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Genome‑wide association 
study on blood pressure traits 
in the Iranian population 
suggests ZBED9 as a new locus 
for hypertension
Goodarz Kolifarhood1,2, Siamak Sabour1, Mahdi Akbarzadeh2, Bahareh Sedaghati‑khayat2, 
Kamran Guity2, Saeid Rasekhi Dehkordi2, Mahmoud Amiri Roudbar3, Farzad Hadaegh4, 
Fereidoun Azizi5 & Maryam S. Daneshpour2*

High blood pressure is the heritable risk factor for cardiovascular and kidney diseases. Genome‑wide 
association studies(GWAS) on blood pressure traits increase our understanding of its underlying 
genetic basis. However, a large proportion of GWAS was conducted in Europeans, and some 
roadblocks deprive other populations to benefit from their results. Iranians population with a high 
degree of genomic specificity has not been represented in international databases to date, so to 
fill the gap, we explored the effects of 652,919 genomic variants on Systolic Blood Pressure (SBP), 
Diastolic Blood Pressure (DBP), and Hypertension (HTN) in 7694 Iranian adults aged 18 and over from 
Tehran Cardiometabolic Genetic Study (TCGS). We identified consistent signals on ZBED9 associated 
with HTN in the genome‑wide borderline threshold after adjusting for different sets of environmental 
predictors. Moreover, strong signals on ABHD17C and suggestive signals on FBN1 were detected for 
DBP and SBP, respectively, while these signals were not consistent in different GWA analysis. Our 
finding on ZBED9 was confirmed for all BP traits by linkage analysis in an independent sample. We 
found significant associations with similar direction of effects and allele frequency of genetic variants 
on ZBED9 with DBP (genome‑wide threshold) and HTN (nominal threshold) in GWAS summary 
data of UK Biobank. Although there is no strong evidence to support the function of ZBED9 in blood 
pressure regulation, it provides new insight into the pleiotropic effects of hypertension and other 
cardiovascular diseases.

High blood pressure as a heritable risk factor with direct and indirect effects on the incidence of cardiovascular 
diseases (CVD), stroke, and chronic renal failure is the leading cause of morbidity and mortality  worldwide1,2. 
In the analysis of world data, one in three adults is expected to be affected by high blood pressure up to 2025, 
while macro or microvascular complications are not limited to extreme ranges of systolic and diastolic blood 
pressures (SBP and DBP)3. Elevated BP is categorized into primary and secondary hypertension based on dis-
ease etiology. While the latter is secondary due to other diseases, some medications, and related side effects, the 
former is known as essential hypertension and is prevalent in all  populations4,5.

Genetic and environmental risk factors such as age, obesity, and lifestyle are attributed to the heterogeneity 
of essential hypertension risk in the general  population6,7. Emerging new genotyping technologies has facilitated 
studies with Genome-Wide Association (GWA) design in non-communicable and infectious diseases to detect 
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risky or preventive genetic variants after adjusting for environmental risk factors. Promising results from these 
hypothesis-free studies addressing different pathophysiologic pathways and gene targets for future pharmacologic 
interventions in complex  diseases8.

The majority of the genomic findings on BP traits show pleiotropic associations. Until recently, these findings 
were predominantly from Europe-centric studies, have not been translated into understanding of underpinning 
molecular pathways, new drug development and personalization of HTN treatment in diverse populations with 
different genetic  backgrounds9,10.

From the viewpoint of genomic architectures, different distribution of risk allele frequencies are contributed 
to the non-generality of findings between  ethnicities11. A recent review addressed evidence concerning the ori-
gin of non-generality of GWAS findings on BP traits in different ethnic groups. Accordingly, a large proportion 
of GWAS was conducted in individuals with European ancestry, and it was introduced as a major cause of low 
reproducibility of findings in other  populations12.

Iran has experienced the epidemiological transition from communicable to non-communicable diseases 
during the last four decades, and higher prevalence rates of pre-hypertension (47.3%) and hypertension (22.6%) 
have been reported in both adults and adolescents in recent  years13,14. High blood pressure is main risk factor 
for CVD events in the Iranian population and its prevalence among CVD cases aged over 18 years is between 
17.3% to 20%15,16. In comparing super populations in 1KG project including, Europeans, East Asians, South 
Asians, Africans and Hispanics, a large number of novel variants with a higher degree of genomic specificity 
were identified in the Iranian  population17. Heritability estimations on BP traits provide evidence to support 
role of genetic variants are playing on BP regulation in this population(h2

SBP: 25%, h2
DBP: 26%)18. However, the 

Iranian population has not been represented in international genomic databases to date, so there is no evidence 
concerning the effect(s) of genetic variants in this population. To fill the gap, we conducted the first study using 
GWA design to investigate the replication or discovery of genetic variants on the Iranian population’s BP traits.

