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Influence of elemental sulfur 
on cadmium bioavailability, 
microbial community in paddy soil 
and Cd accumulation in rice plants
Lijuan Sun1,2,5, Ke Song1,2,5, Lizheng Shi3, Dechao Duan4, Hong Zhang1,2, Yafei Sun1,2, 
Qin Qin1,2 & Yong Xue1,2*

Cadmium (Cd) is highly toxic to living organisms and the contamination of Cd in paddy soil in China 
has received much attention. In the present study, by conducting pot experiment, the influence of 
S fertilizer  (S0) on rice growth, iron plaque formation, Cd accumulation in rice plants and bacterial 
community in rice rhizosphere soil was investigated. The biomass of rice plants was significantly 
increased by  S0 addition (19.5–73.6%). The addition of  S0 increased the formation of iron plaque by 
24.3–45.8%, meanwhile the amount of Cd sequestered on iron plaque increased. In soil treated with 
5 mg/kg Cd, addition of 0.2 g/kg  S0 decreased the diffusive gradients in thin films (DGT) extractable 
Cd by 60.0%. The application of  S0 significantly decreased the concentration of Cd in rice grain by 
12.1% (0.1 g/kg) and 36.6% (0.2 g/kg) respectively. The addition of  S0 significantly increased the 
ratio of Acidobacteria, Bacteroidetes in rice rhizosphere soil. Meanwhile, the ratio of Planctomycetes 
and Chloroflexi decreased. The results indicated that promoting Fe- and S-reducing and residue 
decomposition bacterial in the rhizosphere by  S0 may be one biological reason for reducing Cd risk in 
the soil-rice system.

Cadmium (Cd) is well known to be highly toxic to living organisms. Due to its comparatively high mobility in 
soil–plant system, cadmium can be easily taken up by crops and subsequently translocated to the edible  organs1. 
Long term exposure to Cd contaminated food will cause chronic toxicity to human organs, leading to diseases 
like cancer, arthrophlogosis, renal tubular necrosis, Itai-Itai et al.2 About 2.786 ×  109  m2 of agricultural soils were 
polluted with Cd in  China3. Therefore, exploring efficiency way to reduce the amount and mobility of Cd in soil 
or to limit its uptake and accumulation in crops is very necessary.

The toxicity of Cd to organisms is largely determined by its bioavailability in soil. Soil chemical properties like 
pH, redox potential (Eh), content of organic matter, cation exchange capacity and content of clays, Fe, and Mn 
oxides are the main environmental factors affecting Cd bioavailability. Under reduced flooding condition, part of 
the available Cd in soil can transform into CdS that generally have low solubility product constants  (Ksp =  10–27)4. 
Rice is mostly grown under flooding conditions and formation of CdS in paddy soil is an significant way to reduce 
the bioavailability of  Cd5, thus providing implication of using sulfur to regulate the mobility of Cd in paddy soil. 
Sulfur is an essential macronutrient for plant, application of sulfur fertilizer in soil has received much attention 
recent years due to the frequent sulfur deficiency in soil  systems6,7.

Besides the reduction of Cd bioavailability in paddy soil, the sequestration of Cd by iron plaque formed on the 
surface of rice roots is another way to decrease the uptake of Cd by rice plants. Iron plaque is commonly formed 
due to the oxidation of ferrous to ferric iron and the precipitation of ferric oxide on the rice root  surfaces8. The 
formation of iron plaque is influenced by many physical–chemical characteristics of soils and/or sediments, e.g., 
texture, organic matter, pH, reduction potential (Eh), water management, Fe and Mn fertilization, phosphorus, 
and sulfur (S)  supply9. Our previous study found that sulfur fertilization (less than 500 mg/kg) promoted the 
formation of iron plaque on rice roots surface, however, excessive S can be toxic to rice roots leading to root rot, 
as well as reducing iron plaque  formation10. Low amount of sulfur fertilizer is supposed to promote iron plaque 
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formation, thus reducing the uptake of heavy metal by rice roots. Application of sulfur fertilizer can be one way 
to reduce Cd uptake by rice plants due to the sequestration of Cd by the enhanced formation of iron  plaque11. 
Sulfur has the potential of reducing Cd bioavailability by formation of CdS and enhancing Cd sequestration by 
inducing iron plaque formation in paddy soil, thus making sulfur fertilizer a promising candidate for remedia-
tion of Cd contaminated paddy soil. However, the interactions between sulfur fertilizer, iron plaque formation, 
Cd bioavailability and Cd accumulation in rice are still unclear.

