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Tripartite entropic uncertainty 
relation under phase decoherence
R. A. Abdelghany  1,4, A.‑B. A. Mohamed2,3*, M. Tammam1, Watson Kuo  4 & H. Eleuch  5,6,7

We formulate the tripartite entropic uncertainty relation and predict its lower bound in a three-qubit 
Heisenberg XXZ spin chain when measuring an arbitrary pair of incompatible observables on one 
qubit while the other two are served as quantum memories. Our study reveals that the entanglement 
between the nearest neighbors plays an important role in reducing the uncertainty in measurement 
outcomes. In addition we have shown that the Dolatkhah’s lower bound (Phys Rev A 102(5):052227, 
2020) is tighter than that of Ming (Phys Rev A 102(01):012206, 2020) and their dynamics under phase 
decoherence depends on the choice of the observable pair. In the absence of phase decoherence, 
Ming’s lower bound is time-invariant regardless the chosen observable pair, while Dolatkhah’s lower 
bound is perfectly identical with the tripartite uncertainty with a specific choice of pair.

In quantum mechanics, the precise instantaneous measurement of two incompatible observables of a quantum 
system is generally limited by Heisenberg’s uncertainty principle, in which a lower bound in measurement accu-
racy is given1. After Heisenberg’s work, there have been several attempts to formulate the uncertainty principle 
in a more comprehensive manner. As an example, Kennard and Robertson2,3 proposed an uncertainty principle 
for the standard deviation for an arbitrary quantum state |ψ� as follows

where �X and �Z are the standard deviations of the incompatible observables X and Z, respectively. The uncer-
tainty lower bound given by the right-hand side (r.h.s) of Eq. (1) depends on the quantum state under inspec-
tion |ψ� , and becomes trivial ( = 0 ) when |ψ� is one of the eigenstates of X or Z. In contemporary quantum 
information, the standard deviation in the uncertainty principle is usually reformulated by Shannon entropy 
in the so-called entropic uncertainty relation (EUR)4,5. The EUR of arbitrary two incompatible observables, X 
and Z takes the form:

where H(V) = −
∑

v p(v)log2p(v) is the Shannon entropy of observable V (V ∈ (X,Z)) ; p(v) is the prob-
ability for the measurement outcome v. c is the maximal complementarity between X and Z, defined by 
c = max{l,m}|�xl|zm� |2 , where |xl� and |zm� are eigenvectors of X and Z, respectively. The benefit of expression 
(2) is evident that the lower bound only relates to measured observables, i.e., a state-independent one rather 
than that given by Eq. (1).

The desire to obtain more accurate measurements led to further improvements in the uncertainty relation. 
Significant progress has been made in this regard recently by Berta et al.6, by considering a bipartite system, A 
and B, in which one (A) is under measurement while the other (B) works as a quantum memory. The quantum-
memory-assisted entropic uncertainty relation (QMA-EUR) reads

(1)�X�Z ≥ 1

2
|�ψ |[X,Z]|ψ�|,

(2)H(X)+H(Z) ≥ log2
1

c
≡ qMU,

(3)S(X|B)+ S(Z|B) ≥ S(A|B)+ qMU,
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where S(V |B) = S(ρVB)− S(ρB) (V ∈ (X,Z)) is the conditional von Neumann entropy of the measurement 
outcomes (after V is measured) with S(ρ) = −Tr[ρ log2 ρ] for some density matrix, ρ . ρAB and ρB are the density 
matrices for the whole system and subsystem B. The density matrices of post-measurement states are

Surprisingly, in the scenario that two observers, Alice and Bob may respectively conduct the measurements 
on subsystems A and B, the QMA-EUR states that the measurements may become less uncertain if A and B are 
entangled, i.e., S(A|B) < 0 . By observing his own subsystem B, Bob can predict the result of Alice’s measure-
ment on subsystem A, not to mention that the lower bound of uncertainty becomes zero when the subsystems 
are maximally entangled7.

