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Observing deep radiomics 
for the classification of glioma 
grades
Kazuma Kobayashi1,2*, Mototaka Miyake3, Masamichi Takahashi4 & Ryuji Hamamoto1,2

Deep learning is a promising method for medical image analysis because it can automatically acquire 
meaningful representations from raw data. However, a technical challenge lies in the difficulty of 
determining which types of internal representation are associated with a specific task, because feature 
vectors can vary dynamically according to individual inputs. Here, based on the magnetic resonance 
imaging (MRI) of gliomas, we propose a novel method to extract a shareable set of feature vectors 
that encode various parts in tumor imaging phenotypes. By applying vector quantization to latent 
representations, features extracted by an encoder are replaced with a fixed set of feature vectors. 
Hence, the set of feature vectors can be used in downstream tasks as imaging markers, which we call 
deep radiomics. Using deep radiomics, a classifier is established using logistic regression to predict the 
glioma grade with 90% accuracy. We also devise an algorithm to visualize the image region encoded 
by each feature vector, and demonstrate that the classification model preferentially relies on feature 
vectors associated with the presence or absence of contrast enhancement in tumor regions. Our 
proposal provides a data-driven approach to enhance the understanding of the imaging appearance of 
gliomas.

The scientific community has become interested not only in harnessing the predictive performance of machine 
learning models, but also in dissecting such models to distill useful knowledge that can potentially advance sci-
entific  understanding1. When a model achieves high prediction performance in a particular task, it is expected 
to have acquired an expressive internal representation that approximates the explanatory patterns underlying 
the phenomena of interest. Therefore, the internal representations of trained models can be interpreted to obtain 
meaningful insights and scientific knowledge without directly observing the phenomena. Based on this concept of 
acquiring medical knowledge in a data-driven manner, the objective of this study is to discover common features 
in medical imaging associated with specific clinical information across a patient population.

Particularly, this study focuses on the imaging phenotypes of gliomas, which are the most common central 
nervous system  tumors2,3. According to the grading system of the World Health Organization (WHO), glio-
mas are classified into grades I to IV, based on histopathological findings obtained from surgical biopsies or 
 specimens4. Because the degrees of aggressiveness and infiltrative characteristics significantly affect the disease 
prognosis, the differential diagnosis between lower-grade gliomas (LGG, WHO grades II and III) and high-grade 
gliomas (HGG, WHO grade IV) is an important issue regarding treatment options and  prognosis5.

Currently, the standard procedure for classifying tumors according to the WHO grades is based on patho-
logical study. However, there are still many limitations to tumor classification, including the requirement for 
invasive procedures such as surgical resections or biopsies, inherent sampling errors caused by the heterogeneity 
of tumors, and the time-consuming process of histopathological analysis. There are also cases wherein it may be 
dangerous to perform surgical procedures on tumors located at critical sites in the brain. To address these issues, 
the computational analysis of magnetic resonance imaging (MRI) for tumor grading has attracted significant 
 attention6,7. Because MRI can non-invasively observe an entire tumor in vivo, it is free from sampling errors. 
Therefore, the management of gliomas based on multi-parametric MRI analysis can play a complementary role 
in pathology-based diagnosis.
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Radiomics and deep learning are two mainstays for computational analysis of tumor images. Many intensive 
studies have attempted to analyze the imaging phenotypes of glioma, and each of these approaches has certain 
advantages and disadvantages in gaining meaningful insights from trained models.

Radiomics is a research field focusing on decoding tumor phenotypes based on quantitative imaging  features8. 
Typically, suitable sets of handcrafted imaging features are extracted from the region of interest (ROI) for analy-
sis. Subsequently, a prediction model based on a machine learning algorithm is trained for a particular predic-
tion task relevant to clinical decision-making. For glioma grading, many previous studies have demonstrated 
that the tumor characteristics can be quantified using radiomics, and have reported satisfactory discrimina-
tive  performance9–12. Because the radiomics approach uses pre-defined handcrafted imaging features, it has 
the advantage of high interpretability for the features contributing to the prediction. However, to implement 
problem-specific handcrafted features, domain knowledge is often required. Because the optimal representative 
features for a given task are not always obvious, a data-driven approach should be considered to represent the 
data distribution.

Deep learning has emerged as an innovative technology that enables end-to-end learning between the input 
data and ground-truth  labels13. Using backpropagation to tune the parameters of multilayered nonlinear opera-
tions during the training process, deep neural networks can automatically abstract useful representations from 
data. In other words, deep neural networks are capable of data-driven feature extraction. Therefore, a deep 
learning model can learn internal representations that are meaningful for distinguishing the attributes of sam-
ples without relying on feature engineering based on domain knowledge. For example, deep-learning-based 
algorithms have achieved remarkable prediction performance in glioma grade  classification14–16. Conversely, in 
such complex models, a tradeoff between accuracy and explainability has traditionally  existed17. Hence, complex 
models, such as deep learning models, are occasionally referred to as black-box  models18, implying that there is 
a difficulty in interpreting how the models arrive at a particular outcome.

