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Real‑Time insight into in vivo redox 
status utilizing hyperpolarized 
[1‑13C] N‑acetyl cysteine
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Drastic sensitivity enhancement of dynamic nuclear polarization is becoming an increasingly 
critical methodology to monitor real‑time metabolic and physiological information in chemistry, 
biochemistry, and biomedicine. However, the limited number of available hyperpolarized 13C 
probes, which can effectively interrogate crucial metabolic activities, remains one of the major 
bottlenecks in this growing field. Here, we demonstrate [1‑13C] N‑acetyl cysteine (NAC) as a novel 
probe for hyperpolarized 13C MRI to monitor glutathione redox chemistry, which plays a central part 
of metabolic chemistry and strongly influences various therapies. NAC forms a disulfide bond in the 
presence of reduced glutathione, which generates a spectroscopically detectable product that is 
separated from the main peak by a 1.5 ppm shift. In vivo hyperpolarized MRI in mice revealed that 
NAC was broadly distributed throughout the body including the brain. Its biochemical transformation 
in two human pancreatic tumor cells in vitro and as xenografts differed depending on the individual 
cellular biochemical profile and microenvironment in vivo. Hyperpolarized NAC can be a promising 
non‑invasive biomarker to monitor in vivo redox status and can be potentially translatable to clinical 
diagnosis.

Cells normally exist in a fine balance between reductive and oxidative states. When this balance is disrupted, 
either by external environmental stimuli or by abnormal metabolic states, the cellular integrity is compromised. 
To maintain the oxidative balance, the cells employ a variety of compartmentalized antioxidant systems to elimi-
nate reactive oxygen species before damage can occur. Chief among these is glutathione/glutathione disulfide 
(GSH/GSSG) redox pair, which serves to maintain thiol redox balance through the NADPH-dependent reduction 
of glutathione disulfide (GSSG), and also serves as a primary control point in the coupled reactions that main-
tain intracellular redox  balance1–3. In general, imbalance of redox state is also closely linked to the genesis and 
progression of numerous pathological conditions, including cancer, aging, diabetes, obesity, neurodegeneration, 
age-related retinopathy, cochlear degeneration, and chronic inflammatory  diseases1–4. Particularly, malignant 
tumors frequently accumulate large amounts of glutathione as a countermeasure as the high rate of aerobic 
glycolysis found in many cancers can result in oxidative  stress5.

There is therefore a strong interest in determining the GSH/GSSG balance in vivo. Furthermore, imaging 
redox environment of GSH/GSSH balance can be a powerful diagnostic strategy for non-invasively detecting 
cancer tissues, in particular, and assessing their early readout of therapeutic responses for ionizing radiation and 
some  pharmaceuticals6,7. Measurements are complicated by the fact that glutathione is primarily intracellular 
and likely varies within a tumor due to metabolic  heterogeneity8,9. As previously reported, 13C labeled dehy-
droascorbic acid has been used to probe the GSH/GSSG balance indirectly in preclinical  studies10–12. Unfortu-
nately, dehydroascorbic acid causes transient respiratory arrest at relatively low concentrations (10 mg  kg−1) in 
 mice10 as well as pancreatic  toxicity13, conditions which may limit its translational potential. Hyperpolarized 
spin trap probes based on DMPO have been developed but are limited to detecting ROS  production14,15. Toxicity 
concerns have also been expressed for the lanthanide based redox sensitive PARACEST MRI contrast  agents16,17. 
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Fluorescent techniques based either on the intrinsic fluorescence of NADH/NAD or specific probes for GSH/
GSSH18 have proven effective for monitoring the redox environment preclinically and for tumors that lie close 
to the surface, for example melanoma and head and neck  cancers19, but widespread adoption is hindered by the 
limited penetration of light in the visible/IR region of the EM  spectrum20.

Here, we demonstrate N-acetyl cysteine (NAC)21, the acetylated derivative of the amino acid l-cysteine and 
a precursor of glutathione as a promising novel probe to monitor redox status which overcomes the potential 
safety disadvantages of dehydroascorbic  acid21–23. We successfully designed stable 13C isotope labeled NAC with 
a long life time (T1 spin lattice relaxation) of hyperpolarization, and show tissue dependent redox transformation 
in human pancreatic tumor xenografts utilizing the cutting-edge technologies of both hyperpolarized [1-13C] 
NAC and metabolic 13C MRI, taking advantage of the drastic sensitivity enhancement ~  105 fold increase via 
 hyperpolarization24–26. The biodistribution of hyperpolarized [1-13C] NAC and its biochemical transformation 
during the rapid imaging allows us to monitor important early reactions of thiol biochemistry in vivo.

