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Microphysiological organ‑on‑chip models offer the potential to improve the prediction of drug safety 
and efficacy through recapitulation of human physiological responses. The importance of including 
multiple cell types within tissue models has been well documented. However, the study of cell 
interactions in vitro can be limited by complexity of the tissue model and throughput of current culture 
systems. Here, we describe the development of a co‑culture microvascular model and relevant assays 
in a high‑throughput thermoplastic organ‑on‑chip platform, PREDICT96. The system consists of 96 
arrayed bilayer microfluidic devices containing retinal microvascular endothelial cells and pericytes 
cultured on opposing sides of a microporous membrane. Compatibility of the PREDICT96 platform 
with a variety of quantifiable and scalable assays, including macromolecular permeability, image‑
based screening, Luminex, and qPCR, is demonstrated. In addition, the bilayer design of the devices 
allows for channel‑ or cell type‑specific readouts, such as cytokine profiles and gene expression. The 
microvascular model was responsive to perturbations including barrier disruption, inflammatory 
stimulation, and fluid shear stress, and our results corroborated the improved robustness of co‑culture 
over endothelial mono‑cultures. We anticipate the PREDICT96 platform and adapted assays will be 
suitable for other complex tissues, including applications to disease models and drug discovery.

The current drug development process is limited by the imprecise translation of assay results in early discovery 
phases to the prediction of human response. This is partly due to the limited availability of human-based models 
that replicate human disease and tissue-specific environments. Plate-based assays do not mimic the complexity of 
human physiology which requires multiple cell types, fluid flow, and appropriate cell-to-volume ratios. Although 
preclinical animal models recapitulate the complexity of the human, the translation from animal to human is not 
always predictive. Each of these obstacles results in unexpected clinical trial failures with significant financial and 
opportunity losses. It is estimated that a single new molecular entity or first in class drug can require a decade 
of development and $2.5B to bring to  market1.

Current efforts are working to improve translation from early discovery and preclinical models to better 
predict clinical trial success. Examples of these models include human tissue spheroids and immunodeficient 
 mice2,3. In addition, a research area that offers much promise is human-based microphysiological systems (MPS), 
otherwise known as organ-on-chip systems. This field of research has seen a steady increase in public and private 
funding in the last  decade4. Progress in the field to date has produced MPS devices that allow for control over 
the complex biology found in human tissues and organs, such as incorporation of fluid flow to provide media 
or nutrient replenishment, biomechanical cues such as fluid shear stress (FSS) or stretch to mimic native tissue 
 environments5,6,7,8,9, and recapitulation of cell-to-fluid ratios in the body to allow for translational  readouts10. 
High replicate systems, such as the platform described in this work, can facilitate compound screening and 
high-throughput readouts.
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There is a significant need to develop human vascular models for toxicity screening to prevent drug induced 
vascular  injury7,9 as well as for the testing of novel therapies for a variety of vascular diseases, such as atheroscle-
rosis, hypertension, diabetic retinopathy, vascular fibrosis, Hutchinson-Gilford Progeria Syndrome, or vascular 
malformation  disorders8. Important variables to consider in the design of vascular models include cell types and 
micro-environmental cues. Endothelial cells (ECs) from different organs have unique  phenotypes11,12 and associ-
ate with specific mural cell populations (smooth muscle cells, pericytes, fibroblasts), depending on vessel caliber 
and  location13. It is well documented that the interaction of ECs with mural cells significantly influences their 
behavior. For example, in 3D gel systems, the inclusion of mesenchymal stromal cells, fibroblasts, or pericytes 
(PCs) is critical for angiogenesis, lumen formation, and long-term vessel  stability14,15. Co-culture of ECs with 
smooth muscle cells increases LDL uptake by  ECs16, alters gene  expression17, and inhibits TNFα-mediated EC 
 activation18. In blood–brain barrier models, the inclusion of PCs is critical for enhancing barrier function of the 
microvascular  endothelium19. The development of co-culture vascular MPS-based models in which human EC 
populations can be partnered with appropriate mural cells would help to bridge the current gaps in translation 
of animal model responses to the clinic for vascular targets and safety de-risking.

In this paper, we introduce a model of the human microvasculature using human retinal microvascular ECs 
and PCs in a high-throughput MPS platform. The platform, PREDICT96, is first-in-class for its combination of 
96 arrayed bilayer membrane-based devices, high content imaging capabilities, physiologically relevant pumping, 
and thermoplastic  materials20. Recently, the utility of the PREDICT96 platform was demonstrated for a human 
liver  model21,22. Here, we show compatibility of the PREDICT96 platform with a variety of standard assays for 
vascular models, including: the macromolecular tracer assay to assess tissue permeability and barrier function, 
image-based screening of endothelial monolayers for tissue models cultured under various treatments, multi-
plexed cytokine profiling by Luminex, and gene expression by quantitative polymerase chain reaction (qPCR). 
Given the bilayer design of the PREDICT96 devices, a unique advantage of the platform is the ability to extract 
cell type- or channel-specific readouts, such as that demonstrated by Luminex and qPCR results. We expect the 
PREDICT96 platform to be advantageous for studying the interactions between multiple cell types in various 
complex tissue models beyond the microvasculature system described here.

Results
The microvascular co‑culture model in the PREDICT96 platform. A reproducible model of the 
human retinal microvasculature, comprised of ECs and PCs, was created in the PREDICT96 platform. In the 
capillary system, ECs and PCs are in close proximity, and directly contact each other through a thin layer of 
basement  membrane13,23 (Fig. 1A,B). Our microvascular model allowed for interaction between the cell types 
via culturing the ECs and PCs on opposing sides of a 10 μm-thick microporous membrane within the bilayer 
microfluidic device (Fig. 1C). Furthermore, separation of ECs and PCs by a physical barrier permitted channel- 
or cell population-specific stimuli and readouts. The bilayer microfluidic devices are arrayed in the PREDICT96 
plate (Fig. 1D), allowing for the culture of up to 96 individual tissue models on a single plate. The PREDICT96 
pump “lid”, containing 192 individual pumps (1 pump for each channel of the 96 devices), was used to provide 
fluid flow (Fig. 1E) for nutrient exchange, mixing (as in the permeability assay), or application of FSS across the 
EC monolayer. The PREDICT96 plate utilizes a bottomless 384 well interface, where each inlet and outlet port 
of the top and bottom channels is accessible via one well, for a total of 4 wells per device (Fig. 1F). Each channel 
has a U-shape design (top channel membrane surface area 8.5  mm2, bottom channel membrane surface area 6.9 
 mm2) with an overlap area in the middle (3.7  mm2), which is the region of interest for imaging (Fig. 1G,H). It is 
also within this channel overlap area that ECs and PCs interacted across the membrane.