Apart from physical–chemical factors, microbial is another important factor that influences the biogeochemi-
cal process of pollutant or nutrient element in soil. The biogeochemical behavior of sulfur in soil is closely related 
to soil microorganisms, including sulfur oxidizing bacteria (SOB) and sulfur reducing bacteria (SRB). Sulfur 
reducing bacteria are ubiquitous in paddy soil and they are also closely related to the speciation transformation 
of heavy metal like Fe and  As12. The formation of sulfide by reduction of sulfur is of significant importance for 
the formation of metal sulfide, which controls the bioavailability and mobility of heavy metal. Sulfur fertilizer 
application has been found to significantly change the rhizosphere microbial community and increased the sulfur 
oxidizing  bacteria13. However, the biological mechanism of sulfur fertilizer on the bioavailability and mobility 
of Cd in paddy soil is still unclear.

In the present study, by conducting pot experiment, the effect of sulfur fertilizer on Cd speciation transforma-
tion and bioavailability in paddy soil as well as microbial community in rice rhizosphere soil was studied. The 
aim of the present study were to: (1) evaluate the effect of sulfur fertilizer on Cd bioavailability and accumula-
tion in rice plants; (2) investigate the changes in microbial communities in Cd contaminated paddy soil with 
the addition of sulfur fertilizer.

Result
Rice plant growth and Cd accumulation. The application of  S0 promoted the growth of rice plants 
(Fig. 1). In soil without Cd, the biomass of rice plants in  S0 treatments increased by 19.5–35.3%. In soil treated 
with Cd, the biomass of rice plants in 0.2 g/kg  S0 treatments was significantly (P < 0.05) higher than that in the 
treatment without  S0. Meanwhile, among all the treatments of 0.2 g/kg  S0, the biomass of rice in soil treated with 
1 mg/kg Cd was significant higher than those in soil treated without Cd and in soil treated with 5 mg/kg Cd. 
Although not significant, a trend of increase occurred in 0.1 g/kg  S0 treatments when compared with the treat-
ment without  S0.

The concentration of Cd in different rice tissues was shown in Table 1. In soil treated with 1 mg/kg Cd, appli-
cation of 0.1 g/kg  S0 significantly decreased the concentration of Cd in rice root by 40.11% but no significant 
difference was found in leaf and grain. In soil treated with 5 mg/kg Cd, the accumulation of Cd in different parts 
of rice followed the descending order: root > stem > leaf > grain. The addition of  S0 significantly decreased the 
concentration of Cd in rice root, stem and leaf. When compared with the control, the application of 0.1 g/kg  S0 
significantly decreased the concentration of Cd in rice stem by 21.94% and leaf by 13.76% (P < 0.05) respectively. 
The application of 0.2 g/kg  S0 significantly decreased the concentration of Cd in rice root by 50.79%, stem by 
26.45%, leaf by 48.17% and grain by 26.8%. In soil treated without Cd, application of  S0 significantly decreased 
the concentration of Cd in rice root and grain, and no significant difference was found in leaf, a trend of increase 
was found in stem.

Iron plaque formation and Cd accumulation in iron plaque. The concentration of ACA-extractable 
Fe and Cd in rice iron plaque was shown in Table 2. In soil treated without sulfur, the concentration of ACA-
extractable Fe decreased with the addition of Cd, which meant the formation of iron plaque decreased with 