Material and methods
Study subjects. The Tehran Cardiometabolic Genetic Study (TCGS) is a family-based genetic analysis of 
the Tehran Lipid and Glucose Study (TLGS) as the oldest Iranian cohort. In total, more than 20,000 participants 
are followed in 7 phases since 1999 and underwent a clinical examination on more than 230 metabolic-related 
traits in each phase of the study. The Medical Ethics Committee of Shahid Beheshti University of Medical Sci-
ences approved this study and all methods were performed in accordance with the relevant guidelines and regu-
lations. All participants gave written informed consent to participate in the original cohort and TCGS. In the 
case of younger participants, written formal consent was obtained from the parents or guardians. Principles for 
clinical investigations could be found in the original TCGS and TLGS  papers19,20.

In the present study, 17,462 participants from the five phases of TCGS (1999–2014) were recruited to inves-
tigate hypertension. More details on DNA sample collection, genotype quality control process, phenotype meas-
urements, covariate imputation, case definition, and selection criteria are explained in the supplementary infor-
mation 1.

Study design. Based on critical points of BP changes in the age trajectory, all study subjects aged 18 or above 
were included in the present study, and average values of SBP and DBP during follow up visits were considered 
in GWA analysis. For binary trait analysis, HTN incident cases and a random sample of healthy individuals with 
two or more follow-up records were included in the analysis (Supplementary file, Figure S1, S2). Age, sex, Body 
Mass Index (BMI), Waist Circumference (WC), insulin resistance and top 5 PCs were included in both GWA 
analysis on quantitative and binary traits after imputing their missing values, using the Expectation-Maximi-
zation method with Bootstrapping (EMB) approach by Amelia package in  R21 (Supplementary file, Figure S3).

Quality control of genotypes. To maximize power against the removal of individuals and markers, qual-
ity control (QC) of genotyping data was implemented on a per-individual basis before per-marker using PLINK 
version 1.9 and  R22,23. Accordingly, a standard QC pipeline on 652,919 SNP, with an average mean distance of 
4 kilobases, were performed in 7694 adults after excluding Individuals with missing phenotype, discordance of 
genetically inferred sex versus self-report, genotype calls ≤ 10%, and high heterozygosity  (Fstatistics ± 3 standard 
deviation). Moreover, related subjects with Identity By Decent (IBD) ≥ 18.5% were excluded from the study. In 
the genotype level, variants with minor allele frequency (MAF) < 1%, missing genotype calls > 5%, and Hardy 
Weinberg Equilibrium (HWE) P value < 1e−6 for quantitative traits, P value < 1e−10 in the HTN cases and P 
value < 1e−6 in controls were filtered out (Supplementary file, Figure S4).

Statistical analysis. After checking collinearity for all covariates  (r2 > 0.8), linear and logistic regression 
tests were performed. To explore any associations between BP traits and genetic variants, the covariates and top 
5 Principal Components(PC) were adjusted and additive and overdominant inheritance models on autosomal 
chromosomes were checked for GWAS on the quantitative and binary traits in PLINK v1.9, respectively. A con-
ventional genome-wide threshold of 5 ×  10–8 considered for a significant P value. The genomic inflation factor 
was computed for each analysis, and observed versus expected P values were highlighted in the Q–Q plots to 
check for population stratification. Finally, four regression-based multivariate analyses evaluated the predictive 
accuracy of initial GWAS outputs for quantitative traits on discovery dataset and also an independent sample of 
TCGS (N = 2799)24. Accordingly, Polygenic Risk Score (PRS) was calculated after adjusting for the covariates and 
top 5 PCs, to evaluate proportion of variance, which is explained by genomic variants  (R2). We used a standard 
pipeline to evaluate  R2 through calculating PRS on our GWAS summary data. Moreover, discrimination of best 
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fit PRS was assessed for each analysis according to sex. The PRS was computed in the following steps by PLINK 
and R:

 i. Pruning: A window size of 200 variants, sliding across the genome with step size of 50 variants at a time 
were considered, and any SNPs with  r2 > 0.25 were filter out,

 ii. Clumping: SNPs within 250 k of the index SNP were considered for clumping. Then, all SNPs are correlated 
with each other were removed  (r2 > 0.2) with P value ≤ 1 and only index SNP captured,

 iii. Seven P value thresholds (0.001, 0.05, 0.1, 0.2, 0.3, 0.4, and 0.5) for inclusion of SNPs in the PRS was 
extracted,

 iv. PRS generated in different ranges of P values for SBP and DBP,
 v. To find "best-fit" score for the quantitative traits, PRS calculated in different ranges of P values thresholds,
 vi. R2 as an index of trait variance explained by genomic variants calculated in different ranges of P values 

thresholds for two sets of covariates, (including age, WC and Ins. resistance and top 5 PCs, and also age, 
BMI and Ins. resistance and top 5 PCs),

 vii. Calculated  R2 was plotted by different ranges of P values using "ggplot2",
 viii. The best-fit PRS was plotted against quantitative traits based on best result of  R2 by sex using "ggplot2".

Confirmation study. The confirmation study was conducted on 1618 participants in 210 selected TCGS 
families with an age range of 1 to 93 and familial aggregation of two or more affected (HTN)  cases25. Similar to 
initial GWAS, the QC processes were applied in the confirmation study. After removing Mendelian errors and 
pruning out SNPs in linkage disequilibrium (LD) with a  r2 > 0.2, the effects of significant independent SNPs 
in the initial GWAS were tested in the presence of the same covariate sets using two-level Haseman-Elston 
regression model by SAGE version 6.426. This model-free linkage analysis is mathematically equivalent to the 
likelihood-based score test in variance component linkage analysis, which compute a random effect for genetic 
variants with T score test.

Post GWAS. Four consecutive steps were followed to explain probable functions and pathophysiologic 
pathway(s) of discovered variants’ effects on BP with P values less than 1 ×  10–4. In the first step, chromosomal 
coordinates, genes, transcripts, and variants on protein sequence were annotated in Ensemble Variant Effect 
 Predicator27. In the second step, GWAS catalog information was retrieved to identify the association of specified 
loci on BP  traits28. Moreover, we sought to map known BP loci by assessing these loci’s functional consequences 
in  Ensemble29. Functional analysis was performed for those variants with consistent results and at least a P 
value less than 5 ×  10–7 after adjusting for different covariate sets. In the case of a similar locus, ldlink browser 
by National Cancer Institute and LinDA (LINkage Disequilibrium-based Annotation) browser were checked for 
LD of detected and previously reported variant(s) in all populations using the website http:// analy sisto ols. nci. 
nih. gov/ LDlink/ and http:// linda. irgb. cnr. it/, respectively. In the third step, a list of detailed information on all 
loci was retrieved separately in Open Targets POST GWAS, including disease associations, protein interactions, 
pathways, similar targets based on diseases in common, RNA, and protein baseline expression by the anatomical 
system and  organ30. In the final step, the overall association score was retrieved for each locus and other genes 
whose protein products interact with new loci through protein interaction  networks31,32. Open Target Platform 
provides the score from 20 data sources, is ranged from 0 to 1, that the former implies no evidence and later 
corresponds to the most reliable evidence supporting evidence based on frequency, severity, and significance of 
 association33.

Results
GWAS datasets. Table 1 describes the phenotypes and covariates characteristics in three datasets of dis-
covery and confirmation studies. After applying DNA samples and genomic markers metrics, 4657 individuals 
with 616,263 SNPs on the quantitative traits and 4214 individuals with 616,308 SNPs on the HTN trait passed 

Table 1.  Descriptive characteristics of phenotypes and covariates in GWAS and confirmation datasets. 
Mean ± standard deviation, NA not applicable, Fam. Members family members.