Co‑cultures maintain long‑term viability and cell coverage in PREDICT96 plates. To assess 
long-term viability in PREDICT96 microfluidic devices, EC-PC co-cultures were maintained for 2  weeks. 
Devices were assessed by live-dead staining at 7 and 14 days post-PC seeding (Fig. 2A,B). Devices fixed for 
immunofluorescence at day 14 positively stained for actin fibers (Phalloidin) and the EC marker PECAM-1, 
highlighting full coverage for both cell types in the channel overlap (Fig. 2C). Enhanced PECAM-1 staining was 
occasionally observed in areas with increased cell density, a typical observation for this EC source in our experi-
ence. Co-culture viability was greater than 95% at both time points (95.5 ± 0.6% and 96.1 ± 1.2%, respectively) 
(Fig. 2D). There was also no significant difference in total cell numbers in the channel overlap area when com-
paring day 7 to day 14 (3,670 ± 155 cells and 3292 ± 264 cells, respectively) (Fig. 2E).

Compatibility of PREDICT96 with macromolecular permeability assays and detection of bar‑
rier disruption. A gold standard for assessing endothelial barrier function is the macromolecular perme-
ability  assay24. After establishing EC mono-cultures and EC-PC co-cultures in PREDICT96 devices, media con-
taining 20  kDa or 70  kDa FITC-dextran tracer molecules was added to the top channel of the devices, and 
transfer to the bottom channel was measured over the course of 260 min (Fig. 3A,B). For permeability coef-
ficients calculated at the 260 min time point, there was no significant difference between 20 kDa FITC-dextran 
and 70 kDa FITC-dextran in the mono- and co-cultures, with the exception of cytochalasin B-treated co-cultures 
(Fig. 3C). For both dextrans, co-cultures showed significantly increased barrier function over mono-cultures, 
and treatment with the mycotoxin cytochalasin B significantly decreased barrier function, as indicated by per-
meability coefficients calculated at the 260 min time point. For non-treated samples, the permeability coefficient 
for 20 kDa FITC-dextran was 3.9 ×  10–6 cm/s in the co-culture and 1.0 ×  10–5 cm/s in the mono-culture, while the 
70 kDa FITC-dextran transferred at a rate of 1.5 ×  10–6 cm/s in the co-culture vs. 6.8 ×  10–6 cm/s in the mono-
culture (Fig. 3C). For cytochalasin B-treated samples, 20 kDa permeability coefficients significantly increased to 
1.3 ×  10–5 cm/s in the co-culture and 2.3 ×  10–5 in the mono-culture, and 70 kDa increased to 8.1 ×  10–6 cm/s in 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:12225  | https://doi.org/10.1038/s41598-021-90833-z

www.nature.com/scientificreports/

the co-culture and 2.2 ×  10–5 cm/s in the mono-culture. Significant differences in transfer were detectable as early 
as 20 min after disrupting the mono-culture with cytochalasin B for both dextrans, while the effect of disrupting 
the co-culture was significant at 20 min for 70 kDa dextran, and 60 min for 20 kDa dextran (Fig. 3A,B). Of note, 
permeability coefficients among the technical replicates for each condition did not deviate more than one order 
of magnitude (heat map shown in Supplementary Fig. S1).

PREDICT96 facilitates image‑based screening of EC monolayers with various co‑culture media 
formulations. In order to create a co-culture vascular model in which different perturbations such as inflam-
mation or disease can be assessed, a low serum media formulation is often required. However, maintaining EC 
monolayers in low serum or other starvation media conditions is challenging. We screened 10 different media 
formulations for the co-culture model to determine which conditions would adequately support EC monolay-
ers. We included two microvascular EC populations (dermal and retinal) in mono-culture and in co-culture 
with PCs. This allowed for two technical replicates per condition on a single PREDICT96 plate. Prior to seeding 
the PCs into the co-culture devices and subsequent media screening, we ran a permeability assay and found no 
significant difference in barrier function between the two EC sources (Supplementary Fig. S2).

At the end of the experiment, images were taken of the channel overlap area across the entire PREDICT96 
plate (with the exception of column 12, which was left blank for permeability assay controls), and used to assess 
EC monolayers for each condition via staining for PECAM-1 (Supplementary Fig. S3). Our custom code pro-
cessed the images and provided outputs of EC coverage as well as total nuclear counts in the channel overlap 
area. Representative outputs for “good” and “poor” EC coverage are shown in Fig. 4A. The plate map for the 

Figure 1.  Development of the microfluidic microvascular co-culture model in the PREDICT96 platform. (A) 
Side-view schematic of the microvasculature. Capillaries are surrounded by pericytes which, under healthy 
conditions, help stabilize and mature the endothelium. (B) Cross-section schematic showing interaction 
of endothelial cells (ECs) and pericytes (PCs) through basement membrane. (C) Side-view cross-section 
schematic of the vascular model in the bilayer microfluidic device. ECs and PCs are cultured on either side of a 
microporous membrane coated with extracellular matrix, which allows interaction between the two cell types. 
(D) Top-view of the PREDICT96 plate, containing an array of 96 bilayer microfluidic devices that interfaces 
with a 384 well plate top. (E) Schematic of PREDICT96 custom pneumatic pump lid, containing 192 individual 
pumps that control fluid flow in each channel of the 96 bilayer devices. (F) A single PREDICT96 device 
corresponds to 4 wells of the 384 well plate with architecture allowing for culture and fluid flow in separate top 
and bottom channels, which overlap in the device center. (G) Top-view bright field image of a single device, 
with channel overlap area indicated as the region of interest (dotted rectangle). (H) Representative image of ECs 
stained for PECAM-1 (green) and Hoechst (blue) in channel overlap area.
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various conditions and resulting measurements of EC coverage are shown in Fig. 4B,C, respectively. Generally, 
we found that the dermal MVEC lot used in this experiment formed more robust monolayers compared to 
retinal MVEC, and that EC monolayers were significantly improved in co-culture vs. mono-culture conditions 
(Fig. 4C,D). In fact, co-culture with PCs stabilized the EC monolayers independent of the media formulations 
that were explored (Fig. 4D).