Figure 1.  The effect of S application on biomass of rice plant. Different lowercase letters within biomass for rice 
indicates a significant difference among different S levels at P < 0.05. Different capital letters within biomass for 
rice indicates a significant difference among different Cd treatments at P < 0.05.
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Cd stress. In soil treated with Cd, When compared with the control, the application of 0.1 g/kg  S0, 0.2 g/kg  S0 
increased the concentration of ACA-extractable Fe by 35.1%, 45.8% respectively in soil treated with 1 mg/kg 
Cd and 24.3%, 31.3% respectively in soil treated with 5 mg/kg Cd. In soil treated with 1 mg/kg Cd, a trend of 
increase was found in the concentration of ACA-extractable Cd with the application of  S0. In soil treated with 
5 mg/kg Cd, the concentration of ACA-extractable Cd was significantly increased by the application of 0.2 g/kg 
 S0 (P < 0.05). The concentration of ACA-extractable Cd was significantly increased by Cd addition. When com-
pared with soil treated without Cd, the concentration of ACA-extractable Cd in soil treated with 1 mg/kg Cd and 
5 mg/kg Cd increased by 146.3–160.4% and 210.9–310.7% respectively.

Diffusive gradients in thin films (DGT) extractable Cd in the paddy soil of rice rhizosphere. Dif-
fusive gradients in thin films (DGT) technique is based on Fick’s first diffusion law, which is widely used to 
in situ measure content of the biological effective metals in environmental  media14. The concentration of Cd 
extracted by DGT was shown in Fig. 2. In soil treated without or with 1 mg/kg Cd, no significant difference was 
found among different sulfur treatments. However, in soil treated with 5 mg/kg Cd, addition of 0.2 g/kg  S0 sig-
nificantly (P < 0.05) decreased the DGT extractable Cd by 60.0%. Although not significantly, addition of 0.1 g/kg 
 S0 decreased the DGT extractable Cd by 47.2%.

Bacterial community analysis. A total of 888,946 bacterial reads were obtained from the rhizosphere soil 
samples and the average sequence length was 454 bp. Read classification revealed a total of 66,200 operational 
taxonomic units (OTUs). The results of α diversity indices such as ACE, Chao1, Shannon and Simpson showed 
no significant differences among the rhizosphere soil treated with 5 mg/kg Cd with different sulfur treatments 
(Table 3).

Table 1.  The effect of sulfur application on Cd concentration in different tissues (mean ± S.E., n = 3). Different 
lowercase letters within Cd in root, stem, leaf, grain under the same Cd treatment indicates a significant 
difference among different S levels at P < 0.05. Different capital letters within Cd in root, stem, leaf, grain under 
the same S treatment indicates a significant difference among different Cd treatment at P < 0.05. Analysis of 
variance *P < 0.05, **P < 0.01, ***P < 0.001.

S level (g/
kg)