At the core of our challenge is the internal variability of convolutional neural networks (CNNs). When a 
CNN is trained to predict the imaging characteristics of gliomas, internal representations can be acquired as 
low-dimensional feature vectors, which collectively constitute the feature maps. One may argue that these fea-
ture vectors can then be used as imaging markers in downstream tasks because they are expected to adequately 
represent the appearance of tumors. Nevertheless, only a few studies have deeply investigated different types 
of imaging characteristics exploited by deep learning models for prediction in clinical tasks of glioma imaging. 
Among existing studies, Banerjee et al.15 investigated the properties of convolutional kernels in different layers 
through visualization. However, the internal variability of the typical CNNs still hinders model interpretability, 
whereby each feature map changes dynamically depending on individual inputs, especially focusing on determin-
ing the types of internal representations that are critical for a specific task. Because the objective of the majority 
of medical studies is to find specific factors that are significantly common in a diseased population, it is crucial 
to fix the variability of feature vectors representing targeted imaging phenotypes.

To combine the advantages of radiomics and deep learning by solving the internal variability of CNNs, we 
propose a straightforward approach to incorporate vector quantization into the feature extraction process of 
deep learning models. Particularly, we apply vector quantization to the latent representation inside a segmenta-
tion model based on an encoder–decoder structure for tumor regions in images. Through the process of vector 
quantization, individually varying features extracted from an encoder can be replaced with a fixed set of feature 
vectors, the configuration of which is also optimized in the model training process. As a result, each imaging 
phenotype can be indicated by a shareable set of feature vectors, allowing themselves to be used as imaging mark-
ers for downstream tasks. Subsequently, we attempt to identify specific types of internal representations associ-
ated with particular clinical information by training a classification model based on the set of feature vectors. 
Thus, our approach combines the flexible representative capacities of deep learning and the highly interpretable 
aspects of radiomics to acquire meaningful knowledge in a data-driven manner, which we call deep radiomics. 
Additionally, we devise a feature ablation study to visualize which types of imaging characteristics are utilized 
by the classification model to provide interpretable feedback to physicians for the task-specific radiological 
findings. We also discuss whether the obtained result is consistent with the findings reported in the literature.

Methods
In this section, we describe a method to extract a shareable set of feature vectors inside a segmentation network 
by incorporating vector quantization and to utilize them for the classification of glioma grades using logistic 
regression. The latter task was formulated as a binary classification whereby an input magnetic resonance (MR) 
volume is diagnosed either as LGG or HGG. Additionally, the types of imaging characteristics that enable the 
prediction were investigated by conducting a feature ablation study.

Dataset. We prepared a dataset of brain MRIs with gliomas from the 2019 BraTS  Challenge19–22. This dataset 
contains T1, Gd-enhanced T1, T2, and FLAIR sequences for patients diagnosed with LGG or HGG. Note that 
LGG stands for “lower-grade” glioma herein, the definition of which includes both low-grade glioma (WHO 
grade II) and intermediate-grade glioma (WHO grade III)5,23. Bakas et al.24 gives the detailed description of 
scanning and annotation protocols. Briefly, all clinically acquired multi-parametric MRI scans were co-regis-
tered to a common anatomical template, resampled to 1 mm3 , and underwent skull-stripping.

In this study, all four sequences were used, and three types of datasets were obtained: a training dataset 
(MICCAI_BraTS_Training) containing 355 patients, a validation dataset (MICCAI_BraTS_Validation) contain-
ing 125 patients, and a test dataset (MICCAI_BraTS_Testing) containing 167 patients. Only MICCAI_BraTS_
Training contains a patient-basis diagnosis of LGG (76 patients) and HGG (259 patients) that is pathologi-
cally  confirmed24. MICCAI_BraTS_Training originally contained three ground-truth segmentation labels for 
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abnormalities: Gd-enhanced tumor (ET), peritumoral edema (ED), and necrotic and non-enhancing tumor core 
(NET). Under the supervision of expert radiologists, we segmented the images in MICCAI_BraTS_Validation 
and MICCAI_BraTS_Testing into the aforementioned three abnormal categories (ET, ED, and NET). Note that 
the names of the datasets given in the 2019 BraTS Challenge and the purpose of using each dataset in this study 
are different. To train a segmentation network, a dataset obtained by concatenating MICCAI_BraTS_Validation 
and MICCAI_BraTS_Testing was used as a training dataset. After training the segmentation network, a clas-
sification model was constructed based on MICCAI_BraTS_Training as a validation dataset, which is the only 
dataset containing information on the glioma grades.

Proposed algorithm for deep radiomics. Here, we describe the algorithm for extracting and exploiting 
deep radiomics for the classification of glioma grades.

