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The Covid‑19 pandemic, a disease transmitted by the SARS‑CoV‑2 virus, has already caused the 
infection of more than 120 million people, of which 70 million have been recovered, while 3 million 
people have died. The high speed of infection has led to the rapid depletion of public health resources 
in most countries. RT‑PCR is Covid‑19’s reference diagnostic method. In this work we propose a new 
technique for representing DNA sequences: they are divided into smaller sequences with overlap in a 
pseudo‑convolutional approach and represented by co‑occurrence matrices. This technique eliminates 
multiple sequence alignment. Through the proposed method, it is possible to identify virus sequences 
from a large database: 347,363 virus DNA sequences from 24 virus families and SARS‑CoV‑2. When 
comparing SARS‑CoV‑2 with virus families with similar symptoms, we obtained 0.97± 0.03 for 
sensitivity and 0.9919± 0.0005 for specificity with MLP classifier and 30% overlap. When SARS‑CoV‑2 
is compared to other coronaviruses and healthy human DNA sequences, we obtained 0.99± 0.01 for 
sensitivity and 0.9986± 0.0002 for specificity with MLP and 50% overlap. Therefore, the molecular 
diagnosis of Covid‑19 can be optimized by combining RT‑PCR and our pseudo‑convolutional method 
to identify DNA sequences for SARS‑CoV‑2 with greater specificity and sensitivity.

Context and motivation. In December 2019, in the city of Wuhan, China, a new virus emerged from 
the interaction of humans with pangolins and bats. This virus caused a disease that, in mild cases, looked like 
a simple flu. In severe cases, patients had Severe Acute Respiratory Syndrome, transmitted by the SARS-CoV 
coronavirus. However, the transmissibility was much higher. In a world connected by modern means of trans-
port and unprepared for a highly transmissible disease, 2019 Coronavirus Disease, Covid-19, transmitted by the 
new coronavirus, SARS-CoV-2, has spread across the world, generating a world  pandemic1. The virus can be 
transmitted by both symptomatic and asymptomatic people. The contagion is given by drops or secretions from 
sneezing or  coughing2.

Hospital facilities have been experiencing overcrowding. Most medical professionals are working long hours, 
and the number of pulmonary ventilators is not enough for all patients. This scenario has led dozens of countries 
to adopt measures of social isolation and quarantine. They attempt to contain the dissemination, and to mitigate 
the number of people who need  hospitalization3–5. The world has been radically changed by measures of confine-
ment and social distancing, while public health systems are being driven to exhaustion. By the end of April 2021, 
the world registered almost 150 million people infected and more than 3 million  dead6. Covid-19 manifests itself 
as a respiratory syndrome. In moderate cases, it manifests clinically as pneumonia. In severe cases, the disease 
can cause severe respiratory failure, septic shock and/or multiple organ dysfunction (MOD) or failure (MOF)2,7,8.

OPEN

1Escola Politécnica da Universidade de Pernambuco, POLI-UPE, Recife, Brazil. 2Information Technology 
Department, Technical College of Informatics, Sulaimani Polytechnic University, Sulaymaniyah, Iraq. 3Instituto 
Federal de Educação, Ciência e Tecnologia da Paraíba, Campus Cajazeiras, IFPB, Cajazeiras, Brazil. 4Departamento 
de Engenharia Biomédica, Universidade Federal de Pernambuco, DEBM-UFPE, Recife, Brazil. *email: wps@
ecomp.poli.br

http://orcid.org/0000-0003-2558-6602
http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-90766-7&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11545  | https://doi.org/10.1038/s41598-021-90766-7

www.nature.com/scientificreports/

In response to this growing pandemic, several companies and research centers around the world have devel-
oped methods to diagnose Covid-199. Rapid tests provide results in about 30 min. Using samples from the 
patient’s respiratory tract, the Rapid Diagnostic Test (RDT) seeks to detect the presence of antigens. Antigens 
are substances foreign to the body, causing immune responses. These responses produce specific antibodies, 
able to bind and interact with the respective antigens, ensuring the protection of the organism. The antibodies 
are fixed on paper tapes and placed in plastic capsules, similarly to the well-known pregnancy tests. If the target 
antigen is present in the patient’s sample, it will bind to the antibodies on the tape, generating a visual signal. This 
method has some limitations. First, detection is only possible in the acute stages of infection, when antigens are 
expressed. In addition, efficiency depends on factors such as the quality of the sample, the collection protocol, 
and the formulation of the reagents. It is also common to have false positives, when the antibodies present on 
the tape recognize antigens from other types of viruses. For these reasons, the sensitivity of the RDT can vary 
from 34 to 80%10,11.

Other rapid tests are based on the detection of antibodies in blood samples. However, several studies have 
shown that the immune response is very weak, late or even absent in many cases of patients confirmed with 
Covid-1912–18. This means that this type of detection is often only possible in recovered patients. Long et al.19 
reports 285 patients with a positive IgG test. However, these immune responses were observed 19 days after 
the first symptoms. This condition makes testing ineffective in many situations, as opportunities for treatment 
and clinical interventions no longer exist. WHO currently does not recommend these types of rapid diagnostic 
tests for Covid-19. These tests are used in research contexts or as a way of screening patients, or of potential 
 diagnosis11.

The standard for the diagnosis of Covid-19 is the molecular diagnosis with Reverse Transcriptase by Poly-
merase Chain Reaction (RT-PCR)13,20. Throat swab samples are usually collected from suspected patients in this 
type of analysis. The samples are then placed in tubes with virus preservation solutions, where the genetic mate-
rial of the virus can be extracted. In the first phase, reverse transcription occurs, where a complementary DNA 
molecule (cDNA) to the virus’s RNA is synthesized. This process occurs through the enzyme DNA polymerase. 
The RNA is then removed and the Taq DNA polymerase enzyme produces double-stranded DNA, which is a 
copy of the virus’s RNA. Then, the PCR exponentially amplifies fragments of this DNA during successive cycles, 
generating millions of copies to be analyzed. Next, the cDNA is aligned with the sequences of the SARS-CoV-2 
virus, to analyze the similarity between the sequences. The most used methods are BLAST and FASTA. If there 
is a match between the two sequences, the patient is confirmed as positive for Covid-1921–24.

One of the main limitations of sequence alignment methods is computational complexity and time consump-
tion. In many cases, patients can take days to receive the diagnosis due to sample preparation and genomic 
analysis. Due to this aspect, several studies have proposed free alignment methods for the classification of 
genomic sequences. Most of these methodologies involve a method of extracting characteristics, such as the 
spectral representation of DNA sequences. Thus, the representative attributes of the sequence can be combined 
with artificial intelligence methods, mainly machine learning. This makes it possible to separate each analyzed 
sequence into a class (Covid-19 positive or Covid-19 negative, for example)21,22.

