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Stability analysis on dark solitons 
in quasi‑1D Bose–Einstein 
condensate with three‑body 
interactions
Yushan Zhou1,2, Hongjuan Meng1,2, Juan Zhang1,2, Xiaolin Li1,2, Xueping Ren1,2, 
Xiaohuan Wan1,2, Zhikun Zhou1,2, Jing Wang1,2, Xiaobei Fan1,2 & Yuren Shi1,2*

The stability properties of dark solitons in quasi‑one‑dimensional Bose–Einstein condensate (BEC) 
loaded in a Jacobian elliptic sine potential with three‑body interactions are investigated theoretically. 
The solitons are obtained by the Newton‑Conjugate Gradient method. A stationary cubic‑quintic 
nonlinear Schrödinger equation is derived to describe the profiles of solitons via the multi‑scale 
technique. It is found that the three‑body interaction has distinct effect on the stability properties 
of solitons. Especially, such a nonlinear system supports the so‑called dark solitons (kink or bubble), 
which can be excited not only in the gap, but also in the band. The bubbles are always linearly and 
dynamically unstable, and they cannot be excited if the three‑body interaction is absent. Both stable 
and unstable kinks, depending on the physical parameters, can be excited in the BEC system.

Bose–Einstein condensate (BEC) is an interesting physical phenomenon, which was originally predicted by Bose 
and Einstein in 1924. Since the first successful experimental realization of  BECs1–3, a large number of theoretical 
and  experimental4–7 interests in this field has been attracted in recent years such as atomic lasers, vortices, vortex 
array, quantum phase transition, and so on. It is well known that the dynamics of BECs are usually described by 
the nonlinear Gross-Pitaevskii equation (GPE) under mean-field approximation at extremely low  temperature8–10. 
At low density, where interatomic distances are much greater than the distance scale of atom-atom interactions, 
we can use a single parameter (scattering length) to describe the two-body  interaction11. However, when the two-
body interaction increases, the central density of the condensate will be higher, then the three-body interaction 
should be taken into account. Consequently, the three-body interaction become meaningful and account for 
the quintic mean-field nonlinearity. The existence of three-body interactions also play an important role in the 
condensate’s  stability12–15. The dynamics can be described by a set of nonlinear Schrödinger equation (NLSE) , 
which is  integrable16, with two- and three-body  interactions4. Applications of cubic-quintic NLSE are not lim-
ited to condensate mater problems. Recently, both experimentally and theoretically, the three-body interaction 
could be observed or  realized17–19. In particular, the investigations of the linear stability properties of BECs with 
two- and three-body interactions have been a significant interest in this  topic11.

The discovery of solitons plays a milestone role in the development of nonlinear physics. In BECs, both experi-
ments and theoretical studies have found bright  solitons20, dark  solitons21, vortex  solitons22, vortex  lattice23 and 
so on. Moreover, periodic media in BEC generated by optical methods, such as crystal lattice, is the most familiar 
classical  example24. Ref.25 investigated the possibility of solitary bound formation between spin clusters and lattice 
deformation. Whether in BEC or optics, the GPE can be used to describe the nonlinear dynamical behaviors. 
It is also known that many periodic potentials are adopted as trigonometric  functions26–31. Especially, there are 
all kinds of localized nonlinear modes of condensates that cannot exist in the linear limit. Here, they are located 
in the band-gaps of the matter-wave spectrum, therefore they can be called gap  solitons32. They can also exist in 
different types of nonlinear periodic structures including  optics33,34,  BEC35,36, and so on. The cubic-quintic NLSE 
possesses both bright and dark solitons. The bright one is known already from the work of Pushkarov et al.37. 
The dark solitons are another kind of topological solitons with the non-vanishing boundary conditions. They 
can be clarified into two kinds: kink soliton and gray soliton. In literatures, the gray soliton is usually named as 
the bubble-like soliton. The repulsive cubic NLSE does not have solutions of this  kind38. Due to the fifth-order 
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nonlinearity in a fibre, bright and dark solitons can propagate in the same parameter  range39. In Ref.40, the authors 
investigated the dynamical stability properties of the cubic NLSE with a Jacobian elliptic potential in a quasi-one-
dimensional (1D) BEC. They have presented an analysis that contains analytical existence criteria for solitons of 
the cubic-quintic NLSE and exact analytical expressions for the intensity, phase, and normalized momentum in 
Ref.41. However, by now, there are less works on investigating the linear stability properties of dark solitons in a 
quasi-1D BEC loaded in a Jacobian elliptic potential with three-body interactions. In this paper, we will mainly 
pay attention to such an interesting work.