Overview of the algorithm. We first train an encoder–decoder network to predict the segmentation of glioma 
imaging characteristics from a two-dimensional (2D) axial slice of multi-parametric MRI (Fig. 1a). The core of 
our proposal is to perform vector quantization at the bottom of the segmentation network, where a codebook 
consisting of a fixed number of feature vectors as codewords is trained to capture the imaging characteristics 
meaningful for the tumor segmentation (Fig. 1b). After the training, for individual input images, the varying 
feature representations by the encoder are substituted by the codewords located at fixed positions through vector 

Figure 1.  Obtaining a shareable set of feature vectors from a segmentation network. (a) A segmentation 
network consists of an encoder–decoder pair and stores a shareable set of feature vectors in a codebook. At the 
training stage of a tumor segmentation pre-task, an input image x is mapped onto a latent representation ze 
through the encoder. Vector quantization is performed based on the codebook e by replacing each feature vector 
in ze with the nearest codeword to produce a quantized latent representation zq . Then, the decoder produces 
a segmentation output by taking zq as the input. The error between the segmentation output and a ground-
truth label is evaluated to train the network. (b) During the training, the codebook loss ∇Lcodebook enforces the 
codebook variables toward the encoder’s output, meanwhile the commitment loss ∇Lcommit exerts the opposite 
effect. To alter the configuration of the codebook, the encoder’s output is updated for the next forward pass 
according to the learning objective ∇zLtotal . (c) When using the shareable set of feature vectors in a downstream 
task, the encoder is employed as a feature extractor. The latent representation of an input image is mapped onto 
the quantized latent representation zq , and then a histogram representation is constructed. This histogram 
representation contains information on the frequency with which each feature vector appears in the input 
image.
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quantization. The codewords in the learned codebook can be regarded as shareable in the dataset. Subsequently, 
imaging features of each MRI volume are represented as a histogram, which summarizes how many times each 
codeword in the codebook appears in each slice of the MRI volume (Fig. 1c). Thereafter, by applying simple 
logistic regression to classify different glioma grades based on the histogram representation, a set of feature vec-
tors that are significantly associated with the prediction is identified. We further conduct a feature ablation study 
to visualize which types of imaging characteristics are associated with glioma grades in the image space (Fig. 2).

Notation. Let us consider a multi-parametric three-dimensional (3D) MRI volume X ∈ R
C×W×H×I , where C 

is the number of channels, W and H represent the height and width of the axial slices, respectively, and I is the 
number of axial slices. We define x ∈ R

C×W×H as a slice in the axial view. The segmentation network encodes 
a slice-wise input x into the low-dimensional latent representation z ∈ R

C′×W ′×H ′ and decodes the segmenta-
tion output ŷ ∈ R

S×W×H , where S is the number of segmentation labels. The ground-truth segmentation label 
y ∈ R

S×W×H is used to train the segmentation network. The series of latent representations z for each slice of 
the MRI volume can be concatenated into a summarized representation Z ∈ R

C′×W ′×H ′×I ′ , which is considered 
as a volume-based representation. The glioma grades are classified on a volume basis because grading is carried 
out for each patient based on pathological  examinations24.

Figure 2.  Overview of feature ablation study conducted to visualize the image region encoded by each feature 
vector. (a) The input image is initially mapped onto the quantized latent representation zq through the encoder, 
which functions as a feature extractor. This initial latent representation is subsequently fed into the decoder to 
generate the segmentation output ŷ , and the logit map ỹ obtained before the final argmax operation is retained 
in the subsequent procedure. Then, the feature vector of interest in zq is replaced with a background vector to 
generate the replaced latent representation z ′q . The background vector is identified as the most common feature 
vector in the background of the images (that is, the region outside the body). Next, the decoder outputs the logit 
map ỹ′ again by taking z ′q as the input. Because the difference between ỹ and ỹ′ reflects the image region affected 
by the replacement, the difference map is referred to as the responsible region of the feature vector of interest. 
(b) The two responsible regions corresponding to the HGG responsible vectors are shown along with examples 
of an input image, ground-truth label, and segmentation output. By collecting the responsible regions from 
all responsible vectors for a particular glioma grade, we can observe the relation between the type of imaging 
characteristics and glioma grade.



5

Vol.:(0123456789)

Scientific Reports |        (2021) 11:10942  | https://doi.org/10.1038/s41598-021-90555-2

www.nature.com/scientificreports/

Segmentation networks with a shareable set of feature vectors. A segmentation network was trained to extract a 
shareable set of feature vectors. As shown in Fig. 1a, the network consisted of an encoder–decoder pair connected 
via a discrete latent space containing a set of feature vectors as codewords in a codebook. Through the encoder, a 
2D MRI slice x is mapped to a latent representation ze , which can be variable according to individual inputs. In 
the latent space, vector quantization is performed based on a codebook e = {ek|k = 1, . . . ,K} ∈ R

K×D , which 
stores a shareable set of K feature vectors as codewords ek ∈ R

D , by replacing each feature vector in ze with 
the nearest codeword to produce the quantized latent representation zq . This vector quantization process is 
analogous to that of a vector-quantized variational autoencoder (VQ-VAE)25,26. As illustrated in Fig.  1b, the 
feature vectors corresponding to each voxel of ze are quantized by executing a nearest-neighbor lookup on the 
codebook, as follows:

Thereafter, the codewords in the codebook are collected as a quantized latent representation zq , as follows:

To optimize this process, the codebook and encoder are trained to minimize the objective, which is referred to 
as latent loss, as follows:

where sg represents the stop-gradient operator; this serves as an identity function at the forward computa-
tion time and has zero partial derivatives. During training, the codebook loss, which is the first term in the 
aforementioned equation, updates the codebook variables by delivering the codewords to the encoder’s output 
(see the arrow indicated by ∇Lcodebook in Fig. 1b). Simultaneously, the commitment loss, which is the second 
term, encourages the output of the encoder to move closer to the target codewords (see the arrow indicated by 
∇Lcommit in Fig. 1b). The hyperparameter β controls the reluctance of changing the encoder output to match the 
corresponding codewords. Backpropagation or exponential moving average can be used to train the  codebook27. 
Notably, the size of the codebook can be arbitrarily tuned, which ensures that a certain amount of information 
is preserved and compressed within the latent  space26.