In this work, we propose a new technique for representing sequences based on the analysis of the relation-
ships between nitrogenous bases. This technique analyzes the DNA sequences obtained by the RT-PCR method, 
eliminating the alignment process. The DNA sequence is divided into n smaller sequences. Each ith subsequence 
is superimposed on a part of the (i − 1) th subsequence and on a part of the (i + 1) th subsequence, giving rise to 
two new subsequences. These smaller sequences are represented by 4× 4 co-occurrence matrices with rows and 
columns corresponding to each of the nitrogenous bases of DNA (Adenine, Cytosine, Timine and Guanine). The 
co-occurrence matrix considers the occurrence of each of the bases, as well as the relationship between the bases 
and their immediate neighbors. Then, the co-occurrence matrices are stacked, forming a volume. Considering 
that the sequences can be subdivided into smaller subsets, with the formation of new co-occurrence matrices, 
the proposed method has a pseudo-convolutional aspect from an algorithmic point of view. After obtaining 
the set of matrices, they are concatenated, forming attribute vectors. These extracted attributes correspond to a 
high-level vector representation of the initial DNA sequence, regardless of the size of the sequence. This feature 
vector is then classified by machine learning techniques.

Through the proposed method, it is possible to identify virus sequences from a relatively large database. 
Our proposal is characterized by the following aspects: First, it is not necessary to pre-align the sequence under 
investigation in relation to the reference sequences; Second, the sequence under study is compared with a wide 
set of sequences from certain classes, and not just with a reference sequence, reinforcing the test’s reliability. We 
also emphasize that the method can be applied to sequences of any size, since the representation proposal does 
not depend on sequence size.

Related works. Several studies have proposed rapid tests for the diagnosis of Covid-19. The most common 
methods are based on  antibodies15. proposed a simple and rapid test for the combined detection of IgG and IgM 
antibodies. Both antibodies are indicative of infection. However, immunoglobulins M provide an immediate 
response to viral infections and can be detected within 3 to 6 days after infection. Immunoglobulin G, on the 
other hand, is important for long-term immunity or for the body’s immune memory. The test was developed to 
detect IgM and IgG simultaneously in blood samples, allowing detection in a longer time window. For the devel-
opment of the rapid test, the authors collected samples from eight different laboratories and hospitals in China, 
with a total of 397 patient samples positive for Covid-19 and 128 negative samples. These results were confirmed 
by the RT-PCR technique in a sample of the respiratory tract. Blood samples from the patients were pipetted into 
the test kit, followed by two or three drops of dilution buffer. After 15 min, it was possible to analyze the result 
using three markers. The first marker (letter C) or line on the display appears in red when the sample is negative. 
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The presence of IgG and IgM is indicated by red or pink lines in the regions with the letters M and G in the kit. 
Both antibodies may be present in the sample. The tone of the line is also indicative of the concentration level 
of each type of antibody. The proposed test showed sensitivity of 88.66% and specificity of 90.63% . These values 
can be considered high, compared to results obtained in other  studies25. The work also tested the performance of 
the method in 10 patients with peripheral blood. The results remained reliable. Thus, the work is promising and 
points out an interesting path for a simple and quick diagnosis, which can be an alternative for extensive tests in 
the population. However, the study does not point to tests with other types of viruses with symptoms similar to 
the ones provoked by SARS-CoV-2, such as common flu. Given the similarity between viral responses, tests can 
indicate false positives, in which antibodies bind to SARS-CoV-2-like antigens.

Other works incorporate computational intelligence techniques in Covid-19 diagnosis. Many of them have 
invested in the automatic classification of X-ray images of the lungs using Deep Learning techniques, mainly 
Convolutional Neural Networks (CNNs)26–33. Apostolopoulos et al.34 applied these techniques to distinguish 
Covid-19 from other lung diseases, such as viral and bacterial pneumonias, pulmonary edema, pleural effusion, 
chronic obstructive disease, and pulmonary fibrosis. This study used a large database of 3905 X-ray images, 
including approximately 450 cases of Covid-19. For model training, the images were scaled to 200 × 200 pixels. 
The authors also considered image small variations. The images were slightly rotated to make the model robust to 
variations in position and orientation that may occur in the image acquisition process. In order to extract char-
acteristics from the images, CNN models like Mobile Networks were tested. Three techniques were compared: 
development of a new CNN architecture; application of a pre-trained CNN (Transfer Learning); and a hybrid 
method, applying adjustment strategies to specific layers of a pre-trained CNN. The experiments were carried 
out in Python, using Keras and TensorFlow libraries as back-end. Among the tested configurations, the CNN 
developed from scratch showed the best results, suggesting that biomarkers related to Covid-19 can be found by 
the technique. The model achieved an average classification accuracy of 87.66% , considering all six classes. With 
respect to Covid-19, the model achieved 99.18% accuracy, 97.36% sensitivity and 99.42% specificity.

Deep learning architectures have been used to build solutions to combat Covid-19 in many other applications 
than just chest X-ray or computed tomography diagnostics, such as: (a) epidemiological modeling; (b) search for 
drugs and active ingredients effective against SARS-CoV-2 infection; (c) prediction of the secondary structure of 
proteins to support the design of medicines and vaccines; and (d) prediction of severity, recovery and mortality 
of patients with Covid-1933,35.

Gomes et al.36 also proposed the use of machine learning techniques for classifying radiographic images, 
distinguishing between Covid-19, viral pneumonia, bacterial pneumonia, and healthy patients. In contrast to 
the previous work, the authors invested in low-cost computational methods. The authors tested the Haralick 
and Zernike moments for attribute extraction and used classic classifiers, such as Multilayer Perceptron neural 
networks (MLP), Support Vector Machines (SVM), decision trees, and Bayesian networks. The work points out 
that texture and shpate features can play an important role in Covid-19 image diagnosis. In clinical practice, it 
is common to find opaque and whitish areas in lung regios affected by pneumonias. Finally, SVM achieved the 
best overall performance. The authors achieved an average accuracy of 89.78% , an average recall and sensitivity 
of 0.8979, and an average precision and specificity of 0.8985 and 0.9963, respectively. An initial desktop version 
of the system was developed and made available for free non-commercial use on Github.

Despite the importance of rapid diagnostic methods, WHO recommends the RT-PCR method as the gold 
standard for determining whether the patient has Covid-19, as RT-PCR can detect the presence of SARS-CoV-2 
in the sample blood or  secretion11. This procedure is similar to that adopted when the SARS outbreak occurred, 
for the detection of SARS-CoV37–39. Several studies and protocols to identify SARS-CoV-2 by molecular diag-
nosis have already been  published40–44. Chu et al.43 developed RT-PCR assays to detect SARS-CoV-2 in human 
clinical samples. The authors counted on the first publication of the virus sequence in Genbank, in addition to 
sequences of other types of coronavirus to make the alignment. They designed two monoplex assays, which target 
the ORF1b and N gene regions. Then, these primer and probe sequences were confirmed with other released 
SARS-CoV-2 sequences. The RT-PCR reactions were performed by a thermocycler, using a typical reaction 
mixture, forward and reverse primers, probe and RNA sample. RNA and DNA purification kits were also used 
for extraction. The time for each RT-PCR run was about 1 hour and 15 min. To determine the specificity of the 
assays, they used negative control samples with RNA extracted from other viruses (MERS-CoV, camel coro-
navirus, influenza A and B, adenovirus, enterovirus, rhinovirus etc.) and from healthy patients. In contrast, all 
viruses belonging to the subgenus Sarbecovirus (coronavirus similar to SARS-CoV and other coronaviruses) 
were considered positive in these assays. This decision was made due to the small amount of data available on 
SARS-CoV-2 at the time of the development of the work. The study tested the method on two patients with 
suspected SARS-CoV-2 infection. The samples were taken from different locations (sputum vs. smeared throat) 
and at different periods of infection (day 5 vs. day 3). Both patients received a positive result. Finally, the results 
of the study demonstrated the clinical value of respiratory samples for the molecular diagnosis of Covid-19. The 
authors also observed high sensitivity of the N gene to detect the disease, being recommended as a screening 
test, and Orfb1 as confirmatory. However, RT-PCR is time-consuming and laborious and, as a result, its result 
may take days to become  available45. This hampers clinical management and favors the contamination of more 
people by SARS-CoV-2.