Results and discussion
Our preliminary hyperpolarized NMR experiments on natural abundance NAC indicated that only the [1-13C] 
NAC peak can be observed out of two potentially detectable carbonyl groups in NAC structure as shown in 13C 
NMR spectra (Supplementary Fig. S1), since the scalar relaxation from adjacent 14 N-nuclei shortens both the T1 
and T2 relaxation times of the [4-13C]  peak27. In addition to the relaxation characteristics, the [4-13C] position in 
NAC is more distal from the redox active sulfhydryl group, therefore, an efficient synthetic scheme was developed 
using commonly available starting materials to label NAC only in the [1-13C] position with relatively high yield 
by acetylation of [1-13C] L-cysteine (Fig. 1A). Briefly, [1-13C] l-cysteine was reacted with acetic anhydride in 
the presence of sodium acetate as the base in deoxygenated  tetrahydrofuran28. Isolating the resulting product 
by crystallization was not successful as previously  reported29, however the product could be purified by HPLC 
to afford [1-13C] NAC as a white, hygroscopic powder in 64% yield. The use of either HCl gas or concentrated 
aqueous HCl to convert the sodium salt to the free acid gave similar yields.

To validate [1-13C] NAC as an imaging probe, we first determined the sample conditions for polarization 
enhancement and the T1 longitudinal relaxation time in vitro. Samples using a standard solvent of  DMSO25 polar-
ized poorly (Fig. 1B), possibly because the anhydrous solvent favors the formation of intermolecular hydrogen 
bonds between two protonated carboxylic acid, which would increase the dipolar coupling associated with the 
carbonyl carbon and shorten T1  relaxation30. To reduce intermolecular association, [1-13C] NAC was titrated to 
a neutral pH of 7.5 using 5 M NaOH. The resulting solution of 3.2 M [1-13C] NAC became a homogenous self-
glassing solution when frozen, a particular advantage for in vivo applications which typically require as highly 
concentrated solution as possible to achieve maximum sensitivity and to avoid complications from additives 

Figure 1.  Optimizing sample conditions for hyperpolarized in vivo NMR/MRI experiments with N-acetyl 
cysteine. (A) Synthetic scheme of [1-13C] NAC. (B) Hyperpolarization build-up curves of [1-13C] NAC showing 
the drastic improvement of polarization using the optimized condition of a NaOH solution vs DMSO solutions. 
(C) 13C NMR spectra of unlabeled NAC at 1 T NMR confirm the pH dependence of polarization. An asterisk (*) 
is from a referencing standard of 13C Urea. (D) Dynamic spectra of hyperpolarized [1-13C] NAC in PBS buffer at 
3 T MRI indicates a T1 relaxation time of 19.6 s.
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which may be potentially toxic or interfere with the metabolic processes being  studied31,32. This polarizing solu-
tion shows efficient polarization build-up (Fig. 1C), reaching half of the equilibrium polarization in 11,000 s, 
similar to other hyperpolarized probes being considered for clinical  use25. An improvement in polarization 
kinetics and equilibrium polarization values may be possible with optimization of polarization and glassing 
 conditions31,33,34. This solution remained stable overtime at both neutral and acidic pH (Fig. 1(C)). The polariza-
tion was much weaker at pH 2.5, suggesting a possible role for hydrogen bonds among NAC clusters in reducing 
the equilibrium  polarization25,30. The T1 relaxation time at 3 T of the 3.2 M [1-13C] NAC solution was determined 
to be 19.6 s by the decay dynamics of 13C MR signal (Fig. 1D).

