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Vibration‑based biomimetic odor 
classification
Nidhi Pandey, Debasattam Pal, Dipankar Saha & Swaroop Ganguly*

Olfaction is not as well‑understood as vision or audition, nor technologically addressed. Here, 
Chemical Graph Theory is shown to connect the vibrational spectrum of an odorant molecule, 
invoked in the Vibration Theory of Olfaction, to its structure, which is germane to the orthodox Shape 
Theory. Atomistic simulations yield the Eigen‑VAlue (EVA) vibrational pseudo‑spectra for 20 odorant 
molecules grouped into 6 different ‘perceptual’ classes by odour. The EVA is decomposed into peaks 
corresponding to different types of vibrational modes. A novel secondary pseudo‑spectrum, informed 
by this physical insight—the Peak‑Decomposed EVA (PD‑EVA)—has been proposed here. Unsupervised 
Machine Learning (spectral clustering), applied to the PD‑EVA, clusters the odours into different 
‘physical’ (vibrational) classes that match the ‘perceptual’, and also reveal inherent perceptual 
subclasses. This establishes a physical basis for vibration‑based odour classification, harmonizes the 
Shape and Vibration theories, and points to vibration‑based sensing as a promising path towards a 
biomimetic electronic nose.

The complexity of our sense of smell, its strong link to emotion and memory, and the debate about its underlying 
mechanism, makes it scientifically intriguing. On another side, the power of biological olfaction observed in 
nature makes biomimetic sensors technologically attractive. Modern-day ‘electronic noses’ (gas/vapor sensors) 
pale in comparison to sensitive biological ones, such as those of sniffer dogs and polar  bears1.

In the short-term, truly biomimetic electronic noses could realize powerful sensing for several domains that 
impact human society immensely, namely: environment, food and agriculture, safety, and security. In the long 
term, these could pave the way for digitizing and transmitting olfactory (and, along the same lines, gustatory) 
information, as is routinely done with auditory and visual information today. The quest for biomimetic electronic 
nose sensors impels us to explore the relationship between the structure/properties of odorants and olfactory 
reception (sensing)2.

Olfaction is a multi-stage process, starting with the odorant molecules entering the nose and ending with 
the brain recognizing the odour/odorant. The olfactory epithelium in the nasal cavity contains olfactory sen-
sory neurons (about 50 million in humans, 300 million in dogs), with ORs expressed on their cell membranes. 
The Nobel Prize winning work of Richard Axel and Linda  Buck2 has established that ORs belong to the class of 
G-Protein Coupled Receptors. An odorant molecule could bind to multiple ORs, and vice versa, with an affinity 
that depends on physicochemical properties of the molecule. Binding triggers structural and electrochemical 
changes, which eventually lead to a change in the neuron cell potential, and the generation of an action potential 
(electrical signal) that communicates odour information to the brain. The mechanism underlying the afore-
mentioned binding and triggering is still not perfectly clear and forms the basis of present-day  investigation3.

Scientists have long speculated on two possibilities when it comes to the essential property of a molecule 
deciding its odor: geometric shape, and vibrational energies. The Vibration Theory, first proposed by  Dyson4, 
suggests that the olfactory receptors work like chemical spectroscopes, sensing the localized vibrations of odorant 
molecules. The Shape Theory, which was proposed later and gained wider acceptance, states that the odorants 
bind to the receptors after which the receptors undergo a conformational change from inactive to an active state—
a so-called docking or lock-and-key  mechanism5. Turin revived the Vibration Theory postulating Inelastic Electron 
Tunneling Spectroscopy (IETS) as the mechanism for detecting vibrational  energies6. This has positioned Olfac-
tion as a prototypical system within the new field of Quantum  Biology7. While the Vibration Theory has been 
debated  vigorously8–10, some  experiments11–14 do suggest that molecular vibrations play a part in the perception 
of odor. The swipe card mechanism for  olfaction15 proposes a role for vibrational energy in addition to docking. 
(Complex activation mechanisms going beyond docking do occur in biology, e.g. in cancer  immunology16. On 
another side, it is a standard practice in Quantitative Structure–Activity Relation (QSAR) studies for biochemical 
molecules, in contexts such as drug design, to use their vibrational spectra as a proxy to  structure17,18).