Then, the decoder takes zq as input and generates the segmentation map ŷ , which is encouraged to be similar 
to the ground-truth labels y . The segmentation loss function consists of the soft  Dice28 and focal  losses29. In 
summary, the overall training objectives for the segmentation network are as follows:

At each iteration to minimize Eq. (4), the encoder output ze is updated to alter the configuration in the next 
forward pass (see the arrow indicated by ∇zLtotal in Fig. 1b). Consequently, after the training of the tumor seg-
mentation, we can consider the codewords as a shareable set of feature vectors that contain the representations 
describing imaging phenotypes of gliomas. Hereinafter, the image analysis method exploiting this shareable set 
of feature vectors obtained in a data-driven manner is called deep radiomics.

Histogram representation of brain MRI based on deep radiomics. We hypothesize that these feature vectors 
can be useful to distinguish between LGG and HGG. To demonstrate this, we start with a volume-wise repre-
sentation of brain MRI, as the pathologically-confirmed glioma grade is associated with the entire volume. We 
build upon the encoder followed by the vector quantization used as a feature extractor f to produce the slice-
wise quantized latent representation zq (Fig. 1c). All I quantized latent representations {z1, . . . , zI } extracted 
from slices {x1, . . . , xI } in the MRI volume X ∈ R

C×W×H×I are concatenated into a volume-wise representation 
Zq . Subsequently, we convert this representation into a histogram representation to approximate the imaging 
appearance as a count of each feature vector on a volume basis, as follows:

where H is an operator to rearrange a histogram according to the number of feature vectors, K is the number of 
discrete feature vectors in the codebook, cki is the number of occurrence of the kth feature vector in the ith axial 
slice, and ck is the summed occurrence of the kth feature vector appearing in the MRI volume.

Classification models for glioma grades. A key benefit of the vector quantization is that a specific set of feature 
vectors stored in the codebook can be shared across a population, fixing the variability of internal representa-
tions of CNNs. This allows us to use these feature vectors as imaging markers for downstream tasks. Therefore, to 
establish a binary classification model to discriminate the glioma grade, we used logistic regression based on the 
histogram representation. By considering the number of occurrences ci of each feature vector as an explanatory 
variable, the logistic regression model can be formulated as follows:

where p indicates the probability of a particular class, β is a regression coefficient, and K∗ denotes a set of signifi-
cant classifier coefficients based on the effect likelihood ratio test. The classification performance was evaluated 

(1)zi = argmin
k∈[K]

�zei − ek�2.

(2)zqi = ezi .

(3)Llatent = �sg[ze(x)] − e�22 + β�ze(x)− sg[e]�22,

(4)Ltotal = Llatent + Lsegmentation.

(5)Zq =

∑

i∈I

f (x) =
∑

i∈I

zq ≈
∑

i∈I

Hk∈K (cki , ek) = Hk∈K (ck , ek),

(6)logit(p) = β0 +
∑

k∈K∗

βkck ,



6

Vol:.(1234567890)

Scientific Reports |        (2021) 11:10942  | https://doi.org/10.1038/s41598-021-90555-2

www.nature.com/scientificreports/

based on accuracy, precision, recall (sensitivity), specificity, and negative predictive value, where HGG and LGG 
were considered as positive and negative, respectively.

Robustness assessment of the deep radiomics. Robustness of features under varying scanning and segmentation 
conditions is a significant challenge in conventional  radiomics30. Several researchers have studied reproducibil-
ity of radiomics and report the variability of radiomics features depending on image preprocessing techniques 
such as voxel size, slice thickness, and normalization  methods31–33. Therefore, robustness assessment of the deep 
radiomics is necessary to demonstrate its usefulness in medical image analysis.

We evaluated the robustness of the deep radiomics from two perspectives. First, we investigated the reproduc-
ibility of the volume-wise representation as the histogram shown in Eq. (5). As standardization of pixel/voxel 
intensity in brain MRIs significantly affects radiomics  markers31,34, we imposed perturbations by scaling and 
shifting the entire pixel value of input images. Then, the extent to which selected feature vectors deviated from 
the original histogram, which was acquired without any perturbation, was quantified. This is formulated as an 
index called difference ratio as follows:

where the numerator is calculated as the sum of the absolute values of the difference in the number of occur-
rences of each feature vector. Second, we assessed the performance degradation of the classification model in 
Eq. (6) under the same perturbations. The performance indices, such as accuracy, precision, recall (sensitivity), 
specificity, and negative predictive value, were calculated according to the magnitude of the perturbations.

