utilizing adapted lumbar spine protocols in a 384 (2 × 192)—channel multi-detector row dual 
source CT scanner (SOMATOM Force, Siemens Medical Solutions, Forchheim, Germany) with blood samples 
placed in a lumbar spine phantom at room temperature. Acquisition parameters were set to X-ray tube voltages 
of 80 kV and 150 kV single source single-energy, respectively, and dual source dual-energy (80 kV/150 kV (with 
Sn filter)). To obtain identical dose values the current was manually set to 950 and 160 mA in SECT and 440 
and 220 mA in DECT for 80 kV and 150 kV, respectively. Pitch was 0.6 and rotation time was 0.5 s at a scan-
ning length of 367 mm for all protocols. The applied setting resulted in a Volume CT Dose Index (CTDIvol) 
of 15.79–18.26 mGy, in a dose length product (DLP) of 606.7–613.8 mGy*cm and in an administered effective 
dose of 7.0 ± 0.08 mSv as calculated for better context in accordance to ICRP 103 report by means of Monte 
Carlo model-based dose estimation implemented in ImpactDose (CT Imaging GmbH, Erlangen, Germany). 
After incubation for 6 h at 37 °C, a point of time chosen based on the results of our previous study24, samples 
were transferred into PAXgene Blood RNA tubes (PreAnalytiX, Hombrechtikon, Switzerland). The fraction of 
peripheral blood dedicated to DNA double strand break analysis was incubated for 20 min at 37 °C before lym-
phocytes were isolated by density centrifugation as detailed below.

Gene expression analysis.  Total RNA was isolated using the PAXgene Blood RNA Kit (PreAnalytiX, 
Hombrechtikon, Switzerland). Agilent 2100 Bioanalyzer System (Agilent, Santa Clara, CA, USA) was used for 
RNA quantification and quality assessment. RNA-Seq library preparation was conducted for all samples with 
RNA Integrity Numbers (RIN) equal or above 7 employing the NEBNext Ultra II Directional RNA Library Kit 
for Illumina following the manufacturers recommendations (NEBNext Ultra™ II Directional RNA Library Prep 
Kit for Illumina and rRNA depletion option, New England Biolabs Inc., Ipswich, MA, USA, protocol version 1.0 
4/17). After quantification using a Qubit 3.0 Fluorometer (Thermo Scientific, Waltham, MA, USA) and qual-
ity control by means of Agilent Bioanalyzer system (Agilent 2100 Bioanalyzer, Agilent, Santa Clara, CA, USA), 
samples were sequenced on the Illumina NextSeq500 sequencing platform (single-end; 1 × 75 bp; high output 
reagent kit).

Differential gene expression analysis was based on a workflow suggested by Love et al.34. In brief, read map-
ping to the human reference transcriptome (GRCh37.67), quantifying transcript abundance and correcting for 
fragment-level gc-biases was performed with Salmon (version 0.8.1)35. Salmon results were imported via tximport 
(version 1.4.0)36 into DESeq2 (version 1.22.2)34. Overall estimation of similarities and differences between treat-
ments was done by means of unsupervised hierarchical clustering of sample-to-sample distances based on log2 
transformed normalized read counts using the default settings of DESeq2. The hierarchical clustering algorithm 
groups samples based on the similarities of their gene expression profiles and visualizes this clustering in the 
form of a dendrogram. The number of clusters is not predefined (unsupervised), but arises as a result of sample 
composition. To identify the number of genes that were commonly deregulated between the different exposure 
conditions, differentially expressed genes were displayed using a Venn diagram made with InteractiVenn37. Sig-
nificant differential gene expression was defined by a log2 fold change of FPKM (fragments per kilobase per mil-
lion mapped fragments) >|0.5| and Padj (FDR-adjusted p-value) < 0.1. This stringent analysis was complemented 
by an additional search for candidate genes using slackened criteria in order to accommodate to the subtle effects 
that can be expected in light of the very low doses applied during CT scans, i.e. a log2 fold change of FPKM >|0.5| 
and an uncorrected p value < 0.05 in at least two of the three probands. All candidate genes fulfilling these criteria 
were tested by real-time quantitative polymerase chain reaction (qRT-PCR) in all replicates of all probands.

AmiGO 238,39 was used for gene enrichment analysis applying Fisher’s exact test in combination with False 
Discovery Rate (FDR p < 0.05) correction 40,41.

DNA double strand break analysis by means of γ‑H2AX + 53BP1 co‑immunostaining.  The 
frequency of DNA DSBs within peripheral blood mononuclear cells (PBMC) was determined by microscopic 
quantification of focal accumulations of γ-H2AX and 53BP119, two marker proteins indicative for the presence 
of a DSB. For this purpose, PBMCs were isolated from blood samples by Ficoll Paque Plus (Merck, Darm-
stadt, Germany) density centrifugation. PBMCs were washed twice with PBS, fixed in 70% ethanol and stored at 
− 20 °C. Immunofluorescence staining and DSB foci analysis was performed as described previously19,20,42. Using 
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a Zeiss Axioimager Z2 epifluorescence microscope of the MetaSystems (Altlussheim, GER) ISIS imaging system 
equipped with appropriate single and dual-band filter sets co-localizing γ-H2AX + 53BP1 foci were counted in 
100 well separated and morphologically intact cells by an experienced investigator (HS).

RNA‑Seq validation using real‑time polymerase chain reaction (qRT‑PCR).  Aliquots of total 
RNA (1 µg) were reverse transcribed with the High-Capacity cDNA Reverse Transcription Kit (Applied Bio-
systems, Life Technologies, Darmstadt, Germany). PCR reactions were performed in a 96-well format using 
commercial TaqMan assays (AEN, Hs00224322_m1; DDB2, Hs00172068_m1; FDXR, Hs01031617_m1; BAX, 
Hs00180269_m1; EDA2R, Hs00939736_m1; 18S rRNA, Hs03003631_g1) following the QuantStudio 12 K Flex 
Real-Time PCR System amplification protocol. Cycle threshold (Ct) values of the five genes were normalized 
relative to 18S rRNA. The ratio/fold-change (FC) relative to the unexposed sample at the same time point was 
determined. A FC of one corresponds to a gene expression similar to unexposed samples. A FC higher or lower 
than one refers to a several-fold over- or under-expression of the gene of interest after exposure relative to the 
reference. All materials and consumables used were ordered from ThermoFisher/Applied Biosystems (Weiter-
stadt, Germany).

Data availability
Data access is available through GEO Series accession number GSE156187 (https://​www.​ncbi.​nlm.​nih.​gov/​geo/​
query/​acc.​cgi?​acc=​GSE15​6187) by deposition in NCBI’s Gene Expression Omnibus40,41.
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