 Variable

Discovery Confirmation

SBP/DBP HTN SBP/DBP/HTN

Adults (N = 4657) Adults (N = 4214)
TCGS families (N = 210)
Fam. Members (N = 1618)

Age (years) 40.8 ± 15.9 40.0 ± 13.5 35.6 ± 19.4

Female (%) 2523 (54%) 2143 (51%) 834 (52%)

SBP (mmHg) 116.29 ± 17.61 112.61 ± 12.29 117.61 ± 18.94

DBP (mmHg) 76.21 ± 9.72 74.70 ± 7.62 77.36 ± 10.49

BMI (kg/m2) 27.07 ± 4.51 27.01 ± 4.28 24.45 ± 6.90

WC (cm) 90.82 ± 11.51 90.60 ± 10.72 86.06 ± 15.77

TG/HDL 3.81 ± 3.11 3.87 ± 2.08 –

HTN Case (%) NA 970 (23%) 855 (53%)

http://analysistools.nci.nih.gov/LDlink/
http://analysistools.nci.nih.gov/LDlink/
http://linda.irgb.cnr.it/
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genotype QC. The discovery sample had a larger proportion of normotensive individuals, whereas the propor-
tion of affected and unaffected cases was balanced in the confirmation study. Further, there was similar distribu-
tions of covariates in discovery and confirmation datasets, while high collinearity between BMI and WC was 
highlighted; hence, these effects were adjusted in three different sets of covariates including, (1) age, BMI, Ins. 
resistance and top 5 PCs, (2) age, WC, Ins. resistance and top 5 PCs, and (3) age, sex and top 5 PCs (Supplemen-
tary file, Figures S5, S6).

GWAS result. Table 2 describes GWAS findings in the discovery and confirmation studies. In the genome-
wide analysis of quantitative traits, two signals on ABHD17C detected for DBP corresponding to the genome-
wide significance threshold. Moreover, suggestive signals within 6p22.1 (ZBED9) and FBN1 with borderline 
P values detected with the HTN and SBP traits, respectively (Fig.  1). The detected variants on ZBED9 and 
ABHD17C associated with HTN and DBP by two different sets of covariates, respectively. Moreover, P values for 
detected SNPs on ZBED9 were slightly attenuated after adjusting for age, sex and top 5 PCs (Supplementary file, 
Table S1). The test statistic of genomic inflation was low for both analyses on quantitative and binary traits (λ: 
1.001–1.01), and there was no population stratification (Fig. 2).

In the confirmation analysis for detected SNPs in initial GWAS, the association of rs450630 on ZBED9 was 
replicated for SBP, DBP, and HTN traits after LD pruning on other variants and adjusting for three covariate 
sets (P value < 0.05). The associations of other genetic variants on ZBED9 with QRS amplitude and interval in 
Europeans and also ABHD17C and FBN1 with BP traits or cardiovascular diseases in Europeans and East Asians 
were previously reported in GWAS literature. However, there is no correlation (LD) between detected and previ-
ously reported genetic variants in the same locus (Supplementary file, Figure S7).

In an inquiry of GWAS summary data on blood pressure related phenotypes in UK Biobank and also Japanese 
population, we found out similar associations (direction of effect and allele frequency) of detected variants on 
ZBED9 with DBP (P value ≤ 5 ×  10–8) and HTN (P value ≤ 1 ×  10–4) in UK Biobank, while the associations were 
not significant (even in nominal threshold of 5 ×  10–2) in Japanese population (Table 3). We checked out for 
LD of associated variants in 6p22.1 by LinDA. However, we could not find any reports in previous studies for 
association between correlated variants  (r2 > 0.4) and BP traits in the region. Except for Africans, allele frequen-
cies of detected variants on ZBED9 are similar in Europeans, South Asians, Middle East(Qatari) and Iranian 
population, while the allele frequencies of detected variants on FBN1 and ABHD17C is less than 1% in Europeans 
(Supplementary file, Table S2).

Polygenic risk score estimation. Multivariate analysis of PRS on initial GWAS outputs in the discovery 
dataset showed evidence of correlations between calculated PRS with SBP and DBP in three out of four models. 
The genomic variants account for 4.5–12.7% of the total variance of quantitative traits. Moreover, a similar dis-
tribution of PRS-trait correlation was seen by sex for each statistical model in discrimination analysis (Fig. 3). 
However, the calculated  R2 in the independent sample of TCGS was much lower compared to discovery dataset 
(≤ 1%) and there was low correlation between the PRS and BP traits by sex (Fig. 4).