Root Stem Leaf Grain

Cd
0 mg/kg

Cd
1 mg/kg

Cd
5 mg/kg

Cd
0 mg/kg

Cd
1 mg/kg

Cd
5 mg/kg

Cd
0 mg/kg

Cd
1 mg/kg

Cd
5 mg/kg

Cd
0 mg/kg

Cd
1 mg/kg

Cd
5 mg/kg

0 0.28 ± 0.06 
aA

1.77 ± 0.21 
aB

8.25 ± 0.56 
aC

0.06 ± 0.02 
aA

1.21 ± 0.16 
aB

3.1 ± 0.12 
aC

0.43 ± 0.06 
aA

0.88 ± 0.10 
aB

2.18 ± 0.10 
aC

0.06 ± 0.01 
aA

0.17 ± 0.04 
aB

0.41 ± 0.06 
aC

0.1 0.25 ± 0.08 
aA

1.06 ± 0.07 
bB

7.14 ± 0.22 
aC

0.55 ± 0.01 
bA

1.49 ± 0.09 
bB

2.42 ± 0.03 
bC

0.35 ± 0.05 
aA

0.84 ± 0.06 
aB

1.88 ± 0.08 
bC

0.05 ± 0.00 
aA

0.18 ± 0.04 
aB

0.34 ± 0.03 
abC

0.2 0.19 ± 0.02 
bA

1.35 ± 0.12 
aB

4.06 ± 0.41 
bC

0.42 ± 0.05 
cA

1.42 ± 0.08 
aB

2.28 ± 2.28 
bC

0.36 ± 0.03 
aA

0.95 ± 0.10 
aB

1.13 ± 0.11 
cC

0.03 ± 0.00 
bA

0.18 ± 0.04 
aB

0.30 ± 0.04 
bC

Analysis of variance

Cd levels 1484.13*** 1770.24*** 756.61*** 1485.68***

S levels 83.664*** 5.34* 49.02*** 83.87***

Cd × S levels 66.91*** 63.36*** 55.69*** 66.92***

Table 2.  The effect of sulfur application on ACA-extractable Fe and Cd concentration in rice iron plaque 
(mean ± S.E., n = 3). Different lowercase letters within Cd in root, stem, leaf, grain under the same Cd treatment 
indicates a significant difference among different S levels at P < 0.05. Different capital letters within Cd in root, 
stem, leaf, grain under the same S treatment indicates a significant difference among different Cd treatment at 
P < 0.05. Analysis of variance *P < 0.05, **P < 0.01, ***P < 0.001.

S level (g/kg)

Cd (0 mg/kg) Cd (1 mg/kg) Cd (5 mg/kg) Cd (0 mg/kg) Cd (1 mg/kg) Cd (5 mg/kg)

Fe (mg/kg) Fe (mg/kg) Fe (mg/kg) Cd (mg/kg) Cd (mg/kg) Cd (mg/kg)

0 15,653.21 ± 1629.24 aA 13,352.38 ± 3973.05
aA

13,282.61 ± 693.03
aB

2.01 ± 0.38
aA

4.95 ± 0.54
aB

6.25 ± 0.48
aB

0.1 15,511.87 ± 1696.18
aA

18,043.01 ± 691.26
bB

16,510.99 ± 1517.84
aAB

2.03 ± 0.51
aA

5.03 ± 1.02
aB

8.65 ± 1.96
abC

0.2 16,488.80 ± 1106.42
aA

19,468.68 ± 244.96
bB

17,444.21 ± 614.69
bA

2.25 ± 0.20
aA

5.86 ± 0.74
aB

9.24 ± 0.82
bC

Analysis of variance

Cd levels 2.65 194.92***

S levels 21.85*** 10.58***

Cd × S levels 4.48* 4.88**
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The composition of the microbial community in different sulfur treatments and control were further inves-
tigated and classified into taxonomic groups. Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, Planc-
tomycetes, Firmicutes, Actinobacteria and Verrucomicrobia were dominated phyla (Fig. 3), accounting for 
86.93–90.34%. The addition of  S0 resulted an increase of Acidobacteria from 14.48% (CK) to 17.35% (0.2 g/kg) 
(P < 0.05). The ratio of Bacteroidetes increased from 7.06% (CK) to 9.26% (0.2 g/kg) (P < 0.05). On the other hand, 
the ratio of Planctomycetes decreased from 6.76 to 4.54% (P < 0.05) with  S0 addition (0.2 g/kg). In addition, the 
ratio of Chloroflexi slightly decreased with  S0 addition.

In the rhizosphere soil, Gp6, Ornatilinea, Anaeromyxobacter, Gp3 and Gemmatimonas were the most abun-
dant genera in all the treatments. The addition of  S0 significantly increased the relative abundances of Gp6 from 
2.29% (CK) to 3.04% (0.2 g/kg) (P < 0.01), Gemmatimonas from 2.18% (CK) to 3.18 (0.2 g/kg), Gp7 from 1.8% 
(CK) to 2.5% (0.2 g/kg) (P < 0.05) and Syntrophobacter from 0.33% (CK) to 0.5% (0.2 g/kg) (P < 0.05). Besides, 
the relative abundance of Anaeromyxobacter, GP3, showed slight increase with S addition. The addition of  S0 also 
had different degrees of inhibitory effects on different genera (Table S1). The relative abundance of Geobacter 
decreased from 0.78% (CK) to 0.57% (0.2 g/kg) (P < 0.05), Bacillus decreased from 2.23% (CK) to 0.58% (0.2 g/
kg) (P < 0.05) and Spartobacteria_genera_incertae_sedis decreased from 2.01% (CK) to 1.41% (0.2 g/kg) (P < 0.05). 
When compared with the control, the addition of 0.1 g/kg  S0 significantly increased the relative gene abundances 
for Geobacteraceae and amoA (Fig. 4).