The remaining contents are arranged as follow. In “Model” section, we made an introduction to the theoretical 
model for a quasi-1D BEC with two- and three-body interactions. In “Solitons and their stability properties” sec-
tion, we firstly numerically found various solitons by the Newton-Conjugate Gradient (NCG) method. Secondly, 
the multi-scale technique is applied to theoretically analyse the solitons. Finally, we numerically study the stability 
properties of the solitons. In “Conclusion” section, some conclusions are summarized.

Model
At ultra-low temperatures, the dynamical behaviors of BECs with two- and three-body interactions can be 
described by the following three-dimensional (3D) nonlinear  GPE11 with two-body and three-body interaction

where � = �(r, t) labels the condensate wave function, V(r) is an experimentally generated macroscopic poten-
tial, r = (x, y, z) the Cartesian coordinate vector, ∇2 the Laplacian operator, � the reduced Planck constant, m 
the mass of the atom. g1 = 4π�2as

m  denotes the strength of two-body interaction. as is the s-wave scattering length 
( as > 0 and as < 0 respectively represents the repulsive and attractive interaction), which can be tuned to any 
desired value by using the “Feshbach resonance”  technique42. g2 is the strength of the three-body interaction. In 
Ref.43, g2 is given by a universal formula g2 = 12π�2a2s

m

[

d1 + d2tan
(

s0 ln
|as|
|a0| +

π
2

)]

 , where the numerical values 
of the universal constants d1, d2, a0 and s0 are given in Refs.43,44. From Ref.43, we know that g2 can be tuned from 
−∞ to +∞ . The total atom particles are N =

∫

|�|2d3r.
In experiments, the BEC atoms are usually confined in a harmonic potential V(r) = 1

2
m(ω2

xx
2 + ω2
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z z
2) 

with ωx , ωy and ωz being the trap frequencies along x, y and z-directions. In the disk-shaped condensates, i.e., 
ωx ≈ ωy and ωz ≫ ωx , the 3D GPE can be reduced to 2D GPE. In the cigar-shaped condensates, i.e., ωy ,ωz ≫ ωx , 
the 3D GPE can be reduced to 1D GPE. In this paper, we only consider the cigar-shaped condensate. By intro-
ducing the dimensionless variables t̃ = ωxt , x̃ = x/ah0 , �̃ =

√

a3
h0
/n0� , g̃1 =

2asn0
√
ωzωy
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 , g̃2 =
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3π2a3
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�ω3

x
g2 , 

where ah0 =
√
�/mωx  is the characterized length of harmonic oscillator, n0 is a given particle density. In general, 

one can take n0 = N (This is not necessary.). By using the approach presented in Ref.45 and omitting the tilde 
′ ∼′ above all the variables, one can obtain the following quasi-1D dimensionless GPE

Under which, the total particle number can be expressed as N = n0
∫

|�(x, t)|2dx . We choose the periodic 
external potential as V(x) = V0sn

2(x, q) , where sn(x, q) is the Jacobian elliptic sine function with modulus 
q(0 ≤ q < 1) . This potential can be regarded as a generalization to the trigonometry function. In experiments, 
such a potential can be well approximated by using only two laser  beams46,47.

Solitary waves of Eq. (2) are sought in the form

where µ is the chemical potential, ψ(x) is a real-valued function, which satisfies the equation

Note that if ψ = ϕ(x) is an exact solution of Eq. (4), then so does ψ = −ϕ(x) . When ψ(x) is infinitesimal, 
the terms ψ3 and ψ5 in Eq. (4) can be neglected, which results in a linear equation

The bounded solutions of Eq. (5) are called linear Bloch modes, and the corresponding constant µ forms 
linear Bloch bands. Since V(x) is a periodic function, Eq. (5) is a generalized form of Mathieu’s equation. Its 
bounded solution can be written  as48

where p̃(x;µ) has the same period as the potential V(x), µ = µ(k) is the 1D dispersion relation. Both the linear 
Bloch bands and the dispersion relations can be gotten by solving the obtained eigenvalue problem. However, 
unfortunately, it is rather difficult to solve the eigenvalue problem exactly and analytically. Here, we solve it 
numerically by the Fourier collocation  method49. The graph of Bloch band structures is omitted for it is similar 
as that shown in Ref.46.