In this sense, the objective of this work is to propose an optimization of the gold standard method, making 
it possible for a sample suspected of the presence of SARS-CoV-2 to be digitally compared to a list of 24 virus 
families using a pseudo-convolutional representation for virus DNA sequences and state-of-the-art classifiers.

Proposed method. In this work, we present a new pseudo-convolutional feature extraction method to 
represent sequences of nitrogenous bases. Our main objective is to optimize the potential result of RT-PCR 
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for Covid-19 diagnosis. To validate our proposal, we obtained genomic sequences of different viruses from the 
VIPR (Virus Pathogen Resource)46 repository. We employed 24 virus families with more than 500 DNA viral 
sequences per family, including the Coronaviridae family. SARS-CoV-2 sequences are separated from other 
Coronaviridae sequences, since we are interested in SARS-CoV-2 identification. Thus, the classification problem 
involves 25 classes, since SARS-CoV-2 samples are inserted separated from Coronaviridae family. We converted 
each sequence to numeric vectors using our pseudo-convolutional process. Afterwards, we performed several 
experiments with different state-of-the-art machine learning methods. Results were evaluated considering four 
metrics: accuracy, kappa index, sensitivity and specificity. Figure 1 presents a general flow-chart of our proposal, 
whilst Fig. 2 illustrates our specific contribution.

The pseudo-convolutional representation process is described as follows. Initially, the genome sequence is 
divided into n sub-sequences. These sub-sequences are overlapped with its neighbors. In the overlapping process, 
a parameter received by the method determines the size of the superimposed pieces. Every ith sub-sequence is 
combined with a piece of the sub-sequence immediately to its left, the (i − 1)th, and with the piece at its right, 
the (i + 1)th. An exception is made for the first and the last sequences of the matrix, given that they have only 
one sub-sequence from which to take a piece. This procedure results into two new sequences for each of the 
sub-sequences generated from the original genome. After that, these smaller sequences are represented by 4× 4 
co-occurrence matrices. Each element of the matrix represents the number of occurrences of a given pair of 
nucleotide bases, as well as the relationship between bases and their immediate neighbors. These elements are 
AA, AC, AT, AG, CA, CC, CT, CG, TA, TC, TT, TG, GA, GC, GT, and GG. For instance, reading a sequence from 
left to right, when the present nucleotide base is T and its right neighbor is G, the matrix element in row T and 
column G is incremented. The final matrix is then normalized, where its maximum value is used as normaliza-
tion factor. Finally, all the 4× 4 matrices are stacked together, forming a 4× 4×m volume, wherein m is the 
number of sub-sequences resultant from the overlapping process. In general terms:

(1)m = (n− 1)× 2.

Figure 1.  General scheme of the proposal: the RT-PCR process converts and amplify the virus RNA obtained 
from collected samples and returns a textual DNA sequence as a text file. This textual DNA sequence is 
converted into a numeric vector by the pseudo-convolutional representation process and then classified 
into healthy human tissue or one of the 25 virus families or SARS-CoV-2 species by a determined learning 
machine. The analysis software then returns the diagnostic decision: if the input sample corresponds to a 
healthy human sample or a determined virus. These virus DNA sequences were obtained from the NIAID Virus 
Pathogen Database and Analysis Resource—ViPR46. Human participants were not involved in our research. No 
demographic data were collected as well.

Figure 2.  Detailed contribution: 25 classes are used to train the classifiers: 24 virus families and SARS-CoV-2 
sequences. Each sequence is analysed, being divided into several sub-sequences considering with a determined 
degree of overlapping. Each sub-sequence is then represented by 4× 4 co-occurrence matrices representing the 
distribution of nucleotides neighborhoods. The 4× 4×m volume is then stacked to generate the respective 
feature vector used as input for the classifier.
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After obtaining this set of matrices, they are then concatenated, forming an attribute vector, i.e. a feature vec-
tor. These extracted attributes correspond to a high-level vectorial representation of the initial DNA sequence, 
independent from its size. The detailed view of this representation process is presented on Fig. 3.

Results
Multiclass classification. To assess the efficiency of the proposed method of extracting characteristics, 
this first round of experiments was conducted in a more challenging scenario with twenty-five different viruses, 
including SARS-CoV-2. Five types of classifiers were tested: IBk, Multilayer Perceptron (MLP), Naive Bayes 
classifier (NBC), Random Forest and Support Vector Machines (SVM). All experiments were carried out with 
the Weka data mining Java library. The parameters used in each machine learning method are shown in Table 1.

Figure 4 shows the accuracy for all classifiers in the datasets with 30%, 50%, and 70% of overlap, respectively. 
Considering this multiclass classification, all three datasets (with 30% , 50% , and 70% overlap) presented Random 
Forest classifier with the highest accuracies (approximately 94% in all the datasets).

Figure 5 shows box plots for the Kappa statistic. Since Kappa statistic is less sensitive to the high imbalanced 
test dataset, it is a better evaluation metric then accuracy. Nevertheless, the Random Forest classifier achieves 
the highest Kappa statistics compared with the other classifiers (above 0.88 in all experiments).

Figure 6 presents the weighted average sensitivity, specificity, and ROC area for all datasets and classifiers. 
For the weighted average sensitivity and ROC area, Random Forest results are higher or at least equal to other 
classifiers. For the weighted average specificity, visual analysis of Fig. 6b suggests that the IBK classifier achieves 

Figure 3.  Steps of the proposed method: a new technique for representing genome sequences based on the 
analysis of the relationship between nitrogenous bases. The complete genome sequence is subdivided into n 
folders. Each sub-sequence is combined with a piece of its neighbors, generating two new sequences. These 
smaller sequences are represented by co-occurrence matrices, considering the occurrence of each of the 
nitrogenous bases, and the relationship between bases and their immediate neighbors. In the next step, theses 
matrices are stacked together as a volume. Finally, this set in concatenated, forming attribute vectors, which are a 
high-level vectorial representation of the original sequence.
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higher scores on this metric. However, all classifiers, except Naive Bayes Classifier, achieved results above 0.99 
on weighted average specificity. Therefore the Random Forest is presented as a robust classifier for this task.