Discussion
Effect of sulfur and Cd on the growth of rice plants. Sulfur is one of the six essential macronutrients 
in plants, it is widely used to synthesize amino acids and  protein15. Appropriate application of fertilizer in soil 
can promote the growth of plants. In the present study, the biomass of rice in soil treated with same Cd was 
increased  S0 application, which can be explained by the fertilizer property of sulfur for plants. Besides, Cd is a 
non-essential element for plants. The exposure of Cd inhibits crop growth and thus reduces their yield through 
cell proliferation and nitrogen metabolism inhibition as well as photosynthesis rate  alteration16. In paddy soil 
under waterlogged condition, higher amount of Cd in soil treated with 5 mg/kg than 1 mg/kg led to the forma-
tion more CdS in the same sulfur treatment. The formation of higher amount of CdS may lead to lower amount 
of bioavailable sulfur in soil, decreasing the amount of sulfur uptake by rice plants and then make the biomass 

Figure 2.  Concentration of DGT-extractable Cd in different rice rhizosphere soil. Different lowercase letters 
within biomass for rice indicates a significant difference among different S levels at P < 0.05. Different capital 
letters within biomass for rice indicates a significant difference among different Cd treatments at P < 0.05.

Table 3.  Alpha diversity of bacterial communities in rhizosphere soil treated with 5 mg/kg Cd under different 
S fertilization treatments. Italic number indicates the standard deviation.

Treatments Reads OTU ACE Chao1 Shannon Simpson

CK
80,390 7218 14,400 11,570 7.20 2.43E−03

10,627 568 958 695 0.07 4.04E−04

0.1
78,846 7427 15,211 11,934 7.26 2.17E−03

4171 306 1076 591 0.02 1.15E−04

0.2
81,497 7422 15,589 12,243 7.15 2.60E−03

9060 321 767 607 0.06 2.0E−04
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of rice plants less promoted. Moreover, higher amount of Cd addition, like 5 mg/kg, will cause toxicity to rice 
plants, thus decreasing the biomass of rice plants.

Cadmium bioavailability and accumulation in rice plants with the addition of sulfur ferti-
lizer. Cadmium is a typical chalcophile element, and it is well known that solubility and bioavailability of 
Cd in paddy fields decrease when soil is under waterlogged  conditions1,12. The formation of CdS is the expected 
mechanism of Cd immobilization in waterlogged paddy soils as the  Ksp of CdS is  10–27, which determines the low 
solubility of CdS. Hashimoto et al.17 found that soil with high sulfur contents showed more rapid removal of Cd 
from the soil solution and a smaller proportion of Cd in exchangeable fractions when compared with soil with 
low sulfur contents. The addition of sulfate in paddy soil decreased the Cd:Fe and Cd:Zn ratio in solution during 
the aerobic phase as up to 34% of sulfur was precipitated as sulfide minerals during the anaerobic  phase18. In the 
present study, DGT is applied to determine the bioavailability of Cd. DGT is well known to efficiently simulate 
the process of plant roots absorbing heavy metals, which can be used for in situ collecting and measuring the bio-

Figure 3.  Relative abundance (%) above 1% of different phylum in rhizosphere soil treated with 5 mg/kg Cd 
under different S fertilization treatments. Others include bacteria with relative abundance < 1%.

Figure 4.  Relative gene abundances of geobacteraceae and amoA in rice rhizosphere soil treated with 5 mg/kg 
Cd under different sulfur fertilizer treatments. Different capital letters within relative abundances represents a 
significant difference among different S levels at P < 0.05.
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availability of heavy metals in  soil19. The concentrations of DGT-Cd in soil treated with 5 mg/kg Cd decreased 
with the addition of  S0, and the decreasing degree is positively associated with the application rate of  S0. This may 
be explained by the formation of more proportion of CdS in the rice rhizosphere in S treatment than the control, 
leading to low content of bioavailable Cd (DGT-Cd) in soil.