(1)i�
∂�

∂t
= −

�
2

2m
∇2� + V(r)� + g1|�|2� + g2|�|4� ,

(2)i
∂�

∂t
= −

1

2

∂2�

∂x2
+ V(x)� + g1|�|2� + g2|�|4� .

(3)�(x, t) = ψ(x)e−iµt ,

(4)
1

2
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(6)ψ = p(x) = eikxp̃(x;µ),
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Solitons and their stability properties
When ψ(x) is not infinitesimal, the terms ψ3 and ψ5 in Eq. (4) can not be neglected. Considering that the chemi-
cal potential µ enters into the band-gap, where the linear Bloch waves no longer exist, from the boundary of 
the band k = k0 , µ = µ(k0) , completely localized solitary waves, namely gap  solitons32, can be excited. The gap 
solitons can be found numerically by the NCG  method28, which is an effective numerical method for seeking the 
solitary wave solutions of nonlinear evolution equations. It is based on Newton iteration and conjugate-gradient 
iteration method to solve the resulting linear equation. This method can be applied to compute both the ground 
states and excited states in various physical systems. More importantly, this method usually converges faster 
than the other numerical methods and it is easy to implement in Matlab. A detailed description about the NCG 
method can be found in Ref.28.

Bright solitons. In literatures, the bright solitons are often defined as the solutions with vanishing bound-
ary conditions, i.e. ψ(±∞) = 0 . As we had done in Ref.46, we numerically find that virous of bright solitons (for 
examples, the on-site and off-site gap solitons) still exist when the three-body interaction is taken into account. 
Here we omitted the profiles of the bright solitons as they have the similar structures as those illustrated in Ref.46. 
We also noted that the amplitude of the bright solitons decreases when the three-body interaction strength |g2| 
increases.

To see it more clearly, we define the amplitude of bright soliton as A = max(|ψ |) and the particle number 
P =

∫

|ψ |2dx , which implies that the total particles is N = n0P . In nonlinear optics, P is often called the power. 
Figure 1 exhibits the amplitude and power of on-site and off-site solitons versus the chemical potential µ for 
different three-body interaction strength g2 . As can be seen from Fig. 1a and b, both A and P decrease when µ 
moves toward the first band for fixed g2 . In the semi-infinite gap, P linearly decreases when µ increases but far 
away from the band edge. However, P decreases rapidly if µ moves near the band. This is opposite in the first 
gap, i.e., P decreases linearly when µ decreases but far away from the first band edge. We also noticed from Fig. 1 
that the larger the three-body interaction |g2| , the smaller the amplitude A and the power P. This conclusion will 
be explained theoretically later.

Figure 2 shows the amplitude of on-site gap solitons versus the three-body interaction strength g2 under 
different two-body interaction strength g1 . Other parameters are V0 = 2 and q = 0.1 . For a fixed g2 , it is obvi-
ous that the larger the |g1| is, the smaller the amplitude of the solitons. In the semi-infinite gap, see Fig. 2a, the 
amplitude of solitons increases as g2 increases for a given g1 . However, in the first gap, this is somewhat opposite. 
That is, see Fig. 2b, the amplitude of solitons decreases when g2 increases. On the other hand, when the two-body 
interaction is stronger, i.e. |g1| is relatively larger, one can see from Fig. 2 that the amplitude of gap solitons nearly 
invariant with the increasing of g2 . This is because the amplitude of gap solitons is very small when |g1| is larger, 
so that the term ψ5 in Eq. (5) can be neglected. It is also noted that gap solitons indeed exist when g1g2 < 0 for 
a relatively narrow interval of g2 . We will make a theoretical explanation later.

Dark solitons. Beyond the bright solitons discussed in the above section, the nonlinear Eq. (4) also has the 
so-called “dark solitons”. In literatures, the “dark soliton” is usually defined as the solutions with non-vanishing 
boundary conditions, i.e., ψ(±∞) �= 0 . In Refs.39, a dark soliton is a “kink” when ψ(−∞) = −ψ(+∞) and it is 
called a “gray soliton” when ψ(−∞) = ψ(+∞) . The gray soliton is also named as a “bubble-like soliton”. Here, 
for convenient, we call them as “kink” and “bubble”, respectively.