Identification of responsible vectors. For interpretability, linear models such as logistic regression are consid-
ered as transparent, whereas complex models involving deep learning are sometimes regarded as black-box35. 
Transparent models are considered so because they are inherently interpretable. For example, statistical tests of 
individual predictors for a logistic regression model showing goodness of fit for a target observation can identify 
significant variables for prediction. Therefore, we sought to identify feature vectors with coefficients that exhib-
ited statistical significance using the effect likelihood ratio test, which is indicated by K∗ in Eq. (6). We refer to 
these significant feature vectors as responsible vectors. Then, to elucidate the preference of each responsible vector 
for either LGG or HGG, we analyzed the frequency of each responsible vector according to the glioma grade 
using the Wilcoxon signed-rank test, because the null-hypothesis for the normality of the variable distribution 
was rejected by the Shapiro–Wilk test. If a responsible vector is significantly frequent in LGG patients, it is called 
an LGG responsible vector. Similarly, HGG responsible vectors are defined as frequent feature vectors in HGG 
patients. The level of statistical significance was set to p < 0.05.

Feature ablation study to visualize responsible regions. To enhance the interpretability of deep radiomics, we 
further devise a feature ablation study to visualize the imaging characteristics that are encoded by a specific fea-
ture vector (Fig. 2). First, an input image is projected onto a corresponding latent representation by the encoder 
and the vector quantization (Fig.  2a). The quantized latent representation zq is then fed into the decoder to 
generate the logit map ỹ , which is subsequently converted into the segmentation output ŷ through the argmax 
function. Here, the logit map ỹ is retained for further processing. Next, the feature vector of interest in the initial 
latent representation zq is replaced with a background vector, which is defined as the most common vector in the 
background of the images (that is, the black region outside the body in MRI). The replaced latent representation 
z ′q is subsequently input into the decoder and the corresponding logit map ỹ′ is retained. Finally, the per-pixel 
L1 difference between the two logit maps, ỹ and ỹ′ , is evaluated. Because the difference map reflects the changed 
segmentation output through the removal of the feature vector of interest, we can assess the imaging character-
istics encoded by each feature vector by observing the corresponding region in the input image. Therefore, we 
call this difference map the responsible region (Fig. 2b). The responsible regions from all LGG responsible and 
HGG responsible vectors are collectively denoted as the LGG responsible region and HGG responsible region, 
respectively.

For a quantitative assessment, the values of the responsible region (the per-pixel L1 difference between ỹ and 
ỹ′ ) was calculated according to each segmentation label (ET, ED, and NET). The null-hypotheses for the normal-
ity of these values in the LGG and HGG responsible regions were rejected by the Shapiro–Wilk test ( p < 0.05 ). 
Thus, we performed the Kruskal–Wallis test and the non-parametric comparisons for all pairs (NET-ED, ED-ET, 
and NET-ET) using the Dunn method for joint ranking to reveal the responsible regions that are significantly 
associated with a particular tumor region.

Implementation details. The segmentation network was implemented and trained according to the fol-
lowing descriptions.

Preprocessing. All four sequences, T1, Gd-enhanced T1, T2, and FLAIR, were concatenated into a four-channel 
MR volume X ∈ R

4×240×240×155 . The preprocessing pipeline, including axial image resizing to 256× 256 and 
Z-score normalization, was performed. Moreover, each three-dimensional (3D) MR volume was decomposed 
into a collection of 2D axial slices {x1, x2, . . . , x155 ∈ R

4×256×256} . Both the training and validation datasets were 
preprocessed.

(7)difference ratio =
number of feature vectors different from the original histogram

number of feature vectors in the original histogram
,
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Encoder network. The encoder consists of residual  blocks36, wherein two [convolution + group normalization37 
+ LeakyReLU] sequences are processed with residual connection. The kernel size, stride, and padding size of the 
convolution function in the residual blocks are set to 3, 1, and 1, respectively. From the first to the last residual 
blocks, the encoder uses 32− 64− 128− 128− 128− 128 filter kernels. Each residual block is followed by a 
downsampling block to halve the feature map size, except for the bottom of the network. The downsampling 
block consists of a sequence of [convolution + group normalization + LeakyReLU], whose kernel size, stride, 
and padding size are set to 3, 2, and 1, respectively. The input image is required to have a size of 4× 256× 256 
(= channel × height × width) . The encoder output, which is denoted as ze , has a size of 64× 8× 8.

Decoder network. The decoder architecture is approximately symmetrical to that of the encoder. From the first 
to the last residual block, the decoder uses 128− 128− 128− 128− 64− 32 filter kernels. The residual blocks 
consist of two [convolution + group normalization + LeakyReLU] sequences that follow an upsampling layer 
using an interpolation function coupled with a convolutional function to double the size of the feature map. 
Latent variables sampled from p(z) with a size of 64× 8× 8 pass through the decoder to yield reconstructed 2D 
images with a size of 4× 256× 256.

Training setups. All neural networks were implemented using Python 3.7 with the PyTorch library 1.6.038 on an 
NVIDIA Tesla V100 GPU with CUDA 10.0. The initialization method proposed by He et al.39 was applied to all 
the networks. Adam  optimization40 with a learning rate of 1× 10−4 was used for the segmentation network. The 
other hyperparameters were empirically determined as follows: batch size = 72, maximum number of epochs = 
600. The size of the latent codebook was 512× 64 ( = K × D ). During training, the data augmentation included 
horizontal flipping, random rotation, and random-intensity shifting and scaling.