The iron plaque forming on rice root surface can adsorb inorganic anions and the efficiency is depended on 
the amount of iron  plaque20. The formation of rice root iron plaque is influenced by the content of sulfur in paddy 
soil; our previous study found that sulfur fertilization (less than 500 mg/kg) promoted the formation of iron 
plaque, thus sequestering a large amount of Cu on root surface. The moderate and excessive S supply enhanced 
formation of iron plaque on the rice root surface, which can be one reason for the decreased Cd uptake in rice 
 grains11. The addition of  Na2SO4 significantly increased the formation of iron plaque on root surface, while 
elemental sulfur addition had little effect on iron plaque  formation21. In our present study, the application of 
elemental sulfur had no significant effect of iron plaque formation on root surface in soil treated without or with 
1 mg/kg Cd. However, in soil treated with 5 mg/kg Cd, application of elemental sulfur significantly increased iron 
plaque formation and Cd separation. The decreasing of Cd bioavailability in rice rhizosphere soil and increasing 
of iron plaque formation on root surface lead to lower amount of Cd accumulation in rice tissues.

Rhizosphere bacterial communities and functional genes with the addition of sulfur fertiliz-
ers and their relation to Cd bioavailability. Proteobacteria, Chloroflexi, Acidobacteria, Bacteroidetes, 
Planctomycetes, Firmicutes, Actinobacteria and Verrucomicrobia have been found to be the dominated bacterial 
in soil, accounting for about 92%22,23, which was consistent with our present results accounting for 86.93–90.34% 
in the rice rhizosphere soil treated with 5 mg/kg Cd. The addition of 0.2 g/kg  S0 significantly increased the ratio 
of Acidobacteria and Bacteroidete. Within the Acidobacteria, GP3, GP6 and GP7 were dominated. GP6 and GP7 
were found to be significantly increased by 0.2 g/kg  S0 addition. Acidobacteria is one of the most important 
bacterial groups in soil; some of them were related to Fe cycling 24,25. Acidobacteria are commonly classified 
as slow growing oligotrophys, and dominate in soil with low pH and thrive in soils with relative low available 
 nutrient26,27. Wang et  al.28 reported that some genus belonging to Acidobacteria such as GP6 was a sensitive 
biomarker that responded only to Cd contamination. The low bioavailable Cd in rice rhizosphere soil in soil 
treated with 0.2 g/kg  S0 may be the reason for the increase of Acidobacteria. Bacteroidete represents a phylum 
with ubiquitous distribution, and members of the phylum have the ability to degrade and grow on a variety of 
complex substrates such as cellulose, chitin and  chitin29. Bacteroidete was reported to be dominant during plant 
residue decomposition in paddy  soil30. Higher biomass of rice plants in  S0 treatments probably provided more 
substrates for Bacteroidetes. Besides, Bacteroidetes are widely present in different hypersaline environments and 
are resistant to  salt31. The relative abundance of clades within Bacteroidetes was significantly increased by the 
addition of neutral and alkaline salts. In our present study, a trend of increase for soil electricity conductivity 
(EC) was found with the application of  S0, which may be another reason for relative higher ration of Bacteroidetes 
in paddy soil treated with  S0.

Syntrophobacter is a genus that belongs to Syntrophobacteraceae, which is associated with sulfate reduction. It 
has been reported that the addition of gypsum in paddy soil increased the relative abundance of Syntrophobac-
teraceae (Desulfovirga spp., Syntrophobacter spp. and unclassified Syntrophobacteraceae)32.  Chen33 also reported 
that the addition of  Na2SO4 increased the abundance of Syntrophobacteraceae, leading to reduction of sulfate to 
 S2−. Our present result is in consistent with these studies, the addition of  S0 led to the significantly increase of 
Syntrophobacter, which means the addition of  S0 promoted the reduction of sulfate to  S2−. The promoted forma-
tion of  S2− led to formation of CdS, thus reducing the bioavailability of Cd. Geobacter is a genus that belong to 
Deltaproteobacteria, which is commonly associated with Fe (III)-reduction. In our present study, the addition of 
0.1 g/kg  S0 showed a trend of increase for the relative gene abundances of geobacteraceae, which means that the 
addition of 0.1 g/kg  S0 may increase the process of iron cycling. In paddy soil with flooded treatments, the abun-
dance of Geobacter was found higher than those with non-flooded and alternate wetting and drying  treatments34. 
Tang et al.21 found that the genera belonging to Deltaproteobacteria (including Anaeromyxobacter, Geobacter, 
Syntrophorhabdus, Deferrisoma, and Syntrophus) were significantly increased with the addition of  Na2SO4. In our 
present study, the abundance of Geobacter was significantly decreased by the addition of 0.2 g/kg  S0.