It is more difficult to find dark solitons than bright ones when the NCG method is applied. One must choose 
the initial guess carefully, or the iteration will be divergent or convergent to an unwanted result. In practice, we 
take the initial guess

Figure 1.  Amplitude (dashed lines) and power (solid lines) curves of gap solitons bifurcated from the first 
Bloch band. (a) on-site gap solitons. (b) off-site gap solitons.
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for seeking the kink and

for the bubble, where Tx is the periodicity of the external potential ( Tx ≈ π when q = 0.1 ). One can choose 
appropriate values for a1, a2 and a3 to obtain the wanted results. Of course, the coefficient in front of the cosine 
function also can be adjusted if necessary.

Figure 3 shows the profiles of kinks (Fig. 3a and c) and bubbles (Fig. 3d and f) given by the NCG method. The 
amplitudes of the dark solitons are defined as illustrated in Fig. 3, where the upper green dashed lines denotes 
the average value of the Bloch waves in one periodicity. One can see that the kink is odd symmetric, while the 

ψ(x) = a1

(

1+ 0.04 cos
2πx

Tx

)

tanh x

ψ(x) = a2

(

1+ 0.04 cos
2πx

Tx

)

(1− a3e
−x2)

Figure 2.  Amplitude of on-site gap solitons versus the three-body interaction strength g2 . (a) In the semi-
infinite gap. (b) In the first gap.

Figure 3.  Profiles of dark solitons lie in (a) the semi-infinite gap, (c,f) the first gap, and (d) the first band, for 
q = 0.1 with different nonlinear interaction strength. (b,e) Residual diagram of the NCG method versus the 
number of iterations for the dark solitons shown in (a) and (d), respectively. Shaded regions represent lattice 
sites, i.e., regions of low potential values V(x).
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bubble is even symmetric. When |x| is large enough, the matter waves oscillate with the same periodicity as the 
external potential. This is because of the periodical carrier Bloch wave has been modulated by a kink or a bell-like 
soliton. Figure 3b and e show the residual error, measured as the maximum of the residue in Eq. (4), when the 
NCG method is applied to seek the dark solitons shown in Fig. 3a and d, respectively. It is seen that the residual 
drops below 10−12 with less than or about 200 times iterations, implying that the NCG method can quickly gain 
the dark solitons with very high accuracy.

When the numerical calculation is performing, the values of a1, a2 and a3 for initial guesses are taken as 
a1 = 1.8 for Fig. 3a, a1 = 0.45 for Fig. 3c, a2 = −a3 = −0.25 for Fig. 3d and a2 = −a3 = −0.45 for Fig. 3f. The 
solitons given in Fig. 3 can be used as the initial guesses for NCG method to seek the dark solitons for other 
parameters. It is also can be seen easily from Fig. 3 that the amplitude of dark solitons decrease when three-body 
interaction strength 

∣

∣g2
∣

∣ increases.
Figure 4a and b exhibit the amplitude of the kinks and bubbles versus the chemical potential µ under differ-

ent nonlinear strength g1 < 0 and g2 > 0 . From Fig. 4, we see that the dark solitons can be excited not only in 
the gap, but also in the band. This is quite different to the bright soliton discussed previously. The bright solitons 
exist in the gaps. On the other hand, in the semi-infinite gap, the dark solitons can be exited only for µ is greater 
than a certain value. Take an example, when g1 = −1, g2 = 0.5 , the kinks exist for µ > 0.355 and the bubbles 
for µ > 0.532 , while the bright solitons exist for the entire gap. Whenµ moves toward the band edge, the ampli-
tude of the bright soliton becomes smaller and smaller. However, this is not the fact for the dark solitons. From 
Fig. 4a and b, we see that the amplitude of the dark solitons increases monotonously as µ increases. It is known 
from “Bright solitons” section that the amplitude of the bright soliton decreases when the two-body interaction 
strength |g1| increases (other parameters are fixed). To our surprise, the amplitude of the dark solitons increases 
as |g1| increases.