Results
Segmentation performance of segmentation network. Comparison of voxel volumes according to 
each tumor region (ET, ED, and NET) for the two glioma grades is shown in Table 1. The segmentation per-
formance of the segmentation network based on the Dice score (mean ± standard deviation) was as follows: 
0.56± 0.28 for NET, 0.68± 0.16 for ED, 0.69± 0.23 for ET, 0.80± 0.19 for the tumor core (NET + ET), and 
0.76± 0.12 for the whole tumor (NET + ED + ET). These intermediate Dice scores were expected, because the 
segmentation network has a bottleneck where the imaging features are compressed according to the limited size 
of the codebook. Notably, the primary objective of the segmentation network is not segmentation, but to provide 
a shareable set of feature vectors that sufficiently cover the imaging phenotypes of gliomas and are discriminative 
in downstream tasks.

Histogram representation. Figure  3 shows the average histogram representations of HGG and LGG 
patients. These histograms indicate the average number of times each feature vector appears per MRI volume 
according to the glioma grading. A slight difference can be observed between these two histograms, particu-
larly regarding low-frequency feature vectors. Figure 4a,b shows the difference ratio (Eq. 7), which indicates the 
reproducibility and repeatability of the same histogram representation under perturbations. For pixel intensities 
that were standardized through Z-score normalization, we applied scaling (Fig. 4a) and shifting (Fig. 4b) of pixel 
values with different magnitudes ranging from 0.0 to 1.0 in increments of 0.1 as perturbations. As can be seen, 
the difference ratio increased as the degree of perturbation increased. Further, shifting tended to have a larger 
impact than scaling.

Classification accuracy. According to fivefold cross-validation in the validation dataset, the classifica-
tion results (mean ± standard deviation) of the glioma-grading model were as follows: 0.90± 0.03 of accuracy, 
0.82± 0.13 of precision, 0.73± 0.08 of recall (sensitivity), 0.95± 0.04 of specificity, and 0.93± 0.01 of nega-
tive predictive value. As for the robustness of the classification model under the same perturbations, shifting 
(Fig. 4d) tended to entail larger decline in the performance than scaling (Fig. 4c). The performance degradation 
seemed to be consistent with the degree of difference ratio caused by each level of the perturbations.

Identification of responsible vectors. After evaluating the classification performance based on fivefold 
cross-validation, we trained the classification model again on all samples for further analysis. Additionally, the 
classification model identified two HGG responsible vectors and three LGG responsible vectors, which were sig-

Table 1.  Comparison of voxel volumes (mean ± standard deviation) [ cm3 ] according to each tumor regions 
between LGG and HGG in the validation dataset (MICCAI_BraTS_Training). NET: necrotic and non-
enhancing tumor core, ED: peritumoral edema, ET: Gd-enhanced tumor, WT: whole tumor (= NET + ED + 
ET).

LGG HGG

NET 52.4± 47.3 13.8± 15.9

ED 53.7± 48.7 58.7± 38.3

ET 5.5± 13.5 22.6± 18.6

WT 111.5± 76.7 95.1± 54.8
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nificant covariates in the logistic regression models (effect likelihood ratio test: p < 0.05 ) and had significantly 
uneven distribution according to the glioma grading (Wilcoxon signed-rank test: p < 0.05).

Qualitative evaluation of responsible regions. As demonstrated by the classification performance, 
the feature vectors in the codebook appear to represent the imaging characteristics of gliomas and may convey 
meaningful information to identify the glioma grade. Therefore, we investigated the types of imaging charac-
teristics that are encoded by each feature vector through feature ablation study (Fig. 2). We visualized both the 

Figure 3.  Average histogram representation for patients with (a) HGG and (b) LGG.

Figure 4.  Assessment of the robustness of deep radiomics. Each perturbation such as pixel intensity scale and 
shift was applied to input images with the magnitudes in the range between 0.0 and 1.0 in increments of 0.1. 
(a) Difference ratio according to pixel intensity scale. (b) Difference ratio according to pixel intensity shift. (c) 
Classification performances (accuracy: blue, precision: orange, recall (sensitivity): gray, specificity: yellow, and 
negative predictive value: light blue) according to pixel intensity scale. (d) The same classification performances 
according to pixel intensity shift. See the performance degradation owing to the pixel intensity shift worsened 
when the magnitude exceeds more than 0.6. For all the data points, mean ± standard deviation is indicated.
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HGG and LGG responsible regions to evaluate the overlap with the segmented tumor regions that were provided 
as ground-truth labels (ET, ED, and NET).

Figure 5 shows the distribution of the HGG and LGG responsible regions in patients with HGG. Notably, 
the HGG responsible regions were strongly correlated with the tumor regions of the HGG patients. The large 
difference values (indicated in red color) were preferentially gathered in the central region of the tumor corre-
sponding to the ET label. By contrast, although a small overlap with the LGG responsible regions was observed 
in the peripheral regions of the tumor, the values were relatively low as indicated by the color map.