For the subsequent experiments described in this paper, we continued to use retinal microvascular ECs as a 
tissue-matched source to the retinal PCs, and chose media formulation 3 as the starvation media.

Channel‑specific readouts from PREDICT96 devices demonstrated by Luminex and qPCR. In 
order to monitor the responses of different cell types in a co-culture model, it is desirable to isolate components 
from each culture channel for analysis. To this end, two different assays were used to evaluate the potential for 
independently analysis of channels/cell populations in the PREDICT96 devices: soluble factors in the media and 
gene expression. A Luminex assay was used to examine secreted soluble factors present in the media in the EC 
and PC channels after 24 h. Several analytes that were not specific to either cell type included MCP-1, IL-8, IL-10, 
IL-33, and IL-6 (Fig. 5A). However, we found that fractalkine/CX3CL1, PDGF-AA and PDGF-AB/BB were sig-
nificantly higher in the EC channel whereas VEGF was significantly higher in the PC channel.

In order to determine whether transcriptional information could be independently analyzed from each chan-
nel, ECs and PCs were harvested from the top and bottom channels respectively, followed by RNA isolation and 
qPCR. IL-6 gene expression was not channel-specific, similar to our Luminex result. EC-specific genes for KLF2, 
eNOS, PECAM-1, and VE-Cadherin were significantly elevated in the EC channel compared to the PC channel, 
while PC-specific genes for NG2 and PDGFRβ were preferentially expressed in the PC channel (Fig. 5B). Notably, 
the increase in channel-specific expression was approximately tenfold greater in the mono-culture than in the 
co-culture, indicating that there may be some cross-talk between channels in the co-cultures.

Inflammatory assay shows improved stability of the endothelium in co‑culture and chan‑
nel‑specific cytokine profiles. To determine the response of the co-culture vascular model to disease 
or inflammatory perturbations, we performed an inflammation assay using TNFα applied to device channels 
containing ECs. We studied both “acute” (10 ng/ml TNFα stimulation for 4 h followed by 20 h recovery) and 
“chronic” dosing (24 h TNFα stimulation), with media collected from each channel at the 24 h time point imme-
diately prior to fixing and staining the samples. Luminex analysis revealed that several cytokines were increased 
after TNFα stimulation: in the acute treatment, IL-6, IL-8, G-CSF, and Fractalkine were all significantly increased 
compared to controls in the EC channel in the mono-cultures, as well as in the co-cultures for G-CSF and Frac-
talkine (Fig. 6). In the case of ECs from the co-culture, IL-6 was not significantly increased compared to control 
samples, and was significantly lower compared to corresponding TNFα-treated EC mono-culture conditions 
(Fig. 6A). In addition, G-CSF was significantly lower in the co-culture EC channel compared to the EC mono-
culture in the acute condition (Fig. 6C). These results show that differences in acute vs. chronic treatment as well 
as mono- vs. co-cultures can be measured in our system.

Representative images of the ECs post-perturbation are shown in Supplementary Fig. S4A. EC monolayer 
disruption was evident with 10 ng/ml TNFα, particularly for the chronic stimulation. EC coverage in the chronic 
stimulation condition decreased from 93 to 60% and 96% to 74% in mono- and co-cultures, respectively (Sup-
plementary Fig. S4B). However, EC coverage was significantly improved in the co-culture vs. mono-culture 

Figure 2.  Long-term co-culture viability is high in PREDICT96 devices. Representative co-culture devices 
assessed for viability at (A) day 7 and (B) day 14 with split channels in descending order: red, green, blue, 
overlay. (C) Representative co-culture device stained for actin fibers (Phalloidin) and ECs (PECAM-1) on day 
14 shows good coverage for both cell types. (D) Viability was greater than 95% at days 7 and 14. (E) Total cell 
numbers as determined by nuclear counts in channel overlap at day 7 and 14 did not differ significantly. N = 2 at 
day 7; N = 4 at day 14.
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TNFα-treated conditions. In the acute inflammation study, there was still a significant loss of EC coverage in 
the mono-culture after TNFα treatment. However, co-cultures had similar coverage compared to controls (Sup-
plementary Fig. S4B). Taken together with the Luminex results, these findings indicate that the presence of PCs 
helped stabilize ECs during acute inflammatory insult.

Channel‑specific gene expression in response to fluid shear stress. As FSS is an important regula-
tor of EC  response25, we applied low shear at 0.5 dyn/cm2 to the top channel of PREDICT96 devices for 24 h 
in EC mono-culture, EC-PC co-culture, and PC mono-culture conditions. Similar to previous observations, 
the presence of PC improved EC monolayers, and this was independent of applied FSS (Fig. 7A). Qualitatively, 
some alignment of the ECs with the direction of FSS were observed in the channel, while static ECs remained 
disorganized (Fig. 7B).

In addition to phenotypic characterization using immunofluorescence, analysis of transcriptional changes 
was used to determine the impact of co-culture on gene expression. ECs subjected to low FSS had a significant 
decrease in VE-Cadherin and a significant increase in pro-inflammatory cytokine IL-6 gene expression (Fig. 7C). 
Both of these responses have been documented by other groups as typical of ECs subjected to FSS as low as 3.5 
dynes/cm226,27. ECs grown in co-culture had a small but significant increase in IL-6 expression compared to 
mono-culture (Fig. 7C). Overall, these results demonstrate the compatibility of the PREDICT96 platform with 
genetic assays and the ability to investigate cell type specific gene expression patterns in co-culture models.