These excellent optimized conditions allowed us to use [1-13C] NAC for in cell NMR and in vivo MRI. In 
cell dynamic 13C NMR spectra of hyperpolarized [1-13C] NAC at 1 T NMR spectrometer on human pancreatic 
ductal adenocarcinoma (PDAC) cell lines, which have one of the worst prognoses among common cancers and 
need effective diagnostic  approaches35–37, Hs766t (Fig. 2A) and SU.86.86 (Fig. 2B), in both cases showed three 
distinct peaks, a major peak at 176.5 ppm and two peaks at 176.8 and 177.5 ppm. The major peak was immedi-
ately identified as [1-13C] NAC on the basis of the 13C NMR spectrum of a pure phantom sample (Fig. 3B). The 
peak at 176.8 ppm was assigned as an oxidized NAC-NAC dimer in a similar manner (Fig. 3B, Supplementary 
Figs. S4 and S5)22. The peak at 177.4 ppm was tentatively identified as the oxidized NAC-GSH dimer based on 
the 13C NMR spectrum of an authentic sample (Fig. 3(B), Supplementary Fig. S6). To confirm this assignment, 
metabolomics approaches based on Mass Spectrometry (MS) were used. Tumor xenografts were treated with 
unlabeled and  [13C3,15 N]-labeled NAC, extracted according to published protocols and analyzed by LC/MS. The 
data were collected using scanning quadrupole data-independent acquisition, which gives fragmentation infor-
mation for precursor peaks to aid in identification. The NAC metabolite was traced by first identifying retention 
times (rt) and m/z pairs which are unique to the labeled sample relative to the unlabeled sample and therefore 
indicate conversion products of the labeled probe (Fig. 3A). Peaks shifted by 4 Da with identical retention 
times correspond to labeled products. A 471/467 m/z pair with a rt of 4.47 min confirmed the third product at 
177.4 ppm was the oxidized NAC-GSH dimer, which was further supported by fragmentation analysis (Fig. 3A).

Figure 2 indicates hyperpolarized [1-13C] NAC can produce NAC-glutathione (NAC-GSH) in cell cultures. 
The rapid kinetics of this reaction suggest that hyperpolarized NAC can permeabilize through cell membranes 
without active  transport38,39, and chemical reactions of hyperpolarized NAC with GSH can be observed within 
the lifetime of this hyperpolarized 13C probe. The time-dependence of the NAC-GSH/NAC peak intensity ratio 

Figure 2.  Real-time monitoring NAC metabolism in in cell NMR spectroscopy of tumor cell lines. In cell 
dynamic 13C NMR spectra of hyperpolarized [1-13C] NAC at 1 T NMR on 20 ×  106 cells of human pancreatic 
tumor cell lines of Hs766t (A, left) and SU.86.86 (B, left). Expanded spectra with 100 times magnifications at 
2 s after the hyperpolarized [1-13C] NAC injections in Hs766t (A, right) and SU.86.86 (B, right) cells. (C) Time 
dependence of NAC-GSH/NAC peak intensity ratio after mixing HP-NAC with PDAC cells. (D) Comparison of 
the ratios of NAC-GSH to NAC between Hs766t and SU.86.86 cell lines. A chemical shift peak around 177 ppm 
indicated with asterisk (*) is assigned as the dimeric form of NAC.
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after mixing hyperpolarized NAC with human PDAC cell lines (Fig. 2C) and the area under the curve ratio 
(Fig. 2D) suggest a higher potential for NAC oxidation with glutathione in SU.86.86 cells. The potential for NAC 
to be oxidized by glutathione depends on the GSH/GSSG balance, as NAC is not oxidized by  GSH40. Lower 
concentrations of NAC-GSH in SU.86.86 is consistent with previous metabolomics  experiments41,42, as the reli-
ance of SU.86.86 on the TCA cycle depletes  NAD+ and therefore shifts the equilibrium of the GSH/GSSG redox 
buffer system towards GSH.

Furthermore, to test the effectiveness of [1-13C] NAC as an imaging probe in vivo, real-time dynamic 13C MR 
spectra of hyperpolarized [1-13C] NAC were acquired from mice bearing tumor xenograft. We first conducted 
13C two-dimensional chemical shift imaging (CSI) experiments in both a healthy mouse body and head after 
intravenous (iv) injection of hyperpolarized [1-13C] NAC solution through a tail vein cannula as shown in Sup-
plementary Fig. S2. Hyperpolarized [1-13C] NAC was globally distributed throughout the mouse body within 
30 s after the injection of hyperpolarized solutions, with higher concentrations of [1-13C] NAC in the liver, 
kidney, and heart region. Conversely, lower signal was observed in the lung region (Supplementary Fig. S2A). 
Although the blood–brain barrier (BBB) permeability of NAC is subject to controversy, the presence of hyper-
polarized [1-13C] NAC in the normal mouse brain indicates the possibility that membrane-permeable NAC may 
penetrate the blood–brain barrier and be retained in the brain (Supplementary Fig. S2B)38. However, the current 
experimental design cannot distinguish intercellular or interstitial conversion from partial volume effects arising 
from circulating NAC in blood vessels and this interpretation should be viewed with caution in light of the fast 
timescales  involved38,43.