Aiming to evaluate the overlap percentage in the feature extraction method, Fig. 7 shows box plots for accu-
racy, Kappa statistic, weighted average precision, recall and ROC area for the Random Forest classifier in the 
datasets with 30%, 50%, and 70% overlap percentages. The variance of accuracy and kappa in the dataset with 
30% overlap is higher than in the 50% and 70% overlap dataset. However, 30% overlap seems to be slightly better, 
or at least at the same level, as the others overlap percentages.

Due to class imbalance in the test dataset, we need to evaluate sensitivity, specificity, and ROC area for each 
class separately. Considering the Random Forest classifier in the dataset with 30% overlap, Table 2 shows the 
results of sensitivity, specificity, and ROC area individually for each virus in the database. Specificity and ROC 
Area results are above 0.9 for every virus. The sensitivity varies from 0.99391 for Pneumoviridae to 0.23397 for 
Filoriviridae. However, for most of the classes, sensitivity has values greater than 0.8, including SARS-CoV-2 
class with a sensitivity of 0.82.

In order to perform a visual analysis of these results, Fig. 8 shows the average confusion matrix for the Ran-
dom Forest classifier in the dataset with 30% overlap. The confusion matrix is expressed in terms of percentage 
for the particular class, and the classes indexes numbers are the same as shown in Table 2. We can see that, for 
some classes, there is a confusion with another virus. For example, most of the Picornaviridae virus (index 0) is 
classified as Enterovirus (index 14). This confusion is not symmetrical: Picornaviridae is misclassified as Entero-
virus, but Enterovirus is not misclassified as Picornaviridae. The only exception for this observation of confusion 
with another virus type is the Phasma Viridae (index 23), which is confused with two other viruses: Hantaviridae 
(index 9), and Peribunyaviridae (index 21). However, since there are few examples of Phasma Viridae in the 
dataset (only 42 examples), those results may be caused by the low representative of this class in the dataset.

Table 1.  Classifiers parameters: SVMs with linear kernel; MLPs with 48 neurons in the hidden layer; random 
forests with 100 trees; and standard IBK and Bayesian networks.

Classifier Hyperparameters

Random Forest (RF) Number of estimators: 100

Naive Bayes Classifier (NBC) –

IBK
Number of neighbors to use: 1

Distance metric: Euclidean distance

Multilayer Perceptron (MLP)

Learning rate: 0.3

Momentum: 0.2

Single hidden layer with 48 neurons (number attributes divided by two)

Sigmoid activation function

Support Vector Machine (SVM)
C: 0.1

Linear Kernel

Figure 4.  Accuracy for multiclass scenario.
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Regarding the SARS-CoV-2 virus (index 24), the only relevant confusion is with Coronaviridae (index 17). 
It is a predictable outcome since SARS-CoV-2 belongs to the Coronaviridae virus family. 3.1% of Coronaviridae 
examples are classified as SARS-CoV-2, i.e. the only confusion noticed in column 24 of the confusion matrix. A 
more significant confusion is noticed between SARS-CoV-2 and Coronaviridae since 11% of SARS-CoV-2 are 
misclassified as Coronaviridae.

Since the ROC area for SARS-CoV-2 is 0.99883 (Table 2), we performed a threshold adjustment for SARS-
CoV-2 class in order to reach 100% sensitivity. The new average confusion matrix is shown in Figure 9. Higher 
false positives for SARS-CoV-2 remains from Coronaviridae (5.1% - index 17). In the sequence of false positive 
rates, we have: Hepatitis C virus (3.47% - index 20), Reoviridae (3.19% - index 22), and Phasma Viridae (2.68% 
index 23).

Binary classification. Since the highest false positives for SARS-CoV-2 are from Coronaviridae in the mul-
ticlass scenario, we evaluated the same classifiers for a binary classification between Coronavirus and SARS-
CoV-2. For this experiment, only the dataset with 30% overlap was used, since this overlap percentage has shown 
to represent the virus genome sequences satisfactorily.

Figure 10 shows the accuracy, kappa statistic, weighted average sensitivity, specificity, and ROC area for each 
classifier. It is important to state that there is still a relevant imbalance between the number of Coronaviridae and 
SARS-CoV-2 examples in the dataset (3256 and 171, respectively). So, the Kappa statistic is still more appropriate 
than accuracy to assess the classifier’s overall performance. Regarding Kappa statistics, weighted average speci-
ficity, and ROC area, MLP results are higher or equal to other classifiers. For the weighted average sensitivity, 
SVM achieves higher results than MLP. Nevertheless, given that average sensitivity for MLP is higher than 0.96 
and MLP overcomes SVM in all other metrics, MLP seems to be a more robust classifier for this particular task.

Table 3 shows the sensitivity, specificity and ROC Area for each class. It is possible to notice that each one of 
those metrics has values above 0.96. Figure 11 shows the average Confusion Matrix for MLP classifier. There was 
no relevant difference with the multiclass scenario regarding the confusion between Coronaviridae and SARS-
CoV-2 since there is still a 3.85% of Coronaviridae examples misclassified as SARS-CoV-2. However, about the 
confusion between SARS-CoV-2 and Coronaviridae, the binary MLP classifier achieved 2.61% of confusion 
while 11% in the multiclass scenario.

Viruses with similar symptoms. In this experiment, viruses were selected due to similar symptoms. The 
dataset was arranged into four classes: SARS-CoV-2, Coronaviridae, Paramyxoviridae, and Miscellaneous. The 
Miscellaneous Class is a compound of Peneumoviridae, Hantaviridae, Enterovirus, and Nairoviridae. Then, the 
same classifiers used previously were evaluated in this classification task.

Figures 12 and 13 shows the accuracy and kappa for all classifiers and datasets in this classification task. 
Except for the Naive Bayesian classifier, classifiers have similar performance metrics, with approximately 97% 
accuracy and kappa equal to 0.96. Figure 14 shows the weighted average specificity and sensitivity and ROC are. 
The weighted average sensitivity and specificity look very similar to all classifiers (except Naive Bayes Classifier). 
However, the weighted average ROC areas for MLP and Random Forest classifiers are slightly higher than the 
other classifiers, although IBK and SVM classifiers also achieved weighted average ROC areas above 0.98 in all 
datasets.

In order to better evaluate the MLP and Random Classifier, Fig. 15 shows the confusion matrices for 
those classifiers in all datasets. The Random Forest presents a confusion between the SARS-CoV-2 and the 

Figure 5.  Kappa statistic for multiclass scenario.
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Coronaviridae of approximately 10%. It is very similar to the achieved results in the multiclass scenario. However, 
the MLP classifier achieved significantly low confusion between SARS-CoV-2 and Coronaviridae (1.57% in the 
datasets with 30% and 50% overlap). The main confusion found in the MLP classifier is between Conronarividae 
and SARS-CoV-2 (3.81% for the dataset with 30% overlap). By MLP confusion matrix analysis is not possible to 

Figure 6.  Weighted average sensitivity (a), specificity (b), and ROC area for Multiclass test scenario.
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find significant differences between the 30%, 50%, or 70% overlap percentages. Since the 30% overlap requires 
less computational effort to extract the features, we can select the MLP classifier with a 30% overlap dataset as a 
better approach to this particular task. Table 4 shows the sensitivity, specificity and ROC area for each class. The 
average ROC Area and specificity are above 0.99 for all classes. The average sensitivity is also above 0.99 for the 
Paramyxoviridae and Miscellaneous classes. The lowers sensitivity is for Coronaviridae (0.959), while a slightly 
higher sensitivity is achieved for SARS-CoV-2 (0.97).