Figure 3.  Permeability assays in PREDICT96 vascular models. FITC-dextran was loaded at a concentration of 
50 μg/ml into the top channel of devices and transfer to the bottom channel was tracked over time. Note that 
equilibrium between both channels would be at 25 μg/mL (indicated by black dotted line). Both EC mono-
culture (Mono) and co-culture with PC (Co) were assessed. Treatment with cytochalasin B (CB) was used 
to disrupt the barrier (added at t = 0). Transfer of (A) 20 kDa FITC-dextran and (B) 70 kDa FITC-dextran 
across the vascular barrier was measured at various intervals over 260 min. (C) Permeability coefficients were 
calculated at the 260 min time point for each condition assayed in the PREDICT96 plate. N = 8–10 technical 
replicates per condition. Asterisks in A and B indicate significant difference in + CB treated conditions compared 
to -CB controls at corresponding time points.
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Discussion
The work presented in this paper summarizes the development of a robust microvascular co-culture model in 
a high-throughput bilayer microfluidic platform. In the process of developing and characterizing the model, 
a variety of standard biological assays were adapted to the PREDICT96 system. These capabilities include the 
macromolecular permeability assay to assess barrier tissue function, image-based screening assays of cell mark-
ers or phenotypes, cytokine profiling by Luminex, and gene expression by qPCR. These assays are amenable to 
the high throughput nature of the PREDICT96 platform and compatible with the low cell numbers and media 
volumes extracted from devices. Furthermore, by separating the ECs and PCs by a microporous membrane that 
permitted cell–cell communication but limited cell translocation, it was possible to carry out channel-specific 
assays, such as the assessment of the EC monolayer by immunofluorescent staining, secreted factor profiling 
in each channel, and gene expression in cell populations isolated from each channel. The ability to study cell 

Figure 4.  Quantification of EC monolayer coverage in co-culture media screening. (A) Representative outputs 
from custom code for conditions with “good” endothelial cell coverage and “poor” coverage. (B) Plate map for 
conditions assessed: 10 media formulations with decreasing serum concentrations (red gradient) or 0.2% serum 
and decreasing supplements (blue gradient). The top half of the plate assessed co-culture (rows A–D) with 
corresponding mono-culture conditions in the bottom half of the plate (rows E–H). (C) Automated coverage 
and nuclear count measurements for channel overlap area in devices across the PREDICT96 plate. Note 
improved coverage in co-culture (rows A–D) vs. mono-culture (rows E–H) conditions. Note that column 12 
was left blank for permeability assay and therefore no cells were detected (ND). (D) EC coverage as a function of 
media formulation (N = 4 per condition). The ten unique medias are indicated as 1 being the most rich and 10 as 
the most stripped down. Co-culture with PC maintained EC monolayers even in severe starvation formulations.
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type-specific responses using a variety of assays provides a powerful toolkit for future developments of the vas-
cular model or other multicellular tissue models.

Often, microvascular models are generated in 3D gel  systems15; however, the assays that can be performed in 
3D, particularly with mixed cell populations, are cumbersome and limited in their throughput and ease of imag-
ing. Permeability can also be challenging to quantify in 3D models. The ability to “flatten” the capillary model 
into 2D simplifies the assessment of EC monolayer barrier function and imaging-based assays. (Fig. 1A–C). To 
this end, Transwell culture inserts are a common co-culture  tool28, but are limited by throughput, large media 
volumes, and static conditions including an absence of hemodynamic shear. The PREDICT96 platform used here 
provides the advantages of throughput for other MPS in its class by incorporating 96 individual bilayer devices 
into a single plate, low volumes (~ 2.1 μl within each microfluidic channel itself; total recirculating volume within 
the channel is tunable between 60 and 150 µl), and the ability to provide flow in each channel of the device using 
a custom-designed “lid” containing 192 individual recirculating pumps (Fig. 1D–H). Our microvascular model 
in the PREDICT96 platform had long-term stability as demonstrated by high viability and good cell coverage 
up to at least 14 days in culture (Fig. 2).

One of the essential functions of the endothelium is to act as a semi-permeable barrier, allowing for the 
transport of small molecules into and out of the surrounding  tissue29. Changes in EC barrier function can 
indicate drug-induced toxicity or disease  states30 and therefore is an important assay to include in the vascular 
MPS toolkit. Particularly for vascular models, the macromolecular-based permeability assay provides several 
advantages over other methods for assessing barrier function, such as trans-endothelial/epithelial electrical 
resistance (TEER). Firstly, due to the inherent permeability of many vascular tissues, TEER values are often low 
compared to background and barrier functional changes cannot be  detected31. In our hands, we have also found 
this to be true both in Transwell-based vascular models and our PREDICT96 vascular model. Therefore, although 
versions of the PREDICT96 platform have integrated  TEER20, we did not include TEER as a measurement in the 
vascular model described here. However, by utilizing fluorescent tracer molecules of various molecular weights, 
we can better simulate molecular transfer in vivo. Two different molecular weights were chosen for this work: 
20 kDa, corresponding to middle-sized molecules such as VEGF (21 kDa) or TNFα (25.6 kDa); and 70 kDa, 

Figure 5.  Detection of channel- and cell-type specific responses in PREDICT96 co-cultures. (A) Select data 
shown from 16-plex Luminex kit run on media collected from EC and PC channels after 24 h. Note that 
some secreted factors are expressed in both channels while others are differentially expressed in EC or PC 
channels. (B) Gene expression for cells isolated from EC and PC channels of devices show that EC markers 
are significantly enriched in EC channels, while PC markers are significantly enriched in PC channels. Note 
that IL-6 is expressed by both cell types (secreted and gene). Enrichment of EC markers in the EC channel was 
significantly decreased in co-culture compared to mono-culture, indicated potential inter-channel crosstalk.
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Figure 6.  Co-culture model response to inflammatory insult—cytokine profiles from EC channels. Select 
secreted cytokines in media isolated from the EC channel were analyzed by Luminex, with a comparison of EC 
mono- vs. EC co-cultures in acute and chronic TNFα stimulation conditions. N = 3 per condition.