Metabolites of in vivo hyperpolarized [1-13C] NAC were not observed in the liver and kidney regions of these 
normal mice, suggesting that the enzymatic conversion of NAC was below the detection level in the absence 
of any imposed oxidative stress either focally or globally, although in vitro enzymatic assays of hyperpolarized 
NAC incubated with acylase 1 resulted in immediate production of cysteine (Supplementary Fig. S3). To test 
[1-13C] NAC in a tumor environment, mouse leg xenografts of Hs766t and SU.86.86 were prepared. The single 
voxel MRS signal for NAC-GSH is much stronger in the xenografts (Fig. 4A,B), consistent with higher cellular 
density in vivo. In other aspects, the in vivo data (Fig. 4C,D) resembles the in vitro data of the corresponding 
cell cultures (Fig. 2C,D). Similar to the in vitro results, NAC-GSH is rapidly formed in both tumors and the 
amount of NAC-GSH formed is higher in Hs766t than in SU.86.86 tumors. Encouraged by these results, we also 
confirmed that NAC-GSH formation could be imaged as shown in Fig. 4E. Using chemical shift imaging, it can 
be seen that NAC-GSH formation is highest in the tumor and lowest in the surrounding muscle and leg regions 

Figure 3.  Identification of products from hyperpolarized [1-13C] NAC. (A) ESI–MS spectra of SU.86.86 tumor 
extracts with (top) and without (middle) isotope labeling in NAC. 13C labeled atoms are indicated in red, 15N 
labeled atoms are indicated in blue in the NAC-GSH structure. High energy ESI–MS spectrum of NAC-GSH 
with possible fragment identifications (bottom). (B) 13C NMR spectra of synthesized model compounds at 
400 MHz, pH 7.5 that represent potential products in comparison to the spectrum from the hyperpolarized 
[1-13C] NAC MRS experiments in Hs766t tumor xenograft at 20 s after the iv injection (top).
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while the distribution of non-converted NAC was observed dominantly in the leg area, which is consistent with 
higher overall glutathione concentrations in the tumor regions (Fig. 4)41,42. 

Interestingly, the 13C chemical shifts of both NAC and its reaction products, NAC-GSH, have a pH depend-
ence (Supplementary Fig. S7), although this may require a high field magnet and/or well optimized shimming 
conditions to adequately resolve. This could be advantageous to identify the site-specific differences in pH, in 
heterogeneous tumors or differentiate the components inside and outside of tumor cells on the experiments 
with high field magnet with optimized shimmed conditions. Using suitable animal disease models, and clinical/
biological targets, hyperpolarized [1-13C] NAC can be used to probe the enzymatic activities or oxidative stress 
throughout the body. As for practical clinical subjects, NAC is a widely used in clinical practices as a beneficial 
antioxidant and suggested as a potential therapeutic agent in the treatment of cancer, drug toxicity, heart disease, 

Figure 4.  Real-time observation of NAC metabolism effectively probes redox status in tumors in vivo. 
Dynamic 13C MR spectra of hyperpolarized [1-13C] NAC at 3 T MRI on human pancreatic tumor xenografts 
of Hs766t (A) and SU.86.86 (B). Differences in the conversions reflect the redox status of each tumor. (C) Time 
dependence of NAC-GSH/NAC peak intensity ratio after the iv injection of HP-NAC. (D) Comparison of the 
ratios of NAC-GSH to NAC between Hs766t and SU.86.86 tumor xenografts. (E) Site-specific differences in 
chemical conversions of hyperpolarized [1-13C] NAC by 13C Chemical shift imaging in Hs766t xenografts.
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HIV infection, cystic fibrosis, liver detoxification, Alzheimer disease, diabetes, and other diseases related to 
oxidative  stress22.