The lower bound of the QMA-EUR was recently made tighter by Adabi et al.8:

where a term δ = I(ρAB)− [I(ρXB)+ I(ρZB)] is added. I(ρAB) is the mutual information of A and B, while

is the Holevo quantity, which determines the maximum amount of the accessible information about the observ-
able V. Here, when Alice measures the observable V on the part A, she will obtain an i-th outcome vi with a 
probability Pvi = TrAB[�A

i ρAB�
A
i ] , and the corresponding state of Bob will be transformed into 

ρB
i = TrB[�A

i ρAB�
A
i ]

Pvi
.

These new formulations of the uncertainty principle have facilitated the emergence of many potential appli-
cations in the field of quantum information, including cryptography9,10, quantum metrology11,12, quantum 
randomness13,14 and entanglement witness15–18. Much interest has been focused on clarifying how the QMA-EUR 
evolves in various systems including Heisenberg spin models19–28, Unruh–DeWitt detector model29,30, neutrino 
oscillations31 and some open quantum systems21,31–35.

Renes and Boileau36 presented the tripartite version of the QMA-EUR, which can be explained by a guess-
ing game (called the monogamy game) played by Alice, Bob, and Charlie, who share a tripartite quantum state 
ρABC . At first, Alice measures her part A by choosing one of the observables X and Z, and obtains an outcome κ 
. Then, informed by Alice with which observable she has measured, Bob and Charlie try to reduce their doubt 
about Alice’s result as they win when correctly guess her measurement outcome κ . In this scenario, the tripartite 
QMA-EUR takes the form,

in which the lower bound of uncertainty remains the same regardless any change in the prepared state ρABC since 
qMU only depends on the complementarity between X and Z.

Very recently, Ming et al.37 introduced a tighter bound of the tripartite QMA-EUR by adding some terms 
related to mutual information and Holevo quantity as follows:

in which

where the mutual information I(X : C) and the Holevo quantity I(Z : B) are the same as those in Eq. (5), and 
Shannon entropy H(X) (H(Z)) of X (Z) measurement. In the same context, Dolatkhah et al.38 have proposed 
another lower bound of the tripartite uncertainty that is tighter than that suggested by Ming et al. (8) for some 
states ρABC . Their formula reads

in which

In this study, we investigate the dynamical behavior of the tripartite QMA-EUR and its relations to the near-
est- and next-nearest-neighbor entanglement in a three-qubit Heisenberg XXZ chain with decoherence. Also, 
we introduce a comparative study between the lower bound of Ming et al. and that of Dolatkhah et al., as well 
as how they depend on the the choice of incompatible observables.

This paper is arranged as follows: in “Heisenberg model with phase decoherence and its solution”, the theoreti-
cal model with phase decoherence and its solution is introduced. The tripartite QMA-EUR, Ming’s bound, and 

(4)
ρXB =

∑

i
(|xi��xi| ⊗ I)ρAB(|xi��xi| ⊗ I),

ρZB =
∑

i
(|zi��zi| ⊗ I)ρAB(|zi��zi| ⊗ I)

(5)S(X|B)+ S(Z|B) ≥ S(A|B)+ qMU +max{0, δ},

(6)I(ρVB) = S(ρB)−
∑

i

piS(ρ
B
i ), V ∈ {X,Z}

(7)S(X|B)+ S(Z|C) ≥ qMU,

(8)S(X|B)+ S(Z|C) ≥ qMU +max{0,�},

(9)
� =qMU + 2S(ρA)− [I(A : B)+ I(A : C)]

+ [I(Z : B)+ I(X : C)] − [H(X)+H(Z)],

(10)S(X|B)+ S(Z|C) ≥ qMU + S(A|B)+ S(A|C)
2

+max{0, δ},

(11)δ = [I(A : B)+ I(A : C)]
2

− [I(X : B)+ I(Z : C)].
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Dolatkhah’s bound of the proposed model are reported in “The tripartite QMA-EUR” for two different pairs of 
the incompatible observables. “Conclusions” contains a concise conclusion of our results.