Conclusion
The influence of sulfur fertilizer on Cd biogeochemical behavior in soil, accumulation in rice plants and microbial 
community in soil was investigated in the present study. The addition of  S0 increased the biomass of rice plants 
by 19.5–73.6%. The addition of  S0 increased the formation of iron plaque by 15.3–31.3%, meanwhile the amount 
of Cd sequestered on iron plaque increased. In soil treated with 5 mg/kg Cd, the bioavailability of Cd decreased 
by 60.0% with the addition of 0.2 g/kg  S0. The application of  S0 significantly decreased the concentration of Cd 
in rice grain by 12.1% (0.1 g/kg) and 36.6% (0.2 g/kg) respectively. The addition of  S0 significantly increased the 
ratio of Acidobacteria, Bacteroidetes in soil rice rhizosphere soil treated with 5 mg/kg Cd. Meanwhile, the ratio 
of Planctomycetes and Chloroflexi decreased. Our results indicated that  S0 can be a potential pathway to reduce 
Cd migration from paddy soil to food chain.

Materials and methods
Experimental design. The soil was collected from the top layer (0–20 cm) of paddy field in Changsha city, 
Hunan province, China. After air-drying, the paddy soil was ground to particle size of less than 2 mm. The basic 
physical and chemical properties of the tested soil can be referred in Table S1. Ground soil was mixed with 0, 1 
or 5 mg/kg  Cd2+ (in the form of  CdCl2 solution) respectively. The  CdCl2 solution with different Cd concentration 
was prayed thoroughly to soil, and a glass bar was used to stir the soil to mix soil with solution. The soil mixed 
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with  Cd2+ was then put into a dark environment with controlled temperature and humidity condition. After aged 
with deionized water to keep 30% moisture content for 30 days, contaminated soil was used for pot experiment.

Elemental sulfur was mixed thoroughly with soil, and each treatment was replicated three times. In order 
to provide basal fertilizer, chemical fertilizer was applied as the following details: phosphorous was applied as 
Ca(H2PO4)2H2O at 0.15 g  P2O5/kg, K as KCl at 0.2 g  K2O/kg, and N as urea at 0.2 g N/kg; fertilizers were mixed 
thoroughly with soil at the beginning of the experiment. Element sulfur was applied at three rates (0, 100, and 
200 mg/kg)10. A rhizobag (size 13 cm in height × 6 cm in diameter; 300 μm) was put in a plastic drum (size 
13 cm in height × 12 cm in diameter) and the rhizosphere soil was defined as the one in the rhizobag near rice 
root. As designed, 2 kg of sieved soil was added to the plastic drum, with 1 kg in the rhizobag and 1 kg outside 
in the drum.

The conventional rice (Oryza sativa L.) seeds (Cultivar “Zhongzao 39”, accession number: 2012015, purchased 
from Wuwangnong Group Co., Ltd, China) was chosen in this experiment as it is widely grown in Yangtze river 
delta, China. Plant experiments were carried out in accordance with relevant guidelines. After being surface-
sterilized in 30% (v/v) hydrogen peroxide  (H2O2) solution for 15 min, the rice seeds were thoroughly washed with 
deionized water. The seeds were germinated on moist gauze mounted on a nylon fine screen and immersed in 
deionized water. Ten days later, rice seedlings were transplanted into nutrient solution as suggested by the Inter-
national Rice Research Institute. Two weeks later, two seedlings were transplanted into the rhizobag. Distilled 
water was added each day to keep flooding conditions with a layer of water of 4–5 cm above the soil surface. All 
pots were placed in a growth chamber randomly with 60–70% relative humidity, day/night duration 16/8 h, and 
day/night temperature 25/20 °C35. The redox potential (Eh) values were detected in situ by inserting an oxidation 
reduction electrode into the rhizosphere soil at the same depth (about 3 cm).