OPEN

Department of Electrical Engineering, Indian Institute of Technology Bombay, Mumbai, India. *email: swaroop.
ganguly@gmail.com

http://crossmark.crossref.org/dialog/?doi=10.1038/s41598-021-90592-x&domain=pdf


2

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11389  | https://doi.org/10.1038/s41598-021-90592-x

www.nature.com/scientificreports/

Now, the perception of odor has been shown to be correlated with the physico-chemical properties of odor-
ant molecules, in particular, the atomic mass distributions  therein19. Since the mass distribution in a molecule 
relates both to its shape and its vibrational spectrum, this limns a path to link the lock-and-key and the vibra-
tion pictures of olfaction. Here, we seek to formally unify these two, apparently orthogonal, pictures using the 
apparatus of Chemical Graph Theory, and Fig. 1 demonstrates the formulation used to unify these theories. 
The odorant molecule is treated as a graph with the atoms as its nodes, and attached weights corresponding 
to relevant atomic properties. Calculation of associated matrices then relates the structure of the graph to its 
functional properties, such as the vibrational spectrum—which is derived from the eigenvalues of the Laplacian 
matrix weighted by stiffness.

Thus, we calculate the discrete vibrational spectra of 20 odorant molecules, belonging to 6 different classes, 
from atomistic simulations. The molecules in each class stimulate a similar perception of smell, and so these 
constitute our perceptual classes. The corresponding Eigen-VAlue (EVA) descriptors are then obtained by broad-
ening and adding up all the vibrational peaks. This gives complex pseudo-spectra, which are then simplified by 
peak decomposition (PD) to identify the few peaks corresponding to the major vibrational modes. The centre 
point of these peaks constitutes a discrete spectrum again; these are broadened and added up as before to get the 
PD-EVA spectra. The Similarity measure is then calculated between each pair of these spectra. Finally, this forms 
the basis for Spectral Clustering of the odorant molecules into physical (i.e. vibrational) classes.

Theory and method
As mentioned above, we begin by choosing a proof-of-concept dataset of 20 odorant molecules, divided into 6 
classes based on human perception of their smell. These classes span odours from different walks of everyday 
life, namely: roasted coffee, garlic, musk, fruity, aromatic and mothball. While smell is obviously complex, and 
somewhat subjective, there is agreement on the dominant smell of these molecules. We note that the odorants 
included here also have widely differing molecular structures, shown in Table 1. Thus, we have large diversity 
within the confines of a small dataset.

Figure 1.  20 odorant molecules belonging to 6 different perceptual classes are first selected, including Benzene 
in the Aromatic class (left, centre). The Laplacian Matrix (left bottom), a mathematical description of the 
structure, is shown (for Benzene here) to be proportional to the Dynamical Matrix D (right, bottom)—which 
describes the equation of vibrational motion of a molecule in terms of coupled oscillators. This mapping 
harmonizes the Vibrational and Shape theories of Olfaction. The Eigen-frequencies of the Dynamical Matrix 
lead to a vibrational spectrum—the Peak-Decomposed EigenVAlue (PD-EVA)—with peaks corresponding to 
different vibrational mode types, demarcated by frequency ranges (right, centre)—shown here for Benzene. 
Clustering based on Similarity in the odorants’ PD-EVA leads to the same classes as perceptual, with the 
revelation of subclasses within Garlicky and Aromatic. This mapping suggests that vibration-based odour sensing 
and classification may have the potential to emulate the power of biological olfaction.
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Now, the shape of a molecule may be modelled in terms of the geometry of its nuclei, and the bonds between 
them (understood to represent mean electron distributions). The mathematical language for this is Chemical 
Graph Theory, which treats the nuclei as nodes and the bonds as edges of molecular graphs. Then, usual graph-
theoretic matrices (e.g. adjacency), suitably weighted by atomic properties (e.g. mass, electronegativity), can 
capture the properties of  molecules20.

In particular, it is known that the Laplacian matrix of a molecular graph, when weighted by the ratio of the 
mechanical stiffness of the bonds to the mass of the atoms, yields its Dynamical matrix, whose eigenvalues and 
eigenfunctions comprise the vibrational spectrum of the molecule [S1]. This implies that the vibrational spec-
trum of a molecule is a characteristic property of its structure and constituents. A realistic, calculated rendering 
thereof is attempted by the construction of a pseudospectrum called the EigenVAlue (EVA) molecular descriptor, 
which is built upon the thesis that “a significant amount of information pertaining to molecular properties, in 
particular, biological activity, might be contained within the molecular vibration wave-function, of which the 
vibrational spectrum is a fingerprint”18. It has become a standard technique for similarity searching in chemi-
cal structure databases, strengthening the link between molecular structure, vibration, and activity through its 
empirical success.