Heisenberg model with phase decoherence and its solution
The equation that governs the dynamics of a quantum system described by Hamiltonian H with phase decoher-
ence can be obtained by applying the superoperator L̂ to the density matrix ρ as follows

where γ is the phase decoherence rate. The system under consideration is a three-qubit Heisenberg XXZ chain 
in a uniform magnetic field B:

where σα
n (α = x, y, z) are Pauli spin matrices for qubit n. J and Jz are the spin coupling strengths that we may 

set J = 1 without loss of generality. Our choice of the Heisenberg XXZ spin chain model is justified by the fact 
that it has quantum simulation applications39–41. Furthermore, the XXZ model in a transverse field was recently 
constructed using magnetic atoms on a surface42, proposing that the quantum correlations in such models can 
be measured experimentally.

The solution of Eq. (12) is

where ρ(0) is the initial density matrix of the system under consideration, and can be expressed as a linear com-
bination of the eigenstates {|ψm�} as ρ(0) =

∑

mn αmn|ψm��ψn| . Eigenvectors |ψm� and the associated eigenvalues 
Em satisfy the eigenvalue equations for H, H|ψm� = Em|ψm�(m = 1, 2, . . . 8) . Therefore, the operation of L̂ on 
|ψm��ψn| is given by,

In turn, the temporal evolution of ρ(0) takes the form:

in which

Equation (16) gives a general description of the tripartite state shared by the three qubits for a given time t, 
ρABC(t) , while the reduced density matrix of any two of the qubits can be obtained by tracing out the other one.

We consider the initial state of the system to be |ϕ(0)� = 1√
2
(|000� + |110�) to determine the tripartite 

entropic uncertainty relation and its robustness when the measured qubit is maximally entangled with one of 
the quantum memories. According to this initial state the measured qubit A and the quantum memory B are 
initially in the maximally entangled state |ϕ(0)� = 1√

2
(|00� + |11�) and the other quantum memory C is initially 

in |0� . Using the notation of basis {|000�, |001�, |010�, |011�, |100�, |101�, |110�, |111�} , ρABC(t) can be written as

and the non-vanishing elements are:

(12)
dρ

dt
= L̂ρ(t) = −i[H , ρ(t)] − γ

2
[H , [H , ρ(t)]],

(13)H =
2

∑

n=1

J(σ x
n σ

x
n+1 + σ

y
nσ

y
n+1)+ Jzσ

z
nσ

z
n+1 + B

2
∑

n=0

σ z
n+1,

(14)ρ(t) = eL̂tρ(0),

(15)
L̂|ψm��ψn| = − i(Em|ψm��ψn| − |ψm��ψn|En)

− γ

2
(E2m|ψm��ψn| − 2Em|ψm��ψn|En + |ψm��ψn|E2n)

(16)ρ(t) =
8

∑

m,n=1

αmnβmn|ψm��ψn|,

(17)βmn = exp(−it(Em − En)−
γ t

2
(Em − En)

2)

(18)ρABC(t) =





















A11 0 0 A14 0 A16 A17 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
A41 0 0 A44 0 A46 A47 0
0 0 0 0 0 0 0 0
A61 0 0 A64 0 A66 A67 0
A71 0 0 A74 0 A76 A77 0
0 0 0 0 0 0 0 0





















,
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where η =
√

8+ J2z  , δ± = (Jz ± η) , and �± =
√

8+ δ2±.

The tripartite QMA‑EUR
Equations (18) and (19) enable us to get the tripartite entropic uncertainty denoted by U , and lower bounds of 
Ming et al. (8) and Dolatkhah et al. (10), which will be denoted in this study as UM and UD , respectively. The 
lower bounds require the calculation of the post-measurement states referred to which pair of incompatible 
measurements have been performed on qubit A. To show the dependence of the QMA-EUR on the choice of 
that pair, we will consider two different cases, (X,Z) =(σx , σz ) and ( σx , σy).