Figure 6 presents the distribution of HGG and LGG responsible regions in patients with LGG. In contrast to 
the aforementioned results, the LGG responsible regions significantly overlapped with the central region of the 
tumor, and particularly the region labeled as NET. The signals of the HGG responsible regions were not remark-
able, as indicated by their low values.

Quantitative evaluation of responsible regions. Finally, we quantitatively evaluated the preferences 
of each responsible region according to the ET, ED, and NET segmentation labels. The difference values in 
each segmented area were summed and statistically compared, as shown in Fig. 7. For the HGG responsible 
regions, the mean ± standard deviation values for the NET, ED, and ET labels were 5.48± 4.69 , 3.78± 2.79 , 
and 7.66± 5.37 , respectively. The Kruskal–Wallis test and the non-parametric comparisons carried out for 
all pairs using the Dunn method for joint ranking revealed that the highest values appeared in the ET region 
( p < 0.0001 ). For the LGG responsible regions, the values for the NET, ED, and ET labels were 1.22± 1.26 , 
1.02± 1.10 , and 0.92± 1.02 , respectively. The same statistical tests revealed that the highest values appeared 
in the NET region ( p < 0.0001 ). As these quantitative observations were consistent with the qualitative results 
(Figs. 5, 6), it can be concluded that the imaging characteristics associated with the prediction of HGG and LGG 
are indicated by their localization in the ET and NET regions, respectively. In other words, it is implied that 
the classification model mainly depends on the number of feature vectors associated with the presence (ET) or 
absence (NET) of contrast enhancement in the tumor.

Discussion
Multi-parametric MRI can reveal the morphological heterogeneity of gliomas, which contain various sub-regions 
(edematous regions, enhancing and non-enhancing tumor cores) with varying histological and genomic pheno-
types. This intrinsic heterogeneity can also be observed in imaging phenotypes because their sub-regions exhibit 
different intensity patterns across different MR sequences. In this study, three different regions were considered. 
The ET is defined by areas exhibiting hyper-intensity in the Gd-enhanced T1 sequences compared with T1 

Figure 5.  Example results for responsible regions in HGG patients. For patients with HGG, the Gd-enhanced 
T1 (T1CE) and FLAIR sequences, ground-truth labels, segmentation outputs, HGG responsible regions, and 
LGG responsible regions are shown. The tumor regions are adequately correlated with the HGG responsible 
regions, but overlap with the LGG responsible regions is scarce. The color map indicates the high-difference 
values in red and the lower-difference values in blue; the values are standardized for each patient.
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 signals20. Such regions generally correspond to areas of contrast enhancement, where contrast leakage caused 
by blood-brain barrier damage may  exist41,42. The ED is defined by areas with high T2/FLAIR signal  intensity20, 
which represent either low cellularity or  edema43. The NET indicates non-enhancing tumor regions and pre-
necrotic and/or necrotic regions located in the non-enhancing part of the tumor  core20. The imaging appearance 
of NET typically exhibits hypo-intensity in the Gd-enhanced T1 sequences compared with T1  signals20.

Figure 6.  Example results for responsible regions in LGG patients. For patients with LGG, the Gd-enhanced 
T1 (T1CE) and FLAIR sequences, ground-truth labels, segmentation outputs, HGG responsible regions, and 
LGG responsible regions are shown. The tumor regions are strongly correlated with the LGG responsible 
regions, particularly in the central area of the tumor. The overlap with the HGG responsible regions is relatively 
insignificant and peripherally distributed at best. The color map indicates the high-difference values in red and 
the low-difference values in blue; the values are standardized for each patient.

Figure 7.  Quantitative evaluation of overlap between responsible regions and segmentation labels. (a) Difference 
values of HGG responsible regions in each segmentation label: Gd-enhanced tumor (ET), peritumoral edema 
(ED), and necrotic and non-enhancing tumor core (NET). The values in the ET region are the highest among the 
three segmentation categories. (b) Difference values of LGG responsible regions for the same segmentation labels. 
The NET regions have the highest values; * indicates a statistical significance < 0.0001.
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The imaging differences between LGG and HGG have attracted a substantial amount of attention regard-
ing early differential diagnosis. Nevertheless, these differences are still debated. Typically, LGG appears as an 
area of focal signal abnormality with minimal or no contrast  enhancement44, and does not cause significant 
blood–brain barrier disruption, which results in less contrast leakage around the lesions. In contrast, most HGG 
in Gd-enhanced T1 sequences exhibit moderate to strong contrast enhancement, which reflects the degree of 
microvascularity and the presence of a disrupted blood–brain  barrier45. Occasionally, necrosis can be observed 
inside a tumor, and is an important diagnostic feature for  HGG46. Furthermore, HGG commonly causes signifi-
cant damage to the blood-brain barrier, which appears as a large ED area surrounding the tumor core. Therefore, 
based on the segmentation categories adopted in this study, the presence of NETs in the central region of a tumor 
surrounded by a small ED region can be considered as a typical LGG characteristic. For HGG, a tumorous lesion 
represented by ET with or without NET and extensively surrounded by ED areas can be considered as a typical 
representation.