Conclusions
In summary, we have demonstrated the application of a novel hyperpolarized 13C probe based on a widely used, 
FDA-approved pharmaceutical agent to assess oxidative stress in human tumor cells and xenografts non-inva-
sively utilizing hyperpolarized 13C MRS imaging.  State-of-the-art hyperpolarized 13C MRS allows us to obtain 
real-time monitoring of in vivo physiological process and progression of diseases through changes in metabolic 
 flux7,8,13–16,28.  As we have described in this study, in order to design effective in vivo hyperpolarized MRI probes, 
successful hyperpolarized isotope labeled biomolecules have to exhibit the following requirements: (a) suitable 
biocompatibility and nontoxicity, (b) the availability of an organic synthesis scheme for the production of iso-
tope labeled probes at high yields, (c) long spin lattice T1 relaxation times, (d) efficient nuclear spin polarization 
with high concentrations of substrates, (e) the ability to monitor biologically or clinically relevant mechanisms 
of metabolic pathways and/or physiological processes, (f) rapid distribution of the hyperpolarized probes to 
the targeted imaging regions, (g) adequate chemical shift differences between original injected substrates and 
metabolic products, (h) detectable MR signals in both injected probes and the products.  We demonstrate here 
hyperpolarized NAC potentially satisfies all of these requirements.  The biodistribution of hyperpolarized [1-13C] 
NAC demonstrates that significant signal levels can be observed in globally in a mouse, including the heart, liver, 
kidneys, brain, muscle, and lungs.  Hyperpolarized [1-13C] NAC can potentially be used for probing free radical 
scavengers, antioxidant, and enzymatic activities, including acylases, which catalyze the deacetylation of NAC 
to produce cysteines (Supplementary Fig. S3).  Although cysteine-containing NAC has been also considered 
as a precursor of glutathione, in this study the formation of GSH was not detectable in our hyperpolarized MR 
spectra, most likely due to the relatively short observation window in hyperpolarized experiments and the pos-
sible indirect mechanism of the GSH synthesis after iv injections in in vivo44.  Further studies to investigate the 
detailed metabolic pathways of hyperpolarized 13C NAC using deuterated analogs to enhance T1 relaxation time 
and other metabolomics approaches are in progress in our laboratory.  These findings in this study can promote 
strategic labeling schemes of biocompatible pharmaceuticals for hyperpolarized MRI to monitor key metabolic 
reactions.  Our current work expands the hyperpolarization of FDA-approved pharmaceutical compounds to 
image in situ metabolic activities and/or MRI contrast agents, which may be relatively smoothly translatable to 
high impact clinical applications with proven biocompatibilities.

Methods
Synthesis of [1‑13C] N‑acetyl cysteine. All commercially available reagents were used as received unless 
otherwise noted. [1-13C] l-cysteine and  D2O were purchased from Cambridge Isotope Laboratories, Inc (Tewks-
bury, MA). Liquid chromatography mass spectrometry (LC–MS) was performed on an Agilent 1200 Series Mass 
Spectrometer equipped with LC/MSD TrapXCl Agilent Technologies instrument. Preparative RP-HPLC analysis 
was performed on an Agilent 1200 Series instrument equipped with a multi-wavelength detector. 1H and 13C-
NMR were recorded on a Varian 400 MHz NMR spectrometer.

N‑Acetyl cysteine‑[1‑13C] 1. [1-13C] l-cysteine 2 (0.50 g, 4.1 mmol) and sodium acetate 

trihydrate (1.11 g, 8.2 mmol) was dissolved in a degassed THF: water (90:10 v/v, 10 mL) solution and was stirred 
at room temperature for 20 min under nitrogen. The reaction was cooled to 0 °C and acetic anhydride (0.44 g, 
4.3 mmol) was added dropwise. The reaction was stirred for 16 h at room temperature under nitrogen. The 
clear solution was cooled and acidified to pH 1 with concentrated HCl. The solvent was evaporated in vacuo 
and the product purified by RP-HPLC. Purification was performed using an Agilent Prep C18 column (5 µm, 
50 × 100 mm) with a flow rate of 50 mL/min. A linear gradient of 5–35% acetonitrile with 0.1% TFA was used to 
elute the product 1 as a white, hygroscopic powder after lyophilization (0.41 g, 64%). 1H-NMR (400 MHz,  D2O): 
δ 2.08 (3H, s, CH3), 2.99 (2H, m, CH2SH), 4.63 (1H, m, NHCH). 13C-NMR (400 MHz,  D2O): δ 23.45 (CH3), 27.41 
(CH2SH), 57.51 (d, 1JC-C = 232 Hz, NHCH), 173.66  (CH3C = O), 176.89 (COOH). m/z (ESI–MS +): 165.0 [M+H]+.