Figure 7.  Vascular model response to low fluid shear stress (FSS). (A) Representative images of devices 24 h 
after exposure to low FSS. (B) Higher magnification shows some alignment of EC in response to fluid flow. (C) 
Gene expression of ECs from mono- and co-cultures showed that IL-6 was significantly increased in flow, while 
VE-CAD expression was significantly decreased. IL-6 was also significantly increased in co-culture compared to 
mono-culture under flow.
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corresponding to larger molecules such as albumin (66.5 kDa). We found that both dextrans were suitable for 
assessing our vascular model, as we could detect differences in barrier function in EC mono-cultures vs. EC-PC 
co-cultures as well as barrier disruption with cytochalasin B (Fig. 3). Given the standard interface of the PRE-
DICT96 platform, the permeability assay is amenable to high throughput and robotic applications, as it merely 
requires pipetting samples from a 384 well plate format at the desired time points.

Imaging-based readouts are a mainstay of various biological assays, including those utilized in the pharma-
ceutical industry. From capturing mechanisms of action to validating a potential target to phenotypic charac-
terization with high content screening platforms, imaging of the system is a pivotal attribute required in the 
drug discovery pipeline. We demonstrated the ability to screen a number of variables (10 media formulations, 
2 EC sources, mono- and co-culture tissue models) in a single PREDICT96 plate in order to gain insight into 
their effects on the maintenance of EC monolayers. Automated image processing to capture the region of interest 
(i.e., the overlap area of device channels) allowed for rapid quantification of EC coverage and nuclear counts. 
Further expansion of these image processing capabilities, such as cellular morphology or phenotype screening, 
will be valuable in future work. Taken together, our results demonstrate that the PREDICT96 platform allows 
for high quality images which can be used for robust imaging processing and quantitative analysis to produce 
high content data (Fig. 4).

Modern molecular techniques provide a more comprehensive look at cellular behavior in tissue models com-
pared to immunofluorescence-based observations, which are limited by spectral availability. High-throughput 
‘omics approaches enable researchers to examine tissue cultures at every scale, including the transcriptome and 
the proteome. We have demonstrated the ability to isolate and measure both cellular transcripts and secreted 
proteins from the PREDICT96 platform. We were able to isolate RNA in sufficient quantity and quality for 
downstream analysis by qRT-PCR, as demonstrated here, as well as the potential next generation sequencing 
(NGS) applications such as RNA-seq. We have also shown the capability to measure various secreted factors, 
such as described in our Luminex results (Fig. 5). Most significantly, we were able to isolate RNA and secreted 
factors independently from each channel of the same device. For example, PDGF isoforms tended to concentrate 
in the EC channel, while VEGF was primarily found in the PC channel in baseline co-cultures. Previous parallel 
flow plate co-culture models using ECs and vascular smooth muscle cells (VSMCs) showed higher PDGF-BB 
levels in ECs compared to  VSMCs32, while VEGF is an important component involved in regulation of vessel 
stability by  PCs33. In regards to qRT-PCR, transcripts from the EC channel showed significant enrichment for EC 
markers, while the PC channel showed significant enrichment for PC-associated genes (approximately 100-fold 
enrichment in co-cultures vs. 1000-fold enrichment in mono-cultures) (Fig. 5B). Overall, this system provides a 
powerful tool for studying and isolating the impacts of co-culture interactions between distinct cell populations.

Given that the presence of multiple cell types can significantly alter tissue response, complex interactions 
between cell types should be considered in the development of human-based tissue models for drug screening. 
We applied the above molecular assays to study EC response in mono- and co-culture conditions to inflammatory 
insults using TNFα and low FSS. EC behavior under these perturbations in vitro has been well  characterized34. 
We showed that cytokines IL-6, G-CSF, and Fractalkine were significantly increased after TNFα treatment, as 
demonstrated by  others35,36,37,38. Interestingly, we found that IL-6 was significantly decreased in media isolated 
from ECs that had been in co-culture with PCs (Fig. 6). EC monolayers were also more robust in the co-culture 
conditions compared to mono-culture (Supplementary Fig. S4). Decreased cytokines and improved monolayers 
in the co-cultures subjected to TNFα suggests that PCs help stabilize the ECs in the presence of perturbations, 
as others have  shown18. When low FSS was applied for 24 h, VE-Cadherin was significantly down-regulated, 
while IL-6 was significantly up-regulated in the EC channel for both mono- and co-cultures, as previously 
 demonstrated39. We did not observe a change in KLF2, eNOS, or PECAM-1 gene expression, likely because these 
genes become responsive at higher  FSS40,41,42,43. In the co-culture subjected to low FSS, IL-6 gene expression was 
significantly increased over mono-culture, indicating that the presence of PCs may enhance the inflammatory 
response in this case. We note that this work with the current PREDICT96 pump design is restricted to low FSS 
conditions; however, it is an important first step towards a high shear platform under development for future vas-
cular model iterations. In addition, it is important to note that the co-culture devices in the current PREDICT96 
plate design contain regions of mono-cultures in the device “arms” that flank the co-culture overlap region. These 
mono-culture regions could have different characteristics than the co-culture overlap region, which may influence 
cellular responses. Certain methods allow assessment isolated to the overlap region only (such as microscopy, 
the permeability assay, or other in situ methods), while other “bulk” readouts (such as secreted factors in the 
media by Luminex or gene expression by RT-qPCR) will include contributions by the mono-layer populations. 
In the case of the bulk analyses, the effect would be to blunt the responses we observed; nevertheless, we were 
still able to detect differences between our two different model configurations. Alternative device designs could 
maximize the co-culture overlap region to further enhance differences, which could be explored in future work.