Based on these considerations, our results are consistent with the known imaging characteristics of LGG and 
HGG. Particularly, the feature ablation study revealed that NET is the most discriminative component of LGG, 
whereas ET is the most discriminative component of HGG (Fig. 7). The presence of contrast enhancement (ET) 
is often considered as a sign of  HGG47. Therefore, the observation that the classification model captured the 
presence (ET) or absence (NET) of contrast enhancement in the tumor core is compelling.

Several studies have investigated the classification of glioma grades using deep learning. For example, Yang 
et al. demonstrated that ImageNet-pretrained deep learning models, such as  AlexNet48 and  GoogleNet49, can 
outperform a comparative model trained from scratch, and achieve a maximum test accuracy above 90%14. 
However, their method requires the manual segmentation of the ROIs before the classification. Recently, Banerjee 
et al. proposed a deep-learning-based algorithm that incorporates volumetric tumor information and achieves 
a maximum accuracy of 97%15. Similarly, Zhuge et al. proposed a two-step approach to automatically segment 
brain tumor regions and carry out classification according to the bounded image regions that contain  tumors16. 
They also achieved a maximum classification accuracy of 97%. To achieve superior performance, an important 
aspect of deep-learning-based models is the size and extent of the input images. Banerjee et al.15 compared several 
neural networks using patch-wise, slice-wise, and volume-wise inputs, and achieved glioma grading accuracy of 
82%, 86%, and 95%, respectively. Particularly, when considering the input as a 3D volume, these deep-learning-
based approaches can outperform machine-learning-based approaches that use logistic regression based on brain 
tumor radiomics features (accuracy of 88%)50.

Compared with previous studies, the classification accuracy of the proposed model is ranked between the 
accuracy achieved when using slice-wise inputs and the accuracy achieved when using volume-wise  inputs15. 
Even though the proposed feature extraction process was performed using slice-wise inputs, the classification 
model is as simple as using logistic regression. Therefore, the proposed classification model’s performance is 
remarkable compared with that of end-to-end deep learning models that take slice-wise inputs. Notably,  Rudin51 
insisted that the belief whereby more complex models are more accurate is not always true, particularly when a 
good representation in terms of meaningful features is constructed for a target task. She also argued that there is 
often no significant difference between the prediction accuracy achieved by more complex models, such as deep 
neural networks, and much simpler models, such as logistic regression, when the representative data features 
are given. Accordingly, we confirmed that the feature vectors obtained from the pre-task of tumor segmentation 
are sufficiently informative for the discrimination of glioma grading.

To the best of our knowledge, this is the first study that uses vector quantization to obtain a shareable set of 
feature vectors across a population for the purpose of identifying specific factors associated with clinical infor-
mation. The reason for acquiring quantized latent representations rather than continuous ones for the deep 
radiomics is that it can explicitly fix the variability of internal representations of CNNs. As the original radiomics 
is an approach to extract a large number of quantitative image features for the objective comparison of medical 
 images8, we believe it is important to yield a comparable set of latent representations in a dataset even when 
using deep learning as a feature extraction method. Based on these considerations, our methodology has shown 
considerable success in extracting deep radiomics from the segmentation model, exploiting them in the glioma 
grade classification, and visualizing the imaging region encoded by each feature vector significantly attributed to 
the classification. The observations are consistent with those reported in the literature and can equip physicians 
with an enhanced understanding of the inner reasoning process of classification models.

Limitations. This study has several limitations. First, the detailed information on the public dataset, includ-
ing scanner vendors, the time of scan, field of view, and patient demographic, was unclear. Second, we have not 
tested the generalizability of the results using external datasets. In order to compensate for these shortcomings, 
robustness of the proposed method was investigated, and it was shown that the deep radiomics has a certain 
level of invariance to the shift and scale of the pixel values (Fig. 4). This could be due to the feature normaliza-
tion being operated in each layer of the segmentation network. Furthermore, the variation of the encoder output 
caused by the perturbations can also be suppressed by the vector quantization. Third, no direct comparison was 
conducted with the conventional or advanced techniques using  Radiomics8,52 and other deep-learning-based 
feature extraction  methods53. Moreover, it should be noted that the distinction between LGG and HGG in the 
BraTS dataset is different from those in the WHO classification of  gliomas2, as Dequidt et al.  clarified23. Our 
source code is publicly available for further research to resolve the aforementioned limitations. Furthermore, 
future technical challenges include the extension of this work to end-to-end learning including classifiers, and 
pre-task without label information using self-supervised learning.
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Conclusion
Our deep radiomics approach is a data-driven technique to utilize the internal representations acquired inside 
deep neural networks as imaging markers for downstream tasks. Vector quantization is the core of our proposal 
to resolve the internal variability of typical CNNs for extracting a shareable set of feature vectors in a population. 
Based on the dataset containing brain MRIs with gliomas, we demonstrated that the method could provide a 
good classification accuracy for the glioma grades as well as interpretability for the task-specific radiological 
findings on which the classification model depends. The proposed method is versatile and easily applicable to 
other research fields.

Data availability
Data analyzed during the current study are available on Center for Biomedical Image Computing & Analytics 
(https:// www. med. upenn. edu/ cbica/).

Code availability
The source code in this work is publicly available on GitHub (https:// github. com/ Kaz-K/ deep- radio mics- glioma).
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