Figure 4.  Amplitude of (a) kinks and (b) bubbles versus the chemical potential µ under different nonlinear 
interaction strength g1 and g2 . The parameters are taken as V0 = 2, q = 0.1 . The edge of first Bloch band is 
µ1
0 ≈ 0.7726 and µ2

0 ≈ 0.9432 , respectively.

Figure 5.  Amplitude of (a) kinks and (b) bubbles versus the chemical potential µ under different nonlinear 
interaction strength g1 and g2 . The profiles of solitons at the marked points are shown in the subplots, where 
the shaded regions represent lattice sites, i.e., regions of low potential values V(x). The dashed line denotes the 
unstable solitons while the solid line denotes stable ones. The parameters are taken as V0 = 2, q = 0.1 . The edge 
of first Bloch band is µ1

0 ≈ 0.7726 and µ2
0 ≈ 0.9432 , respectively.
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Figure 5a and b display the amplitude of the kinks and bubbles versus the chemical potential µ under different 
nonlinear strength g1 > 0 and g2 < 0 . Here, we start computing from the points P1 (corresponding to µ = 1 ). 
The parameters for initial guess are a1 = 0.45, a2 = −a3 = −0.25 . The corresponding wave profiles at the marked 
points P1 − P4 are shown in the subplots. The dashed lines denote the unstable

solitons while the solid line denotes stable ones (The stable property will be discussed later.). Again, we see 
that the dark solitons can be excited in the band. It can be seen from Fig. 5a that the kink solitons exist in the 
first band and first gap, but it can not be excited in the semi-infinite gap. The amplitude of the kink increases as 
chemical potential µ increases. When µ moves from P1 to P2 , the amplitude becomes smaller distinctly. Both 
the amplitude of kink (modulation wave) and the amplitude of the Bloch wave (carrier wave) tend to zero as µ 
moves toward the lower edge of the first band. The kink soliton and the Bloch wave no longer exist when µ falls 
into the semi-infinite gap. From Fig. 5a, we suspect that the kink soliton may be regarded as a kink function, 
such as the tanh function, multiply by a Bloch wave function when the chemical potential µ near the lower edge 
of the first band.

When it comes to the bubbles (see Fig. 5b), the numerical results are quite different to the kink ones. One 
can see that the amplitude of the bubbles decreases as µ increases. When µ falls into the semi-infinite gap, the 
gray soliton reduces to an on-site-like bright soliton (see the wave profile at point P3 ). This is because the linearly 
periodic Bloch wave is prohibited in the semi-infinite gap. The profiles of this kind of solitons are similar to 
the bright solitons discussed before. However, they have different dynamical behaviors. The numerical results 
indicate that the on-site-like solitons are linearly unstable and dynamically unstable if µ is near the band edge. 
There is a critical value for µ . The on-site-like solitons are linearly and dynamically stable only when µ is less 
than this critical value. For the parameters used in Fig. 5b ( g1 = 1, g2 = −0.5 ), the critical value for µ is about 
0.438. This critical value depends on the nonlinear strength g1 and g2 . From Fig. 5b, we suspect that the bubble 
soliton may be regarded as a superposition of a completely localized function and a Bloch wave function when 
µ near the lower edge of the first band.

Multi‑scale method. We now make a theoretical analysis on the solitons obtained in the above section. 
Considering that µ falls into the band-gap from the band edge k = k0 , µ0 = µ(k0) , then ψ(x) and µ can be 
expanded with multi-scale X0 = x , X1 = ε1/2x , that is

where ε = k − k0 is a small quantity. Suppose that g1 = O(ε), g2 = O(ε) . Substituting the above expansions into 
Eq. (4), one can get

where L0 = − 1
2

∂2

∂X2
0

+ V(X0)− µ0.
Equation (9) is similar as Eq. (5), thus it possesses solution ψ0 = B(X1)p(X0) , where p(X0) is the carrier wave 

and B(X1) is the modulating wave. From Eq. (10), we then have ψ1 = dB
dX1

H(X0) , where H(X0) is a periodic 
function, which satisfies L0H = dp

dX0
 . It’s easy to verify that the Fredholm condition is satisfied automatically. 