In this work, molecular vibrational spectra have been obtained using the QuantumATK atomistic simula-
tion package. It has an extensive materials database of molecules and crystals; and has a provision to build mol-
ecules that are not available in the database. In our case, Furan, Benzene, Anthracene, Naphthalene, Fluorene 
and Tetralin were available in the database; while the rest of the molecules were built. Where the molecule is 
built, its geometry has to be optimised to obtain the minimum energy configuration. This was done within the 
Local Density Approximation (LDA) in the ATK-DFT:LCAO calculator. The force tolerance was chosen to be 
0.001 eV/Å, smaller than the default value of 0.05 eV/Å for greater accuracy. After the structure is optimized, 
its Dynamical Matrix is calculated, whose eigenvalues give us the vibrational energies of the molecule  [21,22, S1]. 
The calculated spectra have been validated by comparison to reported experimental data [S3].

The flowchart for the calculation of the molecular vibrational spectra from the Dynamical Matrix in Quan-
tumATK is given below.

Table 1.  Set of odorant molecules used in this study, showing their structure, and perceptual (odour) class—
namely, Aromatic, Roasted Coffee, Moth Ball, Fruity, Musk and Garlicky.
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To obtain the EVA pseudo-spectrum, these vibrational modes are projected on a bounded spatial frequency 
(wavenumber) scale as discrete peaks of equal magnitude, and then a Gaussian kernel of appropriate standard 
deviation (σ) is placed on each eigenfrequency and the resulting value at any point is the sum of the amplitudes 
of all the Gaussian kernel at that point. The pseudo-spectrum obtained is thus:

Now, the EVA pseudo-spectrum is a frequency distribution plot, widely used in Graph Theory, that brings 
out the multiplicity of the eigenvalues of the Laplacian matrix (here, the multiplicity of vibrational modes). The 
Gaussian kernel spreads out the discrete eigenfrequency peaks over a standard deviation (σ) and the merges 
those which are close to each other on a scale of σ: thus, a smaller σ accentuates finer details like local bonding, 
whereas a larger value manifests its global  patterns23. We consider here a relatively large value of σ (100  cm−1), 
corresponding to the room temperature broadening of IETS peaks, and refer to the resulting pseudo-spectra as 
“300 K EVA”. Figure 2a illustrates, as an example, the construction of the 300 K EVA pseudo-spectrum for Furan 
(the EVA pseudo-spectra for all the other molecules are shown in S3). Thermal broadening presents a well-known 
identification problem in IETS based  sensors24 which have been sought to be alleviated by novel device  designs25. 
Here we will see that the room temperature equivalent broadening, in fact, leads to proper odorant identification 
from their EVA pseudo-spectra. This suggests that: one, the “thermal broadening problem” in IETS-based sen-
sors may not need a ‘hardware-level solution’, but can be addressed at the ‘software-level’; and two, the ‘software’ 
for odorant identification from vibrational peak analysis—to be presented hereafter—may, in fact, be aided by 
room temperature thermal broadening.

Now, it is possible to perform a classification of odorants from their EVA pseudospectra that is based purely 
on data science methods, and not explicitly linked to underlying  physics26,27. In order to develop a classification 
scheme that is informed by physical intuition, we seek to identify the vibrational mode types, which in turn 
determine the frequency of the spectral  peaks28. For example, torsional modes are typically the lowest energy 
ones, whereas C–H stretching modes are the highest energy. In 300 K EVA pseudospectra, discrete peaks arising 
from the same mode type would tend to get merged together. We follow a novel procedure to resolve the modes 
and generate a secondary EVA pseudospectrum carrying this information, thereby incorporating physical insight 
into the machine-learning based classification that follows. First, the 300 K EVA is decomposed by standard 
methods (using ‘Peak Deconvolution’ in the software  Origin29) into a few broad peaks—far fewer than the num-
ber of original discrete peaks we started with. Dividing the frequency range into intervals, as shown in Fig. 2b, 
then allows us to identify these broad peaks with specific mode types. Thereafter we iterate the EVA procedure 
as shown in Fig. 2c,d, starting this time with discrete peaks (stems) positioned at the center of the above broad 
peaks, and using a smaller σ (60  cm−1) to enable finer resolution between them. This yields the secondary EVA, 
the PD-EVA, which is further used for spectral clustering as described below (shown for Furan in Fig. 2c, for all 
the other molecules in S3). We then employ a measure, common in QSAR techniques, to compare two EVA (or 
PD-EVA)  spectra20. This measure, called the Similarity, is calculated as follows:

EVA(x) =
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∑
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The pairwise Similarity Indices so obtained are arranged in a n × n matrix, called the Similarity Matrix 
where the columns and rows correspond to the n odorant molecules under  study30. This is then used for Cluster 
Analysis.

Cluster Analysis is used to group and/or search for similar objects in large databases. Here, objects grouped 
within the same cluster should be more alike (per some well-defined measure) than those outsides. In particu-
lar, we use a technique called Spectral Clustering, wherein a normalized Laplacian Matrix is calculated from an 
effective Adjacency Matrix—which is obtained from the Similarity Matrix by setting its diagonal elements to 
zero. The first ‘m’ eigenvalues and eigenvectors of this normalized Laplacian are then used to cluster the odorants 
into ‘m’ groups using the standard k-means algorithm.

The following flowchart explains the process of clustering used to classify the odorant molecules based on 
their PD-EVA pseudo-spectra30:

S = 2 ∗
∑

n

i=1 EVA1(i) ∗ EVA2(i)
∑

n

i=1 EVA1(i)
2 +

∑

n

i=1 EVA2(i)
2

Figure 2.  The ‘EigenVAlue’ (EVA) pseudo-spectrum for the molecule Furan (shown in inset), constructed 
by broadening the calculated vibrational peaks (stems in red) with Gaussian functions (in blue) of suitable σ 
(here 100  cm−1) and summing up the contributions from all of them at each frequency point. (b) The EVA 
pseudospectrum, of Furan Methanethiol (inset) as an example, with the partitioning of the frequency scale 
by types of vibrational modes. From left to right:  Torsional modes,  Ring Torsion and C–H rocking,  
Ring Deformation, C–H wagging, C–C stretch,  C=C stretch, C=O stretch,  S–H stretch,  C–H stretch. 
Similar broad classification of modes can be done so the entire convolved EVA spectra can be deconvolved into 
broad peaks to identify the regions. This suggests the classification of odorant molecules by broad separation 
of the vibrational spectrum into these regions, accomplished through the ‘peak-decomposed EVA’. (c) Peak 
Decomposition of the EVA spectrum of Furan (shown in inset). (d) Construction of the Peak-Decomposed EVA 
(PD-EVA) spectrum by following the same procedure as for EVA (illustrated in (a))
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Create a matrix X with eigenvectors corresponding to 6 smallest eigenvalues of the Laplacian

Apply k-means clustering to the 6-dimensional space 

Calculate the Similarity Matrix comparing PD-EVA 

Set the diagonal elements ‘0’ in the similarity matrix to obtain Similarity weighted Adjacency Matrix

Convert Similarity based adjacency matrix to Normalized Laplacian Matrix

Calculate eigenvalues and eigenvectors of the Laplacian

Results and discussion
The Physics-Informed Machine Learning method described in the previous section is applied to cluster the 
20 odorant molecules into physical (vibrational) classes based on the Similarity in their PD-EVA spectra. We 
find that optimal clustering leads to 8 physical classes, in contrast to the 6 perceptual ones (something similar 
was also observed  earlier26). However, the molecules in each physical class do smell the same. It transpires that 
two of the six perceptual classes split into two in the process of physical (vibration-based) clustering. This will 
be elucidated in the following paragraph. Table 2 lists the molecules in bands indicating the physical classes, 
the perceptual class (i.e. smell) for each molecule, and its dominant vibrational modes obtained through peak 
decomposition of its EVA pseudospectrum.

Table 2.  Molecules with their Perceptual classes and the dominant vibrational modes (in  cm−1) identified by 
peak-decomposition of EVA pseudo-spectrum. A, B: Low-frequency torsional modes. C, D: Ring torsion and 
C–H rocking. E, F: Ring deformation, C–H wagging, and C–C stretch. G: C=C stretch. H: C=O stretch. I: S–H 
stretch. J: C–H stretch.