QMA‑EUR for ( σx , σz)‑measurement pair.  First we consider the case that Alice measures one of the pair 
( σx , σz ) on her quantum system. If σx is her choice, then Bob has to guess her outcome. If she chooses σz , Charlie 
will take the turn. Thereby, one could derive the post-measurement states and the corresponding entropies for 
the two choices and those of the reduced matrices ρB = trAC(ρABC) and ρC = trAB(ρABC) . Hence, the tripartite 
uncertainty can be expressed as:

where ω = A11A44 + A44A66 + A11A77 + A66A77 − (A46A
∗
17
)(A17A

∗
46
) , and hbin(µ) = −µlog2µ−(1− µ)log2(1− µ) is 

the binary entropy function.
With some simplifications and the fact that the complementarity of any pair of Pauli observables is c = 1

2 , 
Ming’s lower bound UM takes the following form:

The von Neumann entropies S(ρ) could be calculated by using the eigenvalues (noted by �i ) of ρ as follows:

(19)

A14 =
−e−2t(2B+Jz )(γ (2B+Jz )+i)

4
+

∑

⊙=+,−

2e−
1
2 t(4B+3Jz⊙η)(γ (4B+3Jz⊙η)+2i)

�2
⊙

,

A16 =
∑

⊙=+,−

−δ⊙e−
1
2 t(4B+3Jz⊙η)(γ (4B+3Jz⊙η)+2i)

�2
⊙

,

A17 =
e−2t(2B+Jz )(γ (2B+Jz )+i)

4
+

∑

⊙=+,−

2e−
1
2 t(4B+3Jz⊙η)(γ (4B+3Jz⊙η)+2i)

�2
⊙

,

A44 =
2e−2η2γ t cos(2ηt)+ J2z + 6

4η2
+

∑

⊙=+,−

−e−(4+Jzδ⊙)γ t cos(δ⊙t)

8+ Jzδ⊙
,

A46 =
Jz

4η2
+

∑

⊙=+,−

δ⊙
2

(

e−
1
2 tδ⊙(2i+γ δ⊙)

�2
⊙

− e−2tη(⊙i+γ η)

4η2

)

,

A47 =
e−2η2γ t cos(2ηt)− 1

2η2
+

∑

⊙=+,−

ie−(4+Jzδ⊙)γ t sin(δ⊙t)

8+ Jzδ⊙
,

A66 =
1− e−2η2γ t cos(2ηt)

8+ J2z
,

A67 =
Jz

4η2
−

∑

⊙=+,−

δ⊙
2

(

e−
1
2 tδ⊙(2i+γ δ⊙)

�2
⊙

− e−2tη(⊙i+γ η)

4η2

)

,

A77 =
2e−2η2γ t cos(2ηt)+ J2z + 6

4η2
+

∑

⊙=+,−

e−(4+Jzδ⊙)γ t cos(δ⊙t)

8+ Jzδ⊙
,

A11 =
1

2
, A41 = A∗

14, A61 = A∗
16, A64 = A∗

46,

A71 =A∗
17, A74 = A∗

47, A76 = A∗
67

(20)

U =S(ρσxB)− S(ρB)+ S(ρσzC)− S(ρC)

=hbin

(

1−
√
1− 4ω

2

)

−
∑

i=6,7

hbin

(

1− 2Aii

2

)

+
∑

i=4,6,7

Aiilog2Aii+
3

2
,

(21)
UM =1+max{0,�(xz)},

�(xz) =1+ S(ρAB)+ S(ρAC)− S(ρσxC)− S(ρσzB)
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where �AB1,2 = 1
2 [A11 + A77 ±

√

(A11 − A77)
2 + 4|A17|2] , �AB3,4 = 1

2 [A44 + A66 ±
√

(A44 − A66)
2 + 4|A46|2] , 

�
AC
1,2 = 1

2 [A11 + A66 ±
√

(A11 − A66)
2 + 4|A16|2] ,  �

AC
3,4 = 1

2 [A44 + A77 ±
√

(A44 − A77)
2 + 4|A47|2] ,  and 

̟ = A11A44 + A11A66 + A44A77 + A66A77 − (A47A
∗
16)(A16A

∗
47).