Substituting ψ0 and ψ1 into Eq. (11) yields

Applying the Fredholm condition to Eq. (12) leads to the following stationary nonlinear Schrödinger equa-
tion for B(X1)

49

where D = 1
2

d2µ
dk2

∣

∣

µ=µ0
 , α1 =

∫ 4K(q)
0 p4(x)dx
∫ 4K(q)
0 p2(x)dx

 , α2 =
∫ 4K(q)
0 p6(x)dx
∫ 4K(q)
0 p2(x)dx

 . When the three-body interaction can be neglected, 
i.e. g2 = 0 , then Eq. (13) reduces to the stationary cubic NLSE. Note that α1 and α2 are always positive.

Equation (13) has a localized solitary wave solution, which reads

(7)ψ(x) =ψ0(X0,X1)+ ε1/2ψ1(X0,X1)+ εψ2(X0,X1)+ · · ·

(8)µ =µ0 + µ2ε + · · ·

(9)ε0 : L0ψ0 =0,

(10)ε1/2 : L0ψ1 =
∂2ψ0

∂X0∂X1

,

(11)ε1 : L0ψ2 =
∂2ψ1

∂X0∂X1

+
1

2

∂2ψ0

∂X2
1

+ µ2ψ0 − g1ψ
3
0 − g2ψ

5
0 ,

(12)L0ψ2 =
d2B

dX2
1

[

H ′(X0)+
1

2
p(X0)

]

− g1B
3p3(X0)− g2B

5p5(X0)+ µ2Bp(X0).

(13)−D
∂2B

∂X2
1

− µ2B+ g1α1B
3 + g2α2B

5 = 0,

(14)B(X1) =
±sech(β1X1)

√

β2 + β3sech
2(β1X1)

,
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where β1 =
√
−2µ2/D , β2 =

√
3g21α

2
1+16g2α2µ2

2
√
3|µ2|

 , β3 = g1α1−2β2µ2

4µ2
 . Solution (14) is just the so-called “bright 

soliton”. If the three-body interaction is negligible, i.e. g2 = 0 , this soliton reduces to the bell-like soliton of the 
cubic NLSE.

Equation (13) also possesses the kink (the hole center has zero intensity) and bubble (having a nonzero value 
at the hole center)  solitons39,50,51, which can be expressed as

and

where β4 =
√

1
D

(

µ2 − g1α1
2β5

)

 , β5 = g1α1±
√

g21α
2
1+4g2α2µ2

2µ2
 and β6 = 3g1α1β

2
5+6g2α2β5

3g1α1β5+4g2α2
 . Figure 6 is a sketch for the 

profiles of kink and bubble, where B2 is adopted rather than B(X1) itself. B2 tends to a nonzero constant 1/β5 
when X1 → ±∞ . At the center of the soliton, i.e. X1 = 0 , Bkink is zero but Bbubble is nonzero. It is also worth 
remarkable that the kink Bdark has a kink shape and the bubble Bbubble has a bell-like one. 

√

β−1
5  and 

∣

∣

∣

∣

√

β−1
5 −

√

(β5 − β6)−1

∣

∣

∣

∣

 can be regarded as the amplitude of the kink and bubble, respectively. When β6  tends 

to zero, the bubbles can no longer be excited. For the kink, to avoid the singularity, it is required that both β5 and 
β6 should be positive. However, for the bubble, these conditions become β5 > 0 and β6 < β5 , implying that β6 
can be negative. Note that β6 equals to β5 when g2 = 0 , suggesting that this kind of bubbles do not exist for the 
cubic NLSE. Therefore, the emergence of bubbles is just due to the effect of three-body interaction.

Stability analysis. Linear stability analysis on bright solitons. We now numerically investigate the linear 
stability properties of solitons given by the NCG method. The perturbation carrier wave can be written as a 
Bogoliubov expansion

where � is the eigenvalue of the normal mode, and “∗′′ denotes complex conjugation, |υ|, |w| ≪ 1 are infinitesimal 
normal-mode perturbations. Substituting this perturbed solution into Eq. (2) and linearizing, we find that these 
normal modes satisfy the following linear eigenvalue problem

with L1 = 1
2
∂xx + µ− V(x)− g1ψ

2 − g2ψ
4, L2 = 1

2
∂xx + µ− V(x)− 3g1ψ

2 − 5g2ψ
4 . General speaking, it is 

rather difficult to solve this linear eigenvalue problem analytically and exactly. However, we can solve it numeri-
cally and efficiently by the finite difference method or the Fourier collocation  method49.