Real test scenario. In this scenario, the SARS-CoV-2 test is designed as a three-class classification problem: 
SARS-CoV-2 (the test target), GRCh38 (the healthy human reference), and Coronaviridae (a virus control sam-
ple). The same classifiers used in the other experiments were applied to this new task.

Figure 16 shows the accuracy, whilst Fig. 17 presents the kappa statistic results. Except for the Naive Bayes 
Classifier, all other classifiers achieved accuracies higher than 99% and kappa indeces above 0.9. By these metrics, 
it is not possible to distinguish the best classifier. The same behavior is observed in the weighted average metrics 

Figure 7.  Random Forest accuracy (a), kappa (b), weighed average sensitivity (c), specificity (d) and ROC area 
(e) in 30%, 50% and 70% overlap percentages.
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shown in Fig. 18. Weighted average sensitivity, specificity, and ROC area are higher than 0.99 for all classifiers 
except the Naive Bayes Classifier.

Aiming to better evaluate the results of the classifiers in the SARS-CoV-2 test task, all the confusion matrices 
for IBK, MLP, Random Forest, and SVM classifiers are shown on Fig. 19. IBK and Random Forest classifiers 
presents a confusion between SARS-CoV-2 and Coronaviridae that varies from 10.26% (Fig. 19h) to 14.77% 
(Fig. 19c). This outcome is even worse for SVM classifier since most of the SARS-CoV-2 examples are misclas-
sified as Coronaviridae. By confusion matrix analysis, the MLP classifier has lower confusion rates between 
SARS-CoV-2 and Coronaviridae. The results from MLP classifier in the dataset with 50% overlap (Fig. 19e) shows 
99.92% average true positive rate for GRCh38 class, and 98.82% for the SARS-CoV-2. For the Coronaviridae class, 
this classifier achieves 96.2%, while only 3.73% of Coronaviridae examples are misclassified as SARS-CoV-2. 
Table 5 shows the sensitivity, specificity and ROC Area for each of the classes for this MLP classifier.

Discussion
Considering the proposal for the representation of genomic sequences, the good classification results using classic 
machine learning methods show evidences that the pseudo-convolutional method for feature extraction proposed 
in this work may be sufficient to guarantee the identification of viruses from the transcribed DNA with high 
sensitivity, specificity and area of the ROC curve. The Random Forest classifier obtained the best overall perfor-
mance for multiclass scenarios, while the MLP classifier presented the best results for scenarios with fewer classes.

Evaluating the parameters for the proposed sequence-based feature extraction method, dividing the virus 
genome sequence into four folders ( n = 4 ) seems to be sufficient to produce representative characteristics. 
Regarding the percentage of overlaping, the proposed feature extraction method is not very sensitive to this 
parameter, although 30% to 50% seems to be sufficient to produce good characteristic representations.

The first multiclass scenario (with 25 virus classes) is a scenario designed to demonstrate extreme difficulty. It 
is highly unlikely that many of the virus families present in the classification are diagnostic possibilities, since the 
forms of contagion can be different and the diseases can manifest themselves through very different symptoms. 
However, the Random Forest classifier achieved sensitivity and specificity above 0.9 for many classes. For classes 
with lower sensitivity, the confusion matrix shows that most confusions are particular between two families 
of viruses. For example, Filoriviridae is the class with the lowest sensitivity rate (0.23). However, checking the 
confusion matrix, on average 76.27% of Filoriviridae are mistakenly classified as Ebola virus. There is no other 
significant confusion for Filoriviridae. Then it is possible to design a cascade of classifiers to solve this specific 
confusion between two viruses.

Table 2.  Random Forest sensitivity, specificity, and ROC area for every single class (results from dataset with 
30% overlap).

Class

Sensitivity-Recall Specificity ROC Area

Average Std. Dev. Average Std. Dev. Average Std. Dev.

Class 0—Picomaviridae 0.46387 0.01407 0.99674 0.00028 0.99223 0.00163

Class 1—Arenaviridae 0.44609 0.01301 0.99906 0.00008 0.99773 0.00121

Class 2—Caliciviridae 0.98755 0.00392 0.99886 0.00045 0.99893 0.00089

Class 3—Pneunioviridae 0.99391 0.00285 0.99999 0.00001 0.99993 0.00025

Class 4—Phenuiviridae 0.94210 0.00704 0.99966 0.00005 0.99840 0.00076

Class 5—Togaviridae 0.99159 0.00327 0.99958 0.00016 0.99950 0.00067

Class 6—Poxviridae 0.99314 0.00662 0.99994 0.00003 0.99947 0.00191

Class 7—Filoviridae 0.23397 0.03284 0.99950 0.00005 0.99877 0.00096

Class 8—Flaviridae 0.55250 0.00768 0.98242 0.00144 0.95860 0.00308

Class 9—Hantaviridae 0.98284 0.00565 0.99960 0.00004 0.99907 0.00100

Class 10—Lassa virus 0.59120 0.03118 0.99778 0.00006 0.99707 0.00112

Class 11—Dengue 0.87925 0.01729 0.98384 0.00029 0.98910 0.00070

Class 12—Hepeviridae 0.98924 0.00711 0.99972 0.00014 0.99933 0.00083

Class 13—Ebola virus 0.39652 0.05417 0.99913 0.00004 0.99833 0.00094

Class 14—Enterovirus 0.70652 0.02068 0.99144 0.00021 0.99313 0.00034

Class 15—Zika virus 0.96675 0.01076 0.99728 0.00002 0.99800 0.00000

Class 16—Nairoviridae 0.98687 0.00686 0.99974 0.00008 0.99843 0.00238

Class 17—Coronaviridae 0.96194 0.00181 0.99988 0.00005 0.99833 0.00119

Class 18—Pararnyxoviridae 0.98781 0.00274 0.99982 0.00006 0.99970 0.00078

Class 19—Rhabdoviridae 0.97468 0.00541 0.99976 0.00009 0.99967 0.00047

Class 20—Hepatitis C virus 0.97425 0.00244 0.99288 0.00074 0.99823 0.00062

Class 21—Peribunyaviridae 0.95344 0.00603 0.99870 0.00046 0.99523 0.00138

Class 22—Reoviridae 0.98059 0.00261 0.99923 0.00014 0.99963 0.00048

Class 23—Phasrna Viridae 0.29167 0.10704 0.99999 0.00000 0.99000 0.01464

Class 24—SARS-Cov2 0.82222 0.05613 0.99974 0.00001 0.99883 0.00250
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A particular class of virus is the Pharma Viridae. This family has only 42 samples in the data set (30 used for 
training and 12 for testing). Even with this small number of samples in the multiclass scenario, the significant 
incorrect classifications for Pharma Viridae are Henteraviridae (22.78%) and Peribunyavirida (35.26%). With a 
larger sample size for Pharma Viridae, classifiers could find a better decision frontier at this false-negative rate. 
However, for this particular class, cascading classifiers of three classes can be evaluated to deal with these types 
of errors.