For the same observables, σx and σz , Dolatkhah’s lower bound UD can be written as:

where

Again, the von Neumann entropies of the reduced density matresices ρA , ρB , and ρC are:

The great relevance between bipartite QMA-EUR and quantum correlation19–28 encouraged us to include 
entanglement in our study, by considering the residual entanglement to quantify simultaneous entanglement 
between all qubits in a multi-qubit system. For a three-qubit system, the residual entanglement can be expressed 
as:

where the negativity of tripartite and bipartite systems can be expressed, respectively, as Nαβ =
∥

∥

∥
ρ
Tα
αβ

∥

∥

∥− 1 and 

Nα(βγ ) =
∥

∥

∥
ρ
Tα
αβγ

∥

∥

∥− 1 , �ρ� = tr[
√

ρρ†] is the trace norm of ρ , ρTα represents the partial transpose of ρ with 
respect to the qubit α.

Figure 1 displays the dynamics of U  , UM , and UD for the case without decoherence, γ = 0 . The residual 
entanglement, πABC , and bipartite entanglement, Nαβ , are also included.

One can observe that all quantities, except UM , oscillate periodically with the growth of time t. The three 
bipartite negativities, NAB , NBC , and NAC exhibit different behaviors in such a way that nearest-neighbor entan-
glements, NAB and NBC , evolve oppositely, namely if one is maximum, the other is zero. In contrast, the next-to-
nearest neighbor entanglement, NAC , is modulated the same as the residual entanglement ( πABC ) with a different 
amplitude. On the other hand, the time variations of U , UM , and UD can be summarized in the following points:

•	 Regardless of the Jz value, the entropic uncertainty perfectly corresponds to the residual entanglement, 
indicating that the uncertainty in the measurement outcome increases with the overall entanglement of the 
system.

•	 Interestingly, it can be observed that the oscillation of UD is completely identical to that of U , while UM freezes 
at a lower value 1. This indicates that Dolatkhah’s lower bound is tighter than Ming’s lower bound and can 
be used to express entropic uncertainty U . This conclusion is confirmed for various Jz values when ( σx , σz ) 
is the pair of the incompatible observables as shown in Figs. 2 and 3.

•	 U  , and therefore UD , reaches its minima if either pair of nearest-neighbor qubits is maximally entangled. 
Their oscillation frequency increases with Jz.

(22)

S(ρα) =
4

∑

i=1

�
α
i log2�

α
i , (α = AB,AC),

S(ρσxC) =hbin

(

1−
√
1− 4̟

2

)

+ 1,

S(ρσzB) =
1

2
−

∑

i=4,6,7

Aiilog2Aii ,

(23)

UD =1+ S(ρAB)+ S(ρAC)− S(ρB)− S(ρC)

2
+max{0, δ(xz)},

δ(xz) =2S(ρA)+ S(ρB)+ S(ρC)− [S(ρAB)+ S(ρAC)]
2

− [I(X : B)+ I(Z : C)],

(24)

I(X : B) =hbin

(

1− 2A66

2

)

− hbin

(

1−
√
1− 4ω

2

)

,

I(Z : C) =
∑

i=4,7

hbin

(

1− 2Aii

2

)

+
∑

i=1,4,6,7

Aii logAii .

(25)
S(ρA) =hbin(1/2− A44), S(ρB) = hbin(1/2− A66),

S(ρC) =hbin(1/2− A77).

(26)

πABC =1

3
(πA + πB + πC),

πA =N2
A(BC) − N2

AB − A2
AC ,

πB =N2
B(AC) − N2

BA − A2
BC ,

πC =N2
C(AB) − N2

CA − A2
CB,
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The dynamics of all quantities in various magnetic fields is shown in Fig. 2. Despite the fact that the quantum 
entanglement does not change with B, the fluctuation of the entropic uncertainty U increases significantly with 
B. This indicates that the entropic uncertainty is not necessary to be synchronized with the entanglement in all 
circumstances. In addition, the freezing of UM = 1 was not violated by the presence of a magnetic field, similar 
to what has been found in Fig. 1. Also, the assertion that minimal U = UD = 1 is associated with the maximum 
entanglement between one of the nearest-neighbor qubit pair remains valid.