Variant effects on protein‑coding sequence. In the locus-based regulatory annotation, detected sig-
nals on ABHD17C and ZBED9 were annotated as an intronic variant. All detected SNPs on the FBN1 gene were 
in relatively high LD, while rs363830 and rs363838 were missense and splice variants. Also, two variants on 
ABHD17C were in moderate LD  (r2: 0.4–0.6). In further investigation via sentinel variants, we found rs853684 

Table 2.  GWA findings on BP traits in discovery and confirmation studies. EAF effect allele frequency in 
TCGS, St. β standardized effect estimate, CI confidence interval. NA not applicable due to removing variant in 
LD pruning process  (r2 > 0.2). † Reach the genome-wide borderline P value threshold after adjustment for WC. 
*Reach genome-wide threshold after adjustment for age and sex. ‡ Reach the genome-wide borderline P value 
threshold after adjustment for BMI/WC. # Odds ratio.

Trait Locus nearby Position rs ID Effect/other allele EAF

Discovery Confirmation

Reported locus 
(Ref)

Adults (+ 18) TCGS families

St. β (95%  CI) P value T value P value Trait

SBP FBN1

15:48420560 rs2303505 T/G 0.02 0.37 (0.23–0.50) 7.45E−08† 0.44 0.24

– Reported34–3715:48428455 rs363830 T/C 0.02 0.37 (0.24–0.51) 7.70 E−08† NA NA

15:48420679 rs363838 G/T 0.02 0.37 (0.23–0.50) 7.67 E−08† NA NA

DBP ABHD17C
15:80717774 rs1078107 C/T 0.01 0.10 (0.07–0.14) 1.55 E−08†* 0.09 0.17

– Reported34–36,38–40

15:80689205 rs16972291 C/T 0.01 0.10 (0.06–0.13) 1.58 E−08†* NA NA

HTN ZBED9

6:28574647 rs450630 A/G 0.43 0.64 (0.54–0.76)# 3.58 E−07‡ 4.03 0.02

SBP,DBP,HTN Reported41

6:28611694 rs9501180 T/C 0.43 0.64 (0.54–0.76)# 4.13 E−07‡ NA NA

6:28602172 rs380914 T/C 0.43 0.65 (0.55–0.77)# 9.41 E−07‡ NA NA

6:28554918 rs6456825 G/A 0.43 0.64 (0.54–0.76)# 3.24 E−07‡ NA NA

6:28682576 rs9885928 A/G 0.43 0.64 (0.54–0.76)# 3.76 E−07‡ NA NA
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on ZSCAN31 as a missense consequence in moderate LD  (r2 > 0.60) and five missense variants in perfect LD 
 (r2 = 1.0) with detected variants on ZBED9 (Fig. 5).

Prioritization of targets by scoring target‑disease association. The cumulative evidence for asso-
ciation with BP traits for three detected loci was retrieved in the Open Targets POST GWAS. The overall associa-
tion scores were summarized in Fig. 6, with varying blue shades: the darker the blue, the stronger the association. 
Two previously reported loci of FBN1 and ABHD17C to show evidence for a strong association with BP and 
cardiovascular disease traits, so they were prioritized as biological targets (overall association score = 1). Further, 
the protein interaction network suggests gene subnetworks for ZBED9 with relatively low association with BP 
and cardiovascular diseases (overall association score ≤ 0.40), respectively.

Discussion
To our knowledge, this is the first GWAS to examine genetic associations with BP traits in the Iranian population. 
This study identified suggestive and strong signals on ZBED9, FBN1, and ABHD17C, associated with HTN, SBP, 
and DBP, respectively. We found significant associations with similar direction of effect and allele frequency of 
detected variants on ZBED9 with DBP (genome-wide threshold) and HTN (nominal threshold) in UK Biobank. 
However, There is no LD between detected and previously reported genetic variants on three loci in Europeans 
and other populations including, South Asian, Hispanic or Latin American, East Asian, African American, and 
Afro-Caribbean populations. The detected signals were not consistent after adjusting for two different sets of 
covariates on FBN1 and ABHD17C. On the other hand, the association of genetic variants on ZBED9 and BP 
traits has not been previously reported in other populations, while their effects were consistent after controlling 
for environmental factors by two different GWA analysis. Further, the confirmed association of genetic variants 
on ZBED9 in discovery study with SBP, DBP, and HTN in an independent sample of TCGS families substantially 
increase our knowledge of its effects on HTN in the Iranian population.