The numerical results indicate that all the on-site gap solitons of Eq. (4) are linearly stable. To indicate that 
the three-body interaction strength g2 can indeed affect the stability of the off-site solitons, Fig. 7 shows the 
linear spectrum of off-site gap solitons under various of parameters. The gap soliton shown in Fig. 7a is linearly 

(15)Bkink(X1) =
±sinh(β4X1)

√

β5sinh
2(β4X1)+ β6

,

(16)Bbubble(X1) =
±cosh(β4X1)

√

β5cosh
2(β4X1)− β6

,

(17)�(x, t) = {ψ(x)+ [υ(x)+ w(x)]e�t + [υ∗(x)− w∗(x)]e�∗t}e−iµt ,

(18)
[

0 L1
L2 0

] [

υ

w

]

= −i�

[

υ

w

]

Figure 6.  Sketch for the profiles of kink and bubble solitons.
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unstable ( g1 = −1, g2 = 0 ) while it is linearly stable in Fig. 7b ( g1 = −1, g2 = 0.6 ). Similarly, with different g2 , 
the soliton in Fig. 7c ( g1 = 1, g2 = 0 ) is linearly unstable while it is linearly stable in Fig. 7d ( g1 = 1, g2 = −0.45 ) .

To deeply understand the effects of g2 on the stability properties, Fig. 8 shows the maximum growth rate of per-
turbation �m = max[Re(�)] for the gap solitons versus g2 under different chemical potential µ ( V0 = 2, q = 0.1 ). 
The corresponding profiles of gap solitons are similar as Fig. 7b or d. From Fig. 8, one can see that the unstable 
gap solitons become stable if g2 increases over a critical value when other parameters are fixed. Thus, one can 
change the stability property of gap solitons by adjusting the three-body interaction strength in experiments.

Figure 7.  Stability spectra of gap solitons (a,b) in the semi-infinite gap and (c,d) in the first gap. The insets are 
the corresponding wave functions.

Figure 8.  Maximum growth rate of perturbation �m for the gap solitons versus the three-body interaction 
strength g2 under different chemical potential µ . The profiles of gap solitons are similar as Fig. 7b or d. (a) In the 
semi-infinite gap. (b) In the first gap.
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Stability of dark solitons. Now, we numerically investigate the stability of the dark solitons discussed 
before. Figure  9a and d illustrate the profiles of dark solitons (red lines) given by NCG method for 
V0 = 2, q = 0.1,µ = 0.7, g1 = −1, g2 = 0.5 , in which µ lies in the semi-infinite gap. Figure 9b and e are the 
linear stability spectrum for the dark solitons shown in (a) and (d), respectively. One can see that both the kink 
and bubble are linearly unstable. To verify this conclusion, we have made the long-time evolution for Eq. (2), 
where the initial condition is taken as the random perturbed soliton obtained by the NCG method. The time-
splitting Fourier Spectral  method52,53 is adopted to make the time evolution. This method has high accuracy and 
can guarantee that the number of particles is conserved. Figure 9c and f are the contour plots of |�(x, t)| . From 
which, it is clearly that the two dark solitons are dynamically unstable, which agrees well with the linear stability 
analysis. A natural question is whether there exists stable dark solitons (kink or bubble) in the semi-infinite gap. 
To answer this question, we have made lots of numerical calculations for various values of g1 < 0 and g2 > 0 . 
Unfortunately, we failed to find the stable dark solitons for this case. In Ref.54, the authors found that the static 
bubble solitons are always unstable, which is also in well agreement with our conclusion.

Are there any stable dark solitons in the BEC system? Excitingly and interestingly, we indeed found stable 
kinks under certain parameters. Figure 10a and d illustrate the profiles of dark solitons (red lines) given by NCG 
method for V0 = 2, q = 0.8,µ = 1.2, g1 = 1, g2 = 0.5 , in which µ lies in the first gap. Figure 10b and e are the 
linear stability spectrum for the dark solitons shown in (a) and (d), respectively. One can see that the kink soliton 
is linearly stable, while the bubble has two unstable modes, thus it is linearly unstable. Figure 10c and f are the 
contour plots of |�(x, t)| . From which, it is clearly that the kink soliton is dynamically stable, while the bubble 
is dynamically unstable, which also agrees well with the linear stability analysis.