Harvest and sampling. Three months after germination, rice plants were harvested and washed gently 
with distilled water thoroughly. Plants were separated into leaves, stems and roots by stainless steel scissors. The 
rhizosphere soil was collected from the rhizobag by a wooden spoon. All the samples were freeze-dried before 
analysis. Dried plant tissues were milled into homogenized powders by a grinding miller (Tissuelyser-24, China) 
after weighed and then stored in a vacuum drier before analysis.

Cd concentration in rice plants. Samples were digested with concentrated nitric acid-30%  H2O2-HF in 
the microwave digestion apparatus (CEM Mars One, USA). Total amount of heavy metals in the digestion solu-
tion was determined by graphite furnace atomic absorption spectrometry (GFAAS) (Agilent, USA).

Cd concentration in rhizosphere soil extracted by diffusive gradients in thin films (DGT). The 
DGT device consists of a diffusive layer with polyacrylamide and DGT crosslinker overlying a restricted gel 
layer containing Chelex-100 resin, a dialysis membrane, as well as plastics molding. The cylindrical DGT devices 
(Chelex DGT) used in the present study were purchased from Easy Sensor (Nanjing, China). The freeze-dried 
paddy soil samples were analyzed by DGT according to the method described in the supplementary material.

Root iron plaque extraction. At harvest, iron plaque on fresh rice root surface were extracted by ascorbic 
citrate acetic (ACA) solution, which contained 0.3 M sodium citrate (40 mL), 10% sodium acetic (5 mL), and 3 g 
ascorbic  acid36. Roots of rice were immersed for 3 h at 25 °C in 45 mL of ACA solution. Roots were then rinsed 
three times with distilled water, collecting the water in the ACA  extracts36. The final volume of the extracting 
solution was made up to 100 mL using deionized water. After filtration with quantitative filter papers to remove 
the small debris roots, the solution was stored at 4 °C before analysis. Cd and Fe concentration in the extraction 
was determined by ICP-MS (7900, Agilent, USA).

DNA extraction and PCR amplification. DNA was isolated from the fresh rhizosphere soil using the 
E.Z.N.A™ Mag-Bind Soil DNA Kit (OMEGA, USA), according to the manufacturer’s  instructions20. The V3-V4 
region of the bacterial 16 S rRNA gene was amplified with the universal primers 341F (CCC TAC ACG ACG 
CTC TTC CGA TCT G) and 805R (GAC TGG AGT TCC TTG GCA CCC GAG AAT TCC A). The PCR conditions 
according to Tang with some appropriate modifications, each 30 μL PCR mixture contained 10–20 ng DNA. The 
cycling conditions included a pre-denaturation at 94 °C with 3 min, denaturation at 94 °C for 30 s, annealing at 
45 °C for 20 s, 5 cycles of extension at 65 °C for 30 s, annealing at 55 °C for 20 s, 20 cycles of extension at 72 °C for 
30 s and a final extension was performed at 72 °C for 5 min. For subsequent sequencing, the DNA was accurately 
quantified using the Qubit 3.0 DNA Assay Kit (Life, USA). The obtained raw sequence data, containing linker 
and barcode sequence, had a certain amount of interference data, these reads were removed and then the over-
lapped reads were spliced using the PEAR software. The spliced data were filtered using the QIIME program, 
the N-containing or low-mass sequences were filtered out. Finally, the chimeric sequences were removed and 
the resulting sequences obtained clustered into operational taxonomic units (OTUs) by UPSRSE. Representative 
sequences from each OTUs were aligned with SILVA databases.

Functional genes. Bacterial populations involved in the cycles of Fe, S and N were detected by quantitative 
real-time PCR. The absolute gene copy numbers of the target genes were normalized to that of the 16S rRNA 
genes, to minimize variances caused by different background bacteria and analytical efficiencies and expressed 
as the relative gene abundances (Fig. 4).
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Data analysis. Analysis of one-way ANOVA on plant biomass and Cd concentration in DGT-extractable 
Cd and two-way ANOVA on Cd concentration in rice tissues and ACA-extractable Fe and Cd were performed 
using Windows-based SPPS 20.0 (SPSS Inc. USA). Data are represented as mean value ± standard deviation (SD) 
(three treatments) in all figures. The statistical significance (P < 0.05) of differences among values in the treated 
samples and the controls was evaluated by LSD test. All the figures were made by Origin Pro 8.0.
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