Conclusion
The high-throughput PREDICT96 platform, microvascular co-culture model, and assays described in this paper 
provide a robust system and corresponding toolkit for studying interactions between distinct cell types in bilayer 
microfluidic devices. The methods for macromolecular permeability and imaging-based screening are readily 
scalable to the platform’s throughput. In particular, the ability to study cell type-specific secreted factors and gene 
expression patterns are especially powerful for gaining insight into interactions between distinct cell populations 
and cell-specific responses. Future applications of the model and platform include the development of a high 
FSS pumping system and vascular injury or disease models.
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Methods
Design and fabrication of the PREDICT96 platform and pumps. The 96 arrayed bilayer microflu-
idic platform was designed to be compatible with standard microplate technology. Each device of the array is 
comprised of two microfluidic channels (top and bottom) that are separated by a microporous polycarbonate 
track-etched (PCTE) membrane (Sterlitech Inc.) with a nominal pore diameter of 3 µm and pore density of 
2 ×  106 pores/cm2. The inlets and outlets of the top and bottom channels each interface with one well of a 384 
well-plate. The channels, which have a width of 1 mm and a height of approximately 250 µm, were fabricated 
using an ultrafast laser to cut laminated films of thermoplastic cyclo-olefin (co)polymer (COP/COC). The films 
were subsequently aligned and assembled along with the PCTE membrane and the bottomless 384 well plate, 
which were bonded through a thermal fusion process at 120 °C and 175 psi in a hydraulic press (Carver).

The PREDICT96 pump lid is an array of 192 individual pneumatically-driven pumps that is capable of con-
trolling fluid flow in the top and bottom channels of devices at independent flow rates. The pumps function by 
recirculating the media from the inlet well to the outlet well of the channel of an individual device. This estab-
lishes a hydrostatic pressure differential that provides an equal flow rate to that of the pump in the microfluidic 
channel (top or bottom) connecting the two ports. Each individual pump is comprised of a fluidic and a pneu-
matic circuit that are separated from one another by a 25 µm-thick polyimide membrane. The fluidic circuit of 
the pump is made up of a pump chamber with two valves on either side of the chamber. A custom pneumatic 
manifold that provides vacuum and pressure actuates the polyimide membrane over the valves and the pump 
chamber in a peristaltic sequence through the pneumatic circuit, which in turn generates flow in the fluidic 
circuit of the pump. The timing of this sequence is prescribed by a custom controller that coordinates the action 
of a bank of 3-way solenoid valves that switch between open (vacuum) and closed (pressure) states of the valves 
and pump controllers. Flow parameters are set by the user via a simple graphical interface.

The pumps were fabricated using methods previously  described44. In brief, the films comprising the fluidic and 
pneumatic layers (Kapton polyimide, Ultem polyetherimide, and Viton) were prepared by annealing and tacking 
an adhesive film (RFlex 1000 with a thickness of 12.5 µm) when necessary and through-cut using a UV laser 
system (LPKF). The layers were subsequently assembled and laminated at 175 °C in a heated press. To calibrate 
the pumps, a fluorescent solution of 6 μM fluorescein (Millipore Sigma, Burlington, MA) in PBS was pumped 
through the device in a 384 well-plate (Aurora Microplates) for a set number of cycles. The output was measured 
using a plate reader (SpectraMax) to determine the stroke volume of each of the 192 pumps. The average stroke 
volume and pumping frequency are used to set flow rates in the devices.

Cell culture maintenance and co‑culture media. Primary human retinal microvascular endothelial 
cells (ECs) were purchased from Angio-Proteomie (Boston, MA) and expanded in the manufacturer’s Endothe-
lial Growth Medium (EGM). Primary human dermal microvascular ECs were purchased from Lonza (Basel, 
Switzerland) and expanded in the manufacturer’s recommended medium EGM-2MV (EBM™-2 Basal Medium 
and Microvascular Endothelial Growth Medium SingleQuots™ supplements). Immortalized human retinal peri-
cytes (PCs) were generated by Pfizer and expanded in Angio-Proteomie’s Pericyte Growth Medium (PGM). All 
cells were used at passage 6 for the experiments described below.

For EC mono-culture and EC-PC co-culture studies in PREDICT96 platforms, ECs were seeded in MCDB131 
Complete Medium composed of MCDB131 base media (ThermoFisher Scientific, Waltham, MA), microvascu-
lar growth supplement (ThermoFisher), 1 × GlutaMax (ThermoFisher), and 1 × Penicillin–Streptomycin (Ther-
moFisher). The ten starvation media formulations screened in co-culture contained various concentrations 
and combinations of the following in MCDB131 base: fetal bovine serum (Life Technologies, Carlsbad, CA), 
hydrocortisone (Millipore Sigma), heparin (StemCell Technologies), basic FGF (PeproTech, Inc., Rocky Hill, NJ), 
EGF (PeproTech), dibutyryl cAMP (R&D Systems), insulin-transferrin-selenium (ThermoFisher), L-ascorbic 
acid 2-phosphate (Millipore Sigma), chemically defined lipids (Millipore Sigma), knock out serum replacement 
(ThermoFisher), MITO + Serum Extender (Corning).

Preparation of PREDICT96 plates for cell seeding. Prior to cell seeding, the PREDICT96 plates were 
treated in an oxygen plasma system (March Instruments, Inc.) for 3 min at 100 W to render the cell culture sur-
faces hydrophilic. The plates were then sterilized by 20 min UV exposure while dry. Following UV treatment, the 
plate was washed with 70% ethanol by sequentially adding 100 μl to the inlet ports and 15 μl to the outlet ports 
of both channels of the devices. The height differential of these volumes drives fluid flow through the channels. 
Each device was then washed twice with sterile distilled water, followed by sterile PBS using the same volume 
differentials. The microfluidic channels were then coated with Fibronectin (Millipore Sigma) at 5 µg/mL in PBS 
for 1–2 h at 37 °C. Immediately prior to cell seeding, the devices were primed with cell culture media.