In an effort to explain the function of new loci by RNA and protein baseline expression, the rate of expression 
for all detected loci was in the range of low to moderate in the circulatory system, including blood, endothelial 
cells of the umbilical vein, aorta, coronary artery, left heart ventricle, tibial artery, atrium auricular region, and 
heart muscle, provided by Human Protein Atlas and Expression  Atlas30.

There is no evidence to support the functional effects of ZBED9 on BP regulation in the literature. However, 
GeneHancer-gene association results indicate some known BP loci, including EBF1, NR2F2, SOX5, and PRDM6, 
are likely acting as transcription factor binding sites or gene targets for ZBED934–37,42–46. In this way, significant 

Figure 1.  Manhattan plots of BP quantitative and binary traits, adjusted for two covariate sets of BMI and WC.
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Figure 2.  Q–Q plots of observed versus expected P values for BP quantitative and binary traits.
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association with QRS interval and amplitude as a surrogate of myocardial mass in European  population41 and 
replication with SBP, DBP and also HTN using different criteria based on reference adjusted curves in the Iranian 
children and  adolescents47, who was included in TCGS confirmation study is a signal for further investigations 
on the functional role of ZBED9 in BP regulation pathway in other populations.

High blood pressure is directly associated with vascular mortality due to stroke, cardiomyopathy, aneurysm, 
cardiac hypertrophy, aorta stenosis, sudden cardiac arrest, and myocardial  infarction48. Accordingly, gene-set-
based analysis by Open Target Post GWAS highlighted the probable pleiotropic effects of detected loci, which 
are likely acting as a common genetic etiology for BP and cardiovascular diseases. Accordingly, the lethal cardio-
vascular diseases may affect allele frequency of effective variants with advancing age in our study due to survival 
reduction, so overlook the effect of functional variants in older groups as a competing  risk49,50.

We acknowledge that some limitations are evident in our study. First, there is evidence for significant differ-
ences in the magnitude of genetic variants effects on high blood pressure between men and  women51. However, 
there was inadequate statistical power to conduct GWAS by sex after removing related individuals in our study. 
Moreover, the calculated PRS for the quantitative traits showed similar patterns by sex. Second, despite the high 
predictive accuracy of PRS by genomic variants and confirm significant SNPs on ZBED9 with family-based 
regression analysis, it was a case for overfitting due to selecting individuals with similar genetic background 
from the TCGS cohort. Accordingly, our findings validated in an independent sample of the Iranian population. 
However, our results still needs to be cross-validated in a different sample of the Iranian population as  well52. 
Third, using a family-based design for GWAS has the advantages of complete robustness against genetic hetero-
geneity. However, family-based designs are likely biased due to population substructures, and association tests 
yield at the price of inflated type I error and reduce statistical  power53,54. In this way, we included independent 
samples from a family bases cohort.

Additionally, there was no association between autozygosity and BP quantitative traits in an international 
meta-analysis, including TCGS families with a relatively high inbreeding  rate55. Finally, we found signals which 
were not in LD with previously reported genetic variants on BP traits. Further investigation is necessary to fine 
mapping of these regions when imputed variants on the Iranian genome become  available56.

Table 3.  Association of GWA findings on BP traits in UKbiobank and Japanese population. EAF effect allele 
frequency, β effect estimate, se standard error.