Molecule Odor Perception A B C D E F G H I J

Benzene Aromatic (Strong) 399 637 1084 1485 3189

Anthracene Aromatic (Weak) 615 826 1147 1446 3206

Thiofuran Aromatic (Weak) 538 758 1043 1424 3258

Furan Roasted Coffee 633 816 1011 1498 3311

Furan methanethiol Roasted Coffee 157 684 1025 1526 2650 3251

Naphthalene Moth-ball 151 441 842 1150 1515 3213

Tetralin Moth-ball 118 468 827 1147 1471 3080

Fluorene Moth-ball 137 463 871 1126 1456 3193

Heptanal Fruity 79 883 1287 1817 3046

N-amyl Butyrate Fruity 118 846 1157 1386 1780 3066

ϒ-Octalactone Fruity 112 820 1263 1816 3066

Civetone Musk 240 1044 1377 3009

Moxalone Musk 292 993 1370 3029

Galaxoltide Musk 318 989 1373 3035

Helvelotide Musk 280 999 1359 3029

Benzyl Mercaptan Garlicky (artificial) 260 881 1091 1454 2585 3193

Allyl thiol Garlicky (artificial) 272 927 1313 1696 2602 3086

Dimethyl sulfide Garlicky (artificial) 226 885 1371 3051

Diallyl disulfide Garlicky (natural) 110 439 922 1254 1724 3070

Allicin Garlicky (natural) 120 382 958 1313 1692 3109
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In fact, these classes correspond to a natural subgrouping of the perceptual class, namely ‘weakly aromatic’ 
and ‘strongly aromatic’31. The ‘garlicky’ perceptual class (last in Table 2) is also found to split into 2 physical 
classes; again, this is found to correspond to natural perceptual sub-classes. Allicin and diallyl disulfide occur 
naturally in garlic and are responsible for its odor, whereas benzyl mercaptan, dimethyl sulfide, and allyl thiol 
are synthetic molecules which are perceived as sulfurous-garlic32. It is intriguing that a purely mathematical 
clustering algorithm, using a descriptor originating from molecular vibrational modes, is able to resolve the 
perceptual subclasses. This indicates that classification and identification of odorant molecules based on intricate 
information about their vibrational spectra, can effectively emulate biological olfaction and enable biomimetic 
olfactory sensors.

Conclusion
In conclusion, we have used Chemical Graph Theory to illuminate the link between molecular structure and 
vibrational spectra that is implicit in QSAR studies based on the EVA molecular descriptor. This is consistent 
with earlier  work19 suggesting that, of numerous physicochemical properties, the most crucial ones contribut-
ing to the complex perception of smell are molecular mass and its distribution—which naturally connect to 
its vibrational spectra in the framework of Chemical Graph Theory. We have introduced a novel vibrational 
pseudo-spectrum called the PD-EVA, which incorporates physical insight about vibrational mode types. A 
small, proof-of-concept set of 20 odorant molecules, belonging to 6 perceptual classes are classified into physical 
(vibrational) by Spectral Clustering based on Similarity between their PD-EVA. It is found that the best clustering 
leads to 8 physical classes, corresponding to the perceptual ones, plus one subclass each that was inherent in 2 
of the perceptual classes and revealed in the clustering process. With this mapping, PD-EVA places vibration-
based odour classification on a firm physical foundation, which was missing in earlier EVA-based  clustering26. 
Thereby it strengthens the thesis that Vibration plays a non-trivial role in Olfaction. It also suggests that the power 
of biological olfaction may be possible to emulate with vibration-based sensing and identification. Thus, our 
approach could pave the way toward automated odour classification and artificial odour design for applications 
like perfumes and cosmetics. We underline, of course, that this study bears verification with much larger odorant 
data sets, which must be the subject of future work. Nonetheless, we remind ourselves that biophysical models, 
even if simplistic or incomplete, have proven highly effective in guiding the development of useful bio-inspired 
technologies, e.g. learning using neural networks. This work could similarly guide the development of a quantum 
biomimetic electronic nose, where the path to realizing a practical vibration/IETS based sensor  system24,33 seems 
clearer than it is for sensors based on many other physicochemical properties.
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