Hyperpolarized 13C MRI. NaOH (5 M) was added to [1-13C] NAC powder and OX063 to produce a 3.2 M 
[1-13C] NAC solution with 17  mM OX063 at pH of 7.5. 35  mL of 3.2  M [1-13C] NAC with 17  mM OX063 
was hyperpolarized using the SPINlab (GE Healthcare) for 3–4  h, and the scans were performed using the 
Philips Achieva 3 T MRI. 13C two dimensional spectroscopic chemical shift images (CSIs) were acquired with 
a 28 × 28 mm, field of view in a 10 mm axial slice through the head, a matrix size of 14 × 14, spectral width of 
3333 Hz, repetition time of 86 ms, and excitation pulse width a flip angle of 3° for the mouse head, and with a 
32 × 32 mm, field of view in a 10 mm coronal slice through the body, a matrix size of 16 × 16, spectral width of 
3333 Hz, repetition time of 85 ms, and excitation pulse with a flip angle of 10° for the mouse body. CSIs were 
acquired 30 s after the beginning of the hyperpolarized [1-13C] NAC injections.
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LC/MS methods for identification of product. Chemicals:  [13C3, 15N]-NAC was purchased from Cam-
bridge Isotope Laboratories, Inc (Tewksbury, MA). NAC, formic acid and ammonium formate was purchased 
from Sigma-Aldrich (St. Louis, MO). LC–MS acetonitrile was purchased from Fisher Scientific. Liquid chro-
matography/mass spectrometry analysis was performed on a Waters Acquity UPLC coupled to a Waters Xevo 
Q-ToF quadruple time of flight mass spectrometer operating in electrospray ionization (ESI) in negative mode. 
The capillary and sampling cone voltages were set to 1.5 kV and 10 V, respectively. Source and desolvation tem-
peratures were set to 120 °C and 450 °C, respectively, and the cone and desolvation gas flows were set to 50.0 and 
800.0 L/h, respectively. To maintain mass accuracy, leucine enkephalin was used at a concentration of 2 ng/mL 
in 50:50 acetonitrile/water containing 0.1% formic acid and injected at a rate of 10 μL/min. Data was acquired 
using SONAR (scanning quadrupole data-independent acquisition) in continuum mode. In low-energy MS1 
mode, the quadrupole was scanned between 50 -1200 m/z, with a quadrupole transmission width of ~ 50 Da, 
with a collision cell energy of 10 eV. In high-energy MS2 mode, the collision cell energy was ramped between 
20 and 30 Da. The analytes were separated by HILIC chromatography on an Xbridge BEH Amide (2.5 μm, 2.1 
× 100 mm) column. Chromatographic separation was achieved with 95:5 water:acetontrile containing 10 mM 
ammonium formate, pH 3 (A) and 95:5 acetonitrile:water containing 10 mM ammonium formate, pH 3 (B). 
Gradient elution, with a flow rate of 0.340 mL/min, began at 95% B, then decreased to 50% B from 0.0 to 3.4 min, 
50–5% B from 3.4 to 5.39 min, held at 5% B from 5.39 to 6.37 min, then returned to initial conditions (95%B) in 
0.20 min. The column was equilibrated at 95% B for 4.43 min before the next injection. The column temperature 
was maintained at 40 °C in a column oven.

Cell culture and animal studies. All of the animal experiments were conducted in compliance with the 
Guide for the Care and Use of Laboratory Animal Resources and ARRIVE guidelines, and experimental proto-
cols were approved by the Animal Care and Use Committee, National Cancer Institute (NCI-CCR-ACUC)45,46. 
The human pancreatic ductal adenocarcinoma (PDAC) cell lines, Hs776t, and SU.86.86 cells, were purchased 
from Threshold Pharmaceuticals (Redwood City, CA). Human pancreatic tumor inoculated mice were gener-
ated by subcutaneous injection of 3 ×  105 cells into the right hind legs of mice. Detailed conditions for cell culture 
and xenograft tumor development were as described  previously47. Athymic nude mice were obtained from the 
Frederick Cancer Research Center, Animal Production (Frederick, MD). Both respiration (60–90 breaths per 
min) and temperature (35–37 °C) were maintained at a normal physiological range and monitored continuously 
during the animal experiment using the adjusted anesthesia, isoflurane.

Extraction of metabolites from tumors. 13C, 15N labeled NAC  ([13C3, 15N] cysteine) was purchased from 
Cambridge Isotope Laboratories, Inc (Tewksbury, MA). Unlabeled NAC was purchased from Sigma-Aldrich (St. 
Louis, MO). 2.76 mg of either 13C, 15N labeled NAC  ([13C3, 15 N] cysteine) or unlabeled NAC was intravenously 
injected to track metabolites of NAC in xenograft tumors. Mice were euthanized in 2 min after the tail vein injec-
tions. The tumors were rapidly removed and flash frozen in the liquid nitrogen, then they were stored at − 80 °C. 
The metabolites were extracted from the obtained tumors using a previously reported  procedure48. The resulting 
lyophilized aqueous metabolite extracts were used for the MS for metabolomic analysis.
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