Locus 
nearby Position rs ID

Effect/
other 
allele

UKbiobank Japanese pop

EAF

HTN DBP SBP

EAF

DBP SBP

β (se) P value β (se) P value β (se) P value β (se) P value β (se) P value

FBN1

15:48420560 rs2303505 T/G 0.008 7.2E−03 
(5.5E−03) 1.9E−01 1.5E−02 

(1.3E−02) 2.4E−01 2.3E−03 
(1.2E−02) 8.4E−01 0.13 − 2.9E−03 

(5.3E−03) 6.0E−01 − 6.3E−03 
(5.6E−03) 2.6E−01

15:48428455 rs363830 T/C 0.017 8.8E−03 
(3.8E−03) 2.1E−02 2.3E−03 

(9.2E−03) 7.9E−01 − 1.8E−04 
(8.7E−03) 9.8E−01 0.13 3.0E−03 

(5.6E−03) 5.9E−01 − 1.8E−04 
(8.7E−03) 9.8E−01

15:48420679 rs363838 G/T 0.02 7.0E−03 
(5.5E−03) 2.0E−01 1.5E−02 

(1.3E−02) 2.5E−01 2.6E−03 
(1.2E−02) 8.3E−01 0.13 − 2.9E−03 

(5.6E−03) 6.0E−01 − 6.3E−03 
(5.6E−03) 2.6E−01

ABHD17C
15:80717774 rs1078107 C/T 0.003 − 1.3E−02 

(8.4E−03) 1.0E−01 − 4.2E−02 
(2.0E−02) 3.2E−02 − 2.6E−02 

(1.9E−02) 1.6E−01 0.07 − 9.5E−02 
(7.2E−03) 1.9E−01 − 4.7E−03 

(7.2E−03) 5.1E−01

15:80689205 rs16972291 C/T 0.003 − 1.2E−02 
(8.7E−03) 1.6E−01 − 3.9E−02 

(2.0E−02) 5.6E−02 − 2.5E−02 
(1.9E−02) 2.0E−01 0.04 − 1.4E−02 

(8.8E−03) 1.0E−01 3.3E−03 
(8.8E−03) 7.0E−01

ZBED9

6:28574647 rs450630 A/G 0.46 − 3.6E−03 
(1.0E−03) 2.5E−04 − 1.5E−02 

(2.3E−03) 2.4E−10 6.2E−05 
(2.2E−03) 9.7E−01 0.33 1.7E−03 

(4.0E−03) 6.8E−01 5.0E−03 
(4.0E−03) 2.1E−01

6:28611694 rs9501180 T/C 0.47 3.9E−03 
(1.0E−03) 9.5E−05 1.5E−02 

(2.3E−03) 2.3E−10 − 1.3E−04 
(2.2E−03) 9.5E−01 0.33 1.9E−03 

(4.0E−03) 6.3E−01 5.0E−03 
(4.0E−03) 2.1E−01

6:28602172 rs380914 T/C 0.47 − 3.7E−03 
(1.0E−03) 1.6E−04 − 1.4E−02 

(2.3E−03) 3.4E−10 5.2E−04 
(2.2E−03) 8.1E−01 0.33 1.9E−03 

(4.0E−03) 6.4E−01 4.9E−03 
(4.0E−03) 2.2E−01

6:28554918 rs6456825 G/A 0.46 − 3.8E−03 
(1.0E−03) 1.1E−04 − 1.5E−02 

(2.3E−03) 1.3E−10 − 8. 9E−05 
(2.2E−03) 9.6E−01 0.33 1.8E−03 

(4.0E−03) 6.5E−01 5.1E−03 
(4.0E−03) 2.0E−01

6:28682576 rs9885928 A/G 0.49 − 3.6E−03 
(1.0E−03) 3.3E−04 − 1.3E−02 

(2.3E−03) 2.3E−08 − 1.2E−03 
(2.2E−03) 5.8E−01 0.43 2.1E−03 

(4.0E−03) 6.0E−01 5.7E−03 
(4.0E−03) 1.6E−01
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Figure 3.  Predictive accuracy corresponding to a range of P value thresholds in regression models and the 
scatter plot of best fit PRS by sex in the discovery dataset.
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Figure 4.  Predictive accuracy corresponding to a range of P value thresholds in regression models and the 
scatter plot of best fit PRS by sex in the independent sample of TCGS.
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Figure 5.  Locus zoom plot of GWAS findings in detected loci.
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Conclusion
We identified three loci, of which two loci were previously reported in individuals with European and Non-
European ancestries. The association of genetic variants on ZBED9 and BP traits has not been previously reported 
in other populations. Their effects were consistent after controlling environmental factors by two different GWA 
analyses and confirmed in a family-based linkage study. Although there is no strong evidence to support the 
function of ZBED9 in blood pressure regulation by Open Target Post GWAS, its association with QRS interval 
and QRS amplitude as surrogates of myocardial mass may provide new insight into pleiotropic effects of hyper-
tension and other cardiovascular diseases.

Data availability
Summary-level data for BP traits in UK Biobank and Japanese population are publicly available in (http:// www. 
neale lab. is/ uk- bioba nk/) and (http:// jenger. riken. jp/ en/ result), respectively.
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