Our discussion will now focus on the decoherence effects on the tripartite entropic uncertainty and its lower 
bounds. As what can be easily seen in Fig.  3, the decoherence eliminates the regular oscillatory behaviors of U , 
UD , and all entanglement measures after some time related to γ . Also, the presence of the intrinsic decoherence 
breaks the frozen behavior of UM , which shows a damped oscillation similar to that of U and UD . There are some 
other findings similar to what aforementioned including: U and UD are identical, U and πABC are synchronized, 
and the minimum of U corresponds to the maximum of NAB or NBC Finally, it can be concluded that U , UM and 
UD evolve together into the same steady maxima as there is diminishing quantum entanglement between the 
qubits resulting from a greater B and γ as shown in Fig. 3b,d.

The persistent overlapping between U  and UD illustrated in the previous figures can be shown as follows: 
According to Eq. (10), Dolatkhah’s bound can be expressed as:

and can be further simplified as (Eq. 23):

With the measurement pair ( σx , σz ), the information amount that Alice shares with Bob and Charlie, I(X : B) 
and I(Z : B) are explicitly given by Eq. (24). Inserting these values and A11 = 1

2 into Eq. (28), one can finally get:

(27)UD = qMU + S(A|B)+ S(A|C)
2

+ δ,

(28)UD = 1+ S(ρA)− [I(X : B)+ I(Z : C)].

(a) (b)

(c)

Figure 1.   (Color online) Time evolutions of U (red line), UM (purple line), UD (black dashed), πABC (gray line), 
NAB (blue line), NBC (green line), and NAC (orange line) under the measurement ( σx , σz ). (a) Jz = 0, (b) Jz = 1, 
and (c) Jz = 5. All Figs. γ = 0, B = 0.
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QMA‑EUR for ( σx , σy)‑measurement pair:.  In this section, we consider that Alice chooses the observa-
bles pair (σx , σy ). The tripartite uncertainty in this scenario can be expressed as:

where ω and ̟  are the same as those in Eqs. (20) and (21), respectively.
On the other hand, Ming’s and Dolatkhah’s lower bounds remain the same forms as those for ( σx , σz ) meas-

urement pair by simply replacing �(xz) and δ(xz) by �(xy) and δ(xy) , respectively:

(29)

UD =hbin

(

1−
√
1− 4ω

2

)

−
∑

i=6,7

hbin

(

1− 2Aii

2

)

+
∑

i=4,6,7

Aiilog2Aii+
3

2

=U .

(30)

U =S(ρσxB)− S(ρB)+ S(ρσyC)− S(ρC)

=
∑

α=ω,̟

hbin

(

1−
√
1− 4α

2

)

−
∑

i=6,7

hbin

(

1− 2Aii

2

)

+ 2,

(31)

�(xy) =1+ S(ρAB)+ S(ρAC)− S(ρσxC)− S(ρσyB),

δ(xy) =2S(ρA)+ S(ρB)+ S(ρC)− [S(ρAB)+ S(ρAC)]
2

− [I(X : B)+I(Y : C)],

(a) (b)

(c)

Figure 2.   (Color online) Time evolutions of U (red line), UM (purple line), UD (black dashed), πABC (gray line), 
NAB (blue line), NBC (green line), and NAC (orange line) under the measurement ( σx , σz ). (a) B = 1, (b) B = 3, 
and (c) B = 10. All Figs. γ = 0, Jz = 0.
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in which

Other von Neumann entropies and the Holevo quantity I(X : B) are the same as those in the case of ( σx , σz ) 
pair.