Regardless of the characteristics extraction parameters or even the classifier used, there are still 3–4% of Coro-
naviridae samples classified incorrectly as SARS-CoV-2. However, this is an expected result, since SARS-CoV-2 
belongs to the family Coronaviridae. We artificially separate the SARS-CoV-2 sequences from the Coronaviridae 
family, in order to verify whether the proposed pseudo-convolutional representation of genomic sequences would 
be able to help detect differences between SARS-CoV-2 and the other human coronaviruses . Thus, visualizing 
the extracted features, we found some samples of SARS-CoV-2 and Coronaviridae that cannot be distinguished, 
as shown in Fig. 20. Therefore, it is difficult for any classifier to ideally separate these two classes.

In this work we presented a novel method to represent DNA sequences by using pseudo-convolutions and 
co-occurrence matrices. With this method, we were able to represent hundreds of thousands of DNA sequences 
from 24 virus families. Then we separated SARS-CoV-2 sequences from the Coronaviridae family and dem-
onstrated that our model is able to differentiate all virus families present on our database. SARS-CoV-2 was 
discriminated from virus families other than Coronaviridade and even from other coronaviruses with very high 
sensitivity and specificity.

Our goal was to show the ability to optimize the molecular diagnosis of Covid-19 by combining RT-PCR, 
Covid-19’s gold standard diagnostic method, and our pseudo-convolutional method to identify DNA sequences 

Figure 8.  Random Forest average Confusion Matrix (results from dataset with 30% overlap).
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from SARS-CoV-2 from others candidate viruses without high computational cost bioinformatics methods, such 
as multiple sequence alignment.

From the results obtained, we can assume that the proposed method is able to characterize DNA sequences 
from SARS-CoV-2 transcribed from the RT-PCR process. This new representation of DNA sequences can be 
used successfully as a feature extraction stage for fully connected networks, in order to use the deep learning 
philosophy or other classical classification architectures. The assessment of the proposed approach in real test 
scenarios, necessarily reduced to a limited set of candidate virus families and DNA from healthy human sam-
ples, also showed high sensitivity (greater than 0.988) and specificity (greater than 0.998). Consequently, other 
researchers can use our solution and our methods to improve their results and diagnose Covid-19 and other 
viral diseases considering a considerably high number of candidate viruses with very high accuracy, precision, 
sensitivity and specificity.

The virus identification system proposed in this work was designed for clinical application, in clinical analysis 
laboratories. Potential users are biomedical technicians and other health professionals responsible for analyzing 
DNA samples from RT-PCR tests. The system was proposed as an alternative to web systems based on DNA 
sequence alignment, which can be used in a similar way from the point of view of potential users, i.e. biomedical 
technicians. The main limitation of the system is its restriction for analyzing DNA sequences of viruses, since 
many viruses are expressed as RNA, and not as DNA. The system is in the process of being implemented at the 
Biomedical Computing Laboratory of the Federal University of Pernambuco. As future work, we propose to 
adapt the proposed pseudo-convolutional network approach to RNA sequences, providing potential users to 
identify viruses both by their expression in RNA or in DNA and by the translation of RNA into DNA, in the 
case of RNA viruses.

Figure 9.  Random Forest average Confusion Matrix with threshold adjustment for 100% sensitivity on SARS-
CoV-2 (index 24).
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Methods
Classifiers. To verify the efficiency of the proposed pseudo-convolutional method in extracting character-
istics from the genome, classical and well-established classifiers were chosen in the state of the art of machine 
learning. In the same way that in deep architectures of artificial neural networks the final classifier is relatively 
simple, we chose not to introduce new classifier architectures, to keep the focus on the proposal of representing 
DNA sequences. The following classifiers were chosen:

Random Forest. Random Forests are based on decision tree committees organized in  bagging47. Decision trees, 
as illustrated in Fig. 21, separate data iteratively, testing one property at a time. The resulting sheets represent the 
most specific category. The root represents the raw data. The random forest is built with many of these trees, all 
with their own class prediction for any input provided. The most voted class is the departure of Random For-
est. Random Forests have been used to solve a plethora of biomedical problems, specially to develop intelligent 
systems to support  diagnosis48–50.

Figure 10.  Binary classification (Coronavuris vs. SARS-CoV-2 using the 30% overlap dataset) accuracy (a), 
kappa (b), weighed average sensitivity (c), specificity (d), and ROC area (e).
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As the most relevant characteristics to determine the decision boundary between classes of virus DNA 
sequences are unknown, Random Forests can be powerful methods for classification, as they are able to verify 
many relevant properties through their different trees. In the bagging process, each tree receives a version of 
the training set with a reduced number of attributes. Thus, it is possible to build decision criteria that take into 
account only a few attributes and these criteria can be winners in the vote, determining the final decision of the 
classifier.

Naive Bayes classifier. This machine learning model is based on Bayesian Decision  Theory51. Given a set of 
classes � = {ω1,ω2, . . . ,ωm} and a universe Rn of feature vectors x = (x1, x2, . . . , xn)

T that model instances of a 
representation universe, the probability of deciding for class wi given an attribute vector x is given by:

Figure 11.  MLP average Confusion Matrix for binary classification task (Coronaviridae vs. SARS-CoV-2 using 
the 30% overlap dataset).

Table 3.  Results of Sensitivity, specificity, and ROC area for MLP binary classifier (Coronavirus vs. SARS-
CoV-2 using the 30% overlap dataset).

Class

Sensitivity-Recall Specificity ROC Area

Average Std. Dev. Average Std. Dev. Average Std. Dev.

Class 17 Coronaviridae 0.96151 0.00246 0.97386 0.03052 0.97353 0.01863

Class 24—SARS-Cov2 0.97386 0.03052 0.96151 0.00246 0.97353 0.01863

Figure 12.  Accuracy for similar symptoms scenario.
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where

whilst P(ωi) is the a priori probability of ωi and p(x|ωi) is the density probability distribution of x given the class 
ωi . The decision is given according to the following rule, called the maximum probability hypothesis:

It is called naive because it assumes independence in the features that lead to the events, i.e. given a feature 
vector x = (x1, x2, . . . , xn)

T , the features xi and xj are statistically independent, since i  = j . Then, we can have 
the following:

Consequently, the discriminant functions to model each class, P(ωi|x) , are defined as following:

where p(xj|ωi) are usually modeled as Gaussian probability density functions:

whilst xj|ωi ∼ N(µj,i , σ
2
j,i) , ∀i, j = 1, 2, . . . , n.

Naive Bayesian classifiers are commonly tested against other classifiers in diagnosis support  solutions48–50. 
Furthermore, they assume all features/predictors have an equal weight. This approach could be beneficial because 
it explores the possibility that the genomes have characteristics that are not correlated. Should that be the case, 
this classifier might yield good results.

Instance‑based learner. In this algorithm, also known as  IBK52, a model is not built. It stores the training set. 
Given a sample, the prediction is made by calculating the distance k between that instance and the training 
set instances, as shown in Fig. 22. The distance is determined by some similarity criteria. Thus, this algorithm 
makes the decision based on the search for instances similar to the input instance. Thus, it may be able to identify 
genome sequences belonging to the same virus.