When the above nonlinear evolution is performed, the spacial interval is truncated from (−∞,+∞) to (-32Tx , 
+32Tx ), where Tx is the periodicity of the external potential ( Tx ≈ π when q = 0.1 ). Then the interval is divided 
into 8192 grids uniformly. We think that the length of the interval is large enough and the numerical method can 
give us the satisfactory results. On the other hand, we also think that the numerical error near the boundaries 
maybe large. So, we only pay attention on the interval (−20, 20) when plotting the results (see Figs.  9,  10c and 
f). We believe that the numerical results have high accuracy in this smaller interval.

From Figs. 9 and 10, we have the reason to suppose that the modulus q of the external potential may be an 
important parameter for the stability property of the dark solitons. To confirm this conclusion, Fig. 11 shows 
�m for the dark solitons versus the modulus q under different chemical potential µ . The corresponding profiles 
of dark solitons are similar as those shown in Fig. 9a or d. From Fig. 11a, we see that all the bubbles are linearly 
unstable. When q is near 1 (but less than 1), �m decreases rapidly as q increases, implying that increasing the 

Figure 9.  Profiles of (a) kink and (d) bubble in the semi-infinite gap. The shaded regions represent lattice 
sites, i.e., regions of low potential values V(x). (b,e) The linear stability spectrum of the dark solitons shown 
in (a) and (d), respectively. (c,f) Contour plots of |�(x, t)| for the dark solitons. The parameters are taken as 
V0 = 2, q = 0.1,µ = 0.7, g1 = −1, g2 = 0.5.
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modulus of the external potential can weaken the instability of the bubble solitons. In Ref.54, the authors also 
found that the static bubble solitons are always unstable. Here, we have the same conclusion. However, for the 
kink solitons (see Fig. 11b), there exists a critical value of qcµ for a given µ . When q < qcµ , the kinks are linearly 
unstable, otherwise they are linearly stable. Take a instance, qcµ ≈ 0.7 for µ = 1.2 and qcµ ≈ 0.61 for µ = 1.4 , sug-
gesting that qcµ depends upon µ . Thus, one can change the stability properties of kinks by adjusting the modulus 
of external potential in experiments.

It is worth remarkable that �m oscillates as q increases in Fig. 11b, which makes the figure does not look 
as “pretty good” as Fig. 11a. This is because, for kink solitons, �m are relatively smaller ( � 10−3 ) than those of 
bubble-like solitons ( ∼ 10−1 ), implying that the perturbation increases rather slowly. The oscillation may be due 
to the numerical errors. In fact, it is difficult to identify that a very small �m is caused by the soliton instability 

Figure 10.  Profiles of (a) kink and (d) bubble in the first gap. The shaded regions represent lattice sites, 
i.e., regions of low potential values V(x). (b,e) The linear stability spectrum of the dark solitons shown in 
(a) and (d), respectively. (c,f) Contour plots of |�(x, t)| for the dark solitons. The parameters are taken as 
V0 = 2, q = 0.8,µ = 1.2, g1 = 1, g2 = 0.5.

Figure 11.  Maximum growth rate of perturbation �m for dark solitons versus the modulus of external potential 
q under different chemical potential µ . The profiles of dark solitons are similar as those shown in Fig. 9a or d. (a) 
bubble-like soliton (b) kink soliton.
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or induced by the numerical errors. This trouble cannot be overcome even if one uses the long-time nonlinear 
evolution. In general, the soliton can be regarded as linearly stable within a relatively short period of time if �m 
is small enough.

Conclusion
In summary, we have analytically and numerically investigated the stability properties of bright and dark soli-
tons in a quasi-1D BEC with three-body interaction loaded in a Jacobian elliptic sine potential. Bright and dark 
solitons are numerically found by the NCG method. A stationary nonlinear Schrödinger equation is derived to 
describe the profiles of solitons via the multi-scale technique. Linear stability analysis indicates that the three-
body interaction strength has distinct effect on the stability properties. Especially, such a nonlinear system sup-
ports the so-called dark solitons (kink or bubble), which can be excited not only in the gap, but also in the band. 
The bubbles cannot be excited if the three-body interaction is absent and they are always unstable. Both stable 
and unstable kinks, depending on the physical parameters, can be excited in the BEC system.
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