The results for B = 0 and B = 2 are respectively shown in Figs. 4, 5. Comparing with the results for ( σx , σz ) 
case shown in Figs. 1, 2 and 3 one can easily conclude that the tripartite QMA-EUR and the two bounds do 
depend on the choice of measurement pair. The only exception UM = 1 occurs in the special case γ = 0 regard-
less of which pair is chosen. In addition, unlike the results for ( σx , σz ), U  and UD are no longer the same but 
U ≥ UD still holds for ( σx , σy).

Figure 4 shows the dynamics of all quantities for various decoherence rates γ at B = Jz = 0 . It can be seen that 
the entropic uncertainty U is related to NAB and NBC rather than NAC and πABC . The minimum of U is associated 
with the maximum of NAB and the minimum of NBC . A closer inspection reveals that there is a tiny anomaly in 
the γ = 0 case (Fig. 4a), in which NAB exhibits one more peaks per period than U.

The importance of nearest-neighbor entanglement asserts that the best guess on the measurement outcomes 
can be obtained when Alice is maximally entangled with Bob but not with Charlie. We can also state that the 
measurement accuracy is affected by the choice of measured observables, since the best guess occurs when either 
nearest neighbors are maximally entangled for the ( σx , σz ) choice, but not for the other.

(32)
S(ρσyB) =hbin

(

1−
√
1− 4ω

2

)

+ 1,

I(Y : C) =S(ρC)− hbin

(

1−
√
1− 4̟

2

)

,

(a) (b)

(c) (d)

Figure 3.   (Color online) Time evolutions of U (red line), UM (purple line), UD (black dashed), πABC (gray line), 
NAB (blue line), NBC (green line), and NAC (orange line) under the measurement ( σx , σz ). (a) γ = 0.1, B = 0, (b) γ 
= 0.1, B = 2, and (c) γ = 0.5, B = 0, and (d) γ = 0.5, B = 2. All Figs. Jz = 0.
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The presence of the magnetic field B changes the way the U , UM , and UM oscillate, as shown in Fig. 5. It also 
assists the decay of entanglement between system components with a finite γ , thus shortens the time U , UM , and 
UM saturate to a fixed maximum compared to that for B = 0.

Regardless of the various cases in our study, Dolatkhah’s bound is tighter than Ming’s and the inequality 
2 ≥ U ≥ UD ≥ UM ≥ 1 always holds.

Conclusions
We have investigated the dynamical characteristic of the tripartite QMA-EUR and its lower bounds in a three-
qubit Heisenberg XXZ spin chain under intrinsic decoherence. The relationship between tripartite uncer-
tainty and quantum entanglement between system components has been also investigated using tripartite and 
bipartite negativities. The results clearly confirm the dependence of the tripartite uncertainty on the choice 
of observable pair that Alice would measure. We showed that an inequality for the tripartite uncertainty, 
2 ≥ U ≥ UD ≥ UM ≥ 1 always holds and Dolatkhah’s lower bound UD is identical to the tripartite uncertainty, 
U = UD , with the complementary measurements pair ( σx , σz ). When there is no intrinsic decoherence, Ming’s 
lower bound UM = 1 is always fixed as the time evolves with any choice of Pauli measurement pair. We have also 
verified that the connection between uncertainty and the quantum entanglement between the system components 
would change with the choice of incompatible observables: for the pair ( σx , σz ), the best measurement accuracy 
occurs when the nearest neighbors are maximally entangled, while for ( σx , σy ) the best measurement accuracy 
can be obtained when Alice is maximally entangled with Bob. Our results provide a better understanding of the 
lower bounds of the tripartite QMA-EUR which are crucial in improving quantum measurements in quantum 
information processing.

(a) (b)

(c)

Figure 4.   (Color online) Time evolutions of U (red line), UM (purple line), UD (black dashed), πABC (gray line), 
NAB (blue line), NBC (green line), and NAC (orange line) under the measurement ( σx , σy ). (a) γ = 0, (b) γ = 0.1, 
and (c) γ = 0.5 All Figs. Jz = 0, B = 0.
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