Seeding of EC and PC in PREDICT96 plates. ECs were harvested from T75 flasks using Accutase. After 
a 3–5 min incubation, cells were collected in serum-containing media and centrifuged at 220Xg for 5 min. The 
cell pellet was re-suspended in MCDB131 Complete Media for counting and adjusted to a final density of 1 ×  106 
cells/mL. Immediately prior to seeding, the priming media was gently aspirated from all PREDICT96 device 
ports, followed by the addition of 15 μl media to the inlet and outlet ports of the bottom channel only. ECs 
were then seeded into the top channel only by adding 35 µl/15 μl to inlet/outlet ports. After the port volumes 
reached equilibration, the plate was incubated at 37 °C for 2–3 h to allow cell attachment. Afterward, the media 
was replaced with fresh MCDB131 Complete Media and changed every other day until PC seeding (3–5 days).

Retinal PCs were harvested using similar methods as described above and re-suspended at a density of 
500,000 cells/ml. For seeding into the bottom channel, media was first aspirated from all ports, and 15 μl of fresh 
MCDB131 Complete Media was added to the inlet and outlet ports of the top channel. PCs were then seeded 
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into the bottom channel by adding 35 µL/15 μL to inlet/outlet ports. Immediately after confirming flow-through 
and equilibration of the volumes (about 2–3 min), the plate was flipped upside down to maximize cell adhesion 
to the bottom surface of the membrane. The plate was then carefully transferred to an incubator for 2 h to allow 
PCs to adhere. Afterward, the plate was flipped right side up, and the media was refreshed in both channels of 
the devices.

Live cell tracking and viability assays. Using the methods above, ECs and PCs were seeded into a 
PREDICT96 plate to monitor co-culture viability over a 2-week period. Devices were assessed at 24 h post-
EC seeding, and then at days 7 and 14 after PC seeding. Viability was assessed using a Live-Dead assay kit 
(ThermoFisher). At the conclusion of the experiment on day 14, remaining samples were fixed for staining as 
described below.

Immunocytochemistry and confocal imaging. Devices were fixed in cold methanol and acetic acid 
(95%/5% vol/vol) for 15 min at 4 °C and washed three times with PBS. Samples were then blocked with 3% 
normal goat serum (NGS) (ThermoFisher) for 60 min at room temperature. Primary antibody for PECAM-1 
(Abcam, rabbit polyclonal) was diluted 1:250 in 3% NGS and incubated overnight at 4  °C on a rocker. The 
samples were washed three times with 3% NGS for 5 min each with rocking and then Alexa Fluor 488 goat 
anti-rabbit IgG (ThermoFisher) was added with Hoechst 33,342 nuclear stain (1 mg/ml stock, ThermoFisher) at 
1:250 dilution and Alexa Fluor 647 conjugated to Phalloidin (Abcam) at 1:1000 dilution in 3% NGS. After 1 h, 
the samples were washed at least three times for 5 min with PBS prior to imaging.

The stained PREDICT96 devices were imaged using a Zeiss LSM700 laser scanning confocal microscope and 
Zen Black software. Tile scans of channel overlap areas at 10 × magnification were acquired.

Permeability assay with FITC‑dextran. The permeability assay was performed on EC mono-cultures 
and EC-PC co-cultures after 4 days. A solution containing 50 μg/ml FITC-dextran (20 kDa and 70 kDa) (Ther-
moFisher) was prepared in MCDB131 Complete Media. Cytochalasin B (Millipore Sigma) at 5 μg/ml was also 
prepared for barrier disruption assays. While 100 μl of FITC-dextran-containing media was applied to the top 
channel of each device, bottom channels were refreshed with “blank” media (no dextran). Samples of 10 μl were 
collected from the top and bottom channels at 0, 20, 40, 60, 120, and 260 min. In between sample collection, the 
cultures were incubated at 37 °C and 5%  CO2 and placed under feeder flow to facilitate mixing (10 μl/min in both 
channels) using the PREDICT96 pump. Each condition had N = 8–10 replicates.

The collected samples were analyzed with a BioTek HM1 plate reader measuring at 490/520 ex/em using 
Gen5 software. Dextran masses were determined using a standard curve generated for each molecular weight. 
To determine the permeability coefficient, the following equation was used:

where C(t) is the FITC-dextran concentration at 260 min, C(t0) is the FITC-dextran concentration at 0 min, V 
is the volume  (cm3) of the basolateral chamber, A is the surface area  (cm2) of the membrane, t is duration of the 
assay (sec), and C0 is the initial concentration of FITC-dextran applied to the top channel.

Image processing and quantification. Tiled images of the devices were converted into TIF format and 
processed using custom Python code to output channel coverage and nuclear counts. Outputs included visual 
representations as well as chart formats. First, the channel edges were cleaned using decisions based on the 
brightness of the green and blue channels as well as the differences between brightness of the channels. Next, the 
image was run through connected-component-analysis which breaks the image into connected sections. This 
identified the channel overlap area as one of the connected components. Next, a series of decisions discarded 
the non-overlap sections, leaving the channel overlap area as a binary image or mask. The binary image of the 
channel overlap was then combined with the original image to mask out everything but the region of interest: 
the cells within the channel overlap.

Once the image was masked, the PECAM-1 and Hoechst channels were analyzed separately to ascertain the 
percent cell coverage. For both mono-cultures and co-cultures, the green channel was thresholded and used for 
identification of the area covered by ECs. The threshold was calculated differently for mono- vs. co-cultures. In 
the case of the mono-cultures, the Hoechst channel was used to identify the nuclei. The nuclear objects were 
dilated to bridge the gaps between the nuclei and the PECAM-1 border stain of the ECs. After the thresholding 
was completed, the number of identified pixels was divided by the total number of pixels in the channel, calculat-
ing the percent coverage of ECs in the channel overlap. The Hoechst channel was also thresholded and segmented 
using connected component analysis, and processed to count the nuclei (accounting for clusters of nuclei).

The cell coverage image was overlaid onto the original PECAM-1 image for a combined visual output. A 
similar overlay was made from the original Hoechst stain overlaid with the identification of nuclei. Calculations 
of EC coverage and nuclei were also generated as Excel files that matched the format of the PREDICT96 plate.