(2)P(ωi|x) =
p(x|ωi)P(ωi)

p(x)
,

(3)p(x) =
m
∑

j=1

p(x|ωj)P(ωj),
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i
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Figure 13.  Kappa Statistic for similar symptoms scenario.
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Multilayer perceptrons. This classifier, shown in Fig. 23, is an artificial neural network designed to solve nonlin-
early separable  problems53. Each artificial neuron has weights that multiply the input, which in turn is processed 
by an activation function to generate the output. The weights are adjusted until the net can satisfy a certain pre-

Figure 14.  Weighted average sensitivity (a), specificity (b), and ROC area for similar symptoms viruses test 
scenario.
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cision at the output. In this way, he could identify the characteristics that are particular to each class. Multilayer 
perceptrons have been used to several biomedical problems, specially to develop intelligent systems to support 
 diagnosis48–50,54.

Support Vector Machines. Support Vector Machines (SVMs) were originally created for classification tasks 
where classes can be separated linearly, that is, by means of  hyperplanes55. Through search algorithms, such as 
the Sequential Minimum Optimization Algorithm (SMO), vectors of characteristics of each class of the train-
ing set are chosen as supports. These support vectors are used to find the optimal hyperplan of separation of 
classes, according to the scheme of Fig. 24. To deal with nonlinear problems, SVMs use kernel transformations, 
which take the original attribute vectors to other representation spaces. According to the Coverage Theorem, the 
nonlinear mapping of attribute vectors in representation universes with more dimensions makes it more likely 
to find linear solutions to discriminate classes. SVMs have been applied to solve several biomedical problems, 
specially on developing intelligent systems for diagnosis  support48–50,54. Since SVMs are commonly used in bio-
medical problems, presenting good results, it is reasonable to evaluate a considerable amount of SVM configura-
tions and kernels to solve our problem considering the sequence representation method presented in this work.

Figure 15.  Average Confusion matrices for MLP and Random Forest in the Similar symptoms viruses test 
scenario.

Table 4.  Results of Sensitivity, specificity, and ROC area for MLP classifier in the similar symptoms viruses 
test scenario (results from dataset with 30% overlap). aMiscellaneous class includes four virus types: 
Pneunioviridae, Hantaviridae, Enterovirus, and Nairoviridae.

Class

Sensitivity-Recall Specificity ROC Area

Average Std. Dev. Average Std. Dev. Average Std. Dev.

SARS-Cov2 0.97059 0.03387 0.99187 0.00046 0.99583 0.00481

Coronaviridae 0.95891 0.00249 0.99882 0.00069 0.99687 0.00076

Pararnyxoviridae 0.99611 0.00430 0.99726 0.00104 0.99863 0.00244

Miscellaneousa 0.99548 0.00151 0.99827 0.00153 0.99943 0.00072
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Database. Twenty-four different virus families were used to evaluate the efficiency of the feature extraction 
method, including the SARS-CoV-2 famility:  Coronaviridae56. However, to separate SARS-CoV-2 from other 
coronaviruses, we used SARS-CoV-2 sequences as a separate class. Data was obtained from the NIAID Virus 

Table 5.  Results of sensitivity, specificity, and ROC area for MLP classifier in the SARS-CoV-2 test scenario 
(results from dataset with 50% overlap).

Class

Sensitivity-Recall Specificity ROC Area

Average Std. Dev. Average Std. Dev. Average Std. Dev.

SARS-Cov2 0.98824 0.01198 0.99860 0.00020 0.99947 0.00056

Coronaviridae 0.96196 0.00190 0.99967 0.00017 0.99810 0.00094

GRCh38 0.99923 0.00028 0.99928 0.00094 0.99997 0.00018

Figure 16.  Accuracy for SARS-CoV-2 test scenario.

Figure 17.  Kappa Statistic for SARS-CoV-2 test scenario.
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Figure 18.  Weighted average sensitivity (a), specificity (b), and ROC area for SARS-CoV-2 test scenario.
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Figure 19.  Average Confusion matrices for IBK, MLP, Random Forest and SMV in the SARS-CoV-2 test 
scenario.
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Pathogen Database and Analysis Resource (ViPR)46, which features multiple whole-genome sequences (WGS) 
from several viruses. Table 6 displays the number of examples per virus famliy for each of the selected viruses. 
Human participants were not involved in our research. No demographic data were collected as well.

The viruses have different sample sizes, ranging from 42 sequences, as for Phasmaviridae, to 216,223 nucleo-
tide sequences, for Hepatitis C. The bar graphs below depict the distribution of sample sizes in both a linear and 
a logarithmic scale.

The second dataset used in this paper is from the Genome Reference  Consortium57. Its purpose was to rep-
resent the human genome. We used 103,959 sequences.

Feature selection. To evaluate the relevance of the features generated by the DNA sequences representa-
tion method proposed in this work, we used meta-heuristic optimization methods. Populations of 20 individu-
als were used, evolving in 20 generations. As an objective function, we use a decision tree, trained and tested 
using 10-fold cross validation. Each individual represents the attributes used in the classification by means of 
a binary vector, where 1 models the presence of that attribute, while 0 represents its opposite. We employed 
meta-heuristic libraries developed in Java for Weka data mining  platform58. We adopted the following feature 
selection methods:

• Ant Colony Search, with chaotic coefficient of 4.0, chaotic type of logistic map, evaporation of 0.9, heuristic 
of 0.7, bit-flip mutation, mutation probability of 0.0159–61;

• Bat Search, with chaotic coefficient of 4.0, chaotic type of logistic map, frequency of 0.5, loudness of 0.5, bit-
flip mutation, mutation probability of 0.0162–64;

Figure 20.  Feature visualization for selected SARS-CoV-2 and Coronaviridae sample.

Figure 21.  This decision tree example illustrates the classification of samples by two different features, colour 
and then shape.
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• Bee Colony Search, with chaotic coefficient of 4.0, chaotic type of logistic map, objective by merits, radius 
damp of 0.98, radius mutation of 0.8, report frequency of 20, bit-flip mutation, mutation probability of 
0.0165–67;

• Cuckoo Search, with chaotic coefficient of 4.0, chaotic type of logistic map, objective by merits, pa rate of 
0.25, sigma of 0.69657, report frequency of 20, bit-flip mutation, mutation probability of 0.0168–70;

• Elephant Search, with chaotic coefficient of 4.0, chaotic type of logistic map, objective by merits, report 
frequency of 20, bit-flip mutation, mutation probability of 0.0171–73;

• Evolutionary Search, with crossover probability of 0.6, mutation probability of 0.1, bit-flip mutation, 
random initialization, generational replacement operator, report frequency of 20, survivor selection by 
 tournament74–76;

• Firefly Search, with chaotic coefficient of 4.0, chaotic type of logistic map, objective by merits, report fre-
quency of 20, bit-flip mutation, mutation probability of 0.01, absorption of 0.001, beta minimum of 0.3377–80;

• Rhinoceros Search, with chaotic coefficient of 4.0, chaotic type of logistic map, objective by merits, report 
frequency of 20, bit-flip mutation, mutation probability of 0.0181,82;

• Wolf Search, with chaotic coefficient of 4.0, chaotic type of logistic map, objective by merits, report frequency 
of 20, bit-flip mutation, mutation probability of 0.01, absorption of 0.001, beta minimum of 0.33, escape of 
0.883–85;

Figure 22.  Simplified scheme to illustrate the training process as defined by the instance-based learner.