Inflammatory assay and channel‑specific cytokine profiles. EC mono-culture, PC mono-culture, 
and EC-PC co-culture conditions were established in a PREDICT96 plate as described above. At 24 h post-PC 
seed, the samples were switched to Starvation Medium. After another 24 h, samples were subjected to TNFα 
stimulation as follows. Acute stimulation conditions were treated with 10 ng/mL TNFα (R&D Systems) for 4 h, 
followed by fresh Starvation Medium without TNFα for a 20 h recovery period. Chronic stimulation conditions 

P =

[C(t)− C(t0)] · V

A · t · C0
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were treated with a single dose of 10 ng/mL TNFα and incubated for 24 h. Controls included samples with and 
without the addition of vehicle (0.1% BSA in PBS). Media was collected from the top and bottom channels of the 
devices and immediately frozen at − 80 °C until use. Immediately after media collection, devices were fixed and 
stained as described above to evaluate EC monolayers.

A custom Magnetic Luminex Performance Assay kit containing a pre-mix of 12 analytes of interest (R&D 
Systems, Human XL Cytokine Discovery Panel) was used: CCL2/MCP-1, fractalkine/CX3CL1, G-CSF, GM-CSF, 
IL-6, IL-8/CXCL8, IL-10, IL-13, IL-33, PDGF-AA, PDGF-BB, and VEGF. Undiluted media samples collected 
from devices were run according to the manufacturer’s protocol and processed using a Luminex FLEXMAP 3D 
and xPONENT software (version 4.2). The multiplex data were analyzed using Milliplex Analyst (version 5.1, 
Vigene Tech Inc.) to generate standard curves using a five parameter logistic (5-PL) curve-fit to determine the 
concentration of each analyte in the sample. To determine the effects of TNFα stimulation, treated samples were 
normalized to untreated controls and presented as a fold-change.

Application of fluid shear stress in PREDICT96 devices. EC mono-culture, PC mono-culture, and 
EC-PC co-culture conditions were established in PREDICT96 plates as described above. Following EC seed-
ing, feeder flow at 0.01 dyn/cm2 was applied to the top channel of devices using the PREDICT96 pump, and 
transiently paused for PC introduction into devices. After a 24  h starvation period, low FSS at 0.5 dyn/cm2 
was applied to the top channel of devices. Note that the bottom channel containing PCs remained static for 
the duration of the experiment. Static controls were run on a separate PREDICT96 plate. After 24 h, RNA was 
extracted from device channels as described below. Samples were then immediately fixed and stained to assess 
EC monolayers.

To estimate the flow rates needed for the target FSS above, laminar flow in a rectangular channel was assumed. 
Feeder flow at 0.01 dyn/cm2 and low FSS at 0.5 dyn/cm2 equated to flow rates of 1 μl/min and 48 μl/min, 
respectively.

RNA extraction from devices and channel‑specific qPCR. For qPCR studies, devices were washed 
three times with PBS to ensure removal of serum. Accutase was added to devices in both the top and bottom 
channels and incubated at 37 °C for 3 min. After the Accutase was recovered, each channel of the devices was 
flushed three times with fresh media to remove the remaining cells. These media washes were pooled with the 
recovered Accutase after each flush. The pooled Accutase/media containing the harvested cells was spun down 
for 5 min at 2000×g to obtain the cell pellet. The supernatant was discarded and RNA was subsequently extracted 
using the Qiagen RNeasy Micro Kit according to the manufacturer’s specifications. RNA quality was evaluated 
using the Agilent TapeStation with High Sensitivity RNA screentapes.

Complementary DNA (cDNA) was synthesized using the SuperScript IV VILO Master Mix with ezDNAse 
Enzyme (Thermo Scientific) according to the manufacturer’s specifications. Quantitative PCR was performed 
using Taqman reagents (Thermo Scientific). Briefly, 1 μl of cDNA was mixed with 0.5 μl of the appropriate 
Taqman probe (Table 1) and 5 μl of Taqman Fast Advanced Master Mix (Thermo Scientific) and water for a final 
volume of 10 μl per well in a 384 well plate. The reaction was run in an Applied Biosystems QuantStudio 7 Flex 
System (Thermo Scientific) using the following cycle: 20 s at 95 °C followed by 40 cycles of 95 °C for 1 s then 
60 °C for 20 s. Comparative  CT values were determined using the method described by Schmittgen and  Livak45 
using GAPDH as a reference gene.

Statistical analysis. Data are presented as mean ± standard deviation and were analyzed using GraphPad 
Prism version 7.04 for Windows (GraphPad Software, La Jolla California, USA, www. graph pad. com). Statisti-
cally significant outliers were determined using the Grubb’s test. Statistical significance was determined using 
the Student t-test for pairwise comparisons, and two-way or three-way analysis of variance (ANOVA) with 
Tukey’s post hoc test for multiple comparisons, where appropriate. A p-value lower than 0.05 was considered sta-
tistically significant and is indicated in figures as follows: * P ≤ 0.05, ** P ≤ 0.01, *** P ≤ 0.001, and **** P ≤ 0.0001.

Data availability
The datasets generated during and/or analyzed during the current study are available from the corresponding 
author upon reasonable request.

Table 1.  List of genes and probes used. EC endothelial cell; PC pericyte.

Transcript Taqman probe Cell type Function

KLF2 Hs00360439_g1 EC Transcription factor responsive to fluid shear stress/pro-inflammatory stimuli

NOS3 (eNOS) Hs01574665_m1 EC Production of nitric oxide

PECAM1 Hs01065279_m1 EC Intercellular adhesion molecule

CDH5 (VE-Cadherin) Hs00901465_m1 EC Intercellular adhesion molecule

IL-6 Hs00174131_m1 EC/PC Pro-inflammatory cytokine

CSPG4 (NG2) Hs00171790_m1 PC Angiogenesis

PDGFRβ Hs01019589_m1 PC Recruitment

http://www.graphpad.com
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