Figure 23.  A multilayer perceptron with three layers of neurons.
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Figure 24.  A binary classification problem, wherein the hyperplane created by the support vector machine has 
2 dimensions.

Table 6.  Number of instances in each class of virus.

Virus Instances

Phasniaviridae 42

SARS-CoV-2 171

Hepeviridae 643

Poxviridae 697

Ebola virus 768

Nairoviridae 7977

Filoviridae 869

Zika virus 919

Lassa virus 1110

Peneunioviridae 1831

Arenaviridae 1840

Togaviridae 1983

Caliciviridae 2010

Paramyxoviridae 2609

PJiabdoviridae 2621

Hantaviridae 2785

Phenuiviridae 3089

Peribuiryaviridae 3245

Coronaviridae 3256

Enterovirus 3784

Dengue 5885

Picomaviridae 5894

Flaviridae 14,658

Reoviridae 62,454

Hepatitis C virus 216,223
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• Particle Swarm Optimization, individual weight of 0.34, inertia weight of 0.33, mutation probability of 0.01, 
report frequency of 20, social weight of 0.3386–89.

All feature selection parameters were defined empirically, taking into account the most commonly used 
parameters values.

Each attribute selection method returns the probability of relevance for each of the 97 attributes extracted 
from the base of virus DNA sequences. At the end, we checked the agreement between the methods, seeking 
to find a consensus among the attributes selected by each method. Interestingly, all methods returned 100% 
relevance for each of the 97 attributes, showing that the attributes generated by the DNA sequence representa-
tion method proposed in this work generate equally relevant and distinctive attributes, with no representation 
redundancies.

Experiment setups. In order to validate our proposal, we designed four experiments based on theoretical 
and practical situations in which it is necessary to identify SARS-CoV-2 among a determined set of virus candi-
dates represented by transcripted DNA sequences: (a) multiclass classification; (b) binary classification; (c) virus 
with similar symptoms; and (d) real test scenario. These experiments are described as following.

Multiclass classification. The purpose of this experiment is to identify the SARS-CoV-2 virus considering 24 
virus families, including its own family: Coronaviridae. The SARS-CoV-2 sequences were separated from the 
Coronaviridae family to differentiate SARS-CoV-2 from other human coronaviruses. The complete list of virus 
families is shown in Table 6. All 25 classes in Table 6 were used to build the database, which was divided into a 
training set and a test set. For classes with more than 500 instances, the training set consisted of 500 instances, 
while the remaining instances were allocated to the test set. Classes with less than 500 distances were divided 
into 70% of instances for training and 30% for testing. In addition, the n attribute extraction hyperparameter 
was set to 4. The sequence overlap was tested for 30%, 50% and 70%. The general objective of this experiment 
is to evaluate the ability of the proposed sequence representation algorithm to classify virus DNA sequences 
transcribed from RT-PCR in the worst case scenario, where there is no knowledge about the virus present in the 
sample. This is a purposefully difficult scenario, although unlikely from a practical point of view, but one that 
tends to test the performance of the proposal in the worst case scenario.

Binary classification. This test was used to analyze the efficiency of the proposed method in differentiating 
SARS-CoV-2 from other viruses belonging to the Coronaviridae family. Viruses in the same family can be poten-
tially challenging to classify when compared, given that the structural similarity is considerably high. In this 
scenario, the two with their genomes are contrasted only with each other. The training and testing division was 
carried out exactly as in the multiclass evaluation. The n feature extraction hyperparameter was set to 4 and the 
overlap was set to 30%, a percentage considered satisfactory in the multiclass experiment.

Viruses with similar symptoms. A third test was planned to classify viruses with symptoms similar to SARS-
CoV-2. This test scenario is useful for situations where it is necessary to determine whether a patient has been 
infected with SARS-CoV-2 but has symptoms that may indicate infection with other viruses, which have simi-
lar symptoms. Four classes were established: SARS-CoV-2; Coronaviridae; Paramyxoviridae; Peneumoviridae, 
Hantaviridae, Enterovirus, and Nairoviridae. The criteria for building the training and test sets and for choosing 
the n hyperparameter were maintained as in the previous tests. The overlap was defined as 30%, 50% and 70%.

Real test scenario. This test was designed to reproduce the most common scenario of using RT-PCR to diag-
nose Covid-19. This scenario included three classes: the human genome, obtained from the Genome Reference 
 Consortium57, SARS-CoV-2 and the other viruses in Table 6. It tests the actual use case of the proposed method, 
in which SARS-CoV-2 must be identified between the human genome and other viruses. The training and test 
sets were built in the same way as in the previous scenarios. The n hyperparameters has been maintained. The 
overlap was tested for 30%, 50% and 70%.

Metrics. The following metrics were used to evaluate the classification performance of our proposal in all 
test scenarios:

• Confusion Matrix
  The confusion matrix provides a straightforward framework for portraying the model output. The lines 

represent the prior knowledge and the columns represent the results predicted by the model. n expresses the 
total number of instances. Each line, when added, is equivalent to the total number of instances per class. 
The number of correctly classified instances can be obtained by adding all the elements of the main diagonal. 
On the other hand, the number of instances classified incorrectly is obtained by adding the elements outside 
the main diagonal.

• Accuracy
  The accuracy describes the rate of correct classification of instances and is the most commonly used metric 

in machine learning. Considering a confusion matrix T = [ti,j]n×n for a classification task with n classes, in 
which i denotes the index of the ith true class and j points to the index of the class associated to the classifica-
tion decision, the jth class, the accuracy is defined as following: 
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• Kappa Coefficient
  The Kappa Coefficient ( κ ) assesses the relation between the classified instances. It is defined as: 

 where 

• Precision
  Precision indicates the proportion of positive and correct classification, and is thus calculated: 

 where TP is the number of true positives and FP is the amount of false positives.
• Recall
  Recall measures the proportion of actual positives correctly classified by the model. It is computed by: 

 where FN is the number of false negatives.
• Sensitivity
  The sensitivity, or True Positive Rate, is given by: 

• Specificity
  The specificity, or True Negative Rate (TNR), if defined as following: 

 where TN is the number of true negatives.
• Area Under the ROC Curve
  The Receiver Operating Characteristic (ROC) curve is a graph that plots the True Positive Rate (TPR) and 

False Positive Rate (FPR) of classification for different thresholds. The FPR is defined by: 

 Thus, the Area Under the ROC Curve (AUC) measures performance for all possible thresholds of classifica-
tion in a given model, and therefore it portrays the quality of results independently of it.

Human or animal subjects. This article does not contain any studies with human or animal subjects.

Data availability
The main data supporting the results in this study are available within the paper. Data was obtained from the 
NIAID Virus Pathogen Database and Analysis Resource (ViPR)46.

Code availability
The custom code